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Abstract 

The load/store queue (LSQ) is one of the most complex 
parts of contemporary processors. Its latency is critical for 
the processor performance and it is usually one of the 
processor hotspots. 

This paper presents a highly banked, set-associative, 
multiple-instruction entry LSQ (SAMIE-LSQ) that achieves 
high performance with small energy requirements. The 
SAMIE-LSQ classifies the memory instructions (loads and 
stores) based on the address to be accessed, and groups those 
instructions accessing the same cache line in the same entry. 
Our approach relies on the fact that many in-flight memory 
instructions access the same cache lines. Each SAMIE-LSQ
entry has space for several memory instructions accessing the 
same cache line. This arrangement has a number of 
advantages. First, it significantly reduces the address 
comparison activity needed for memory disambiguation since 
there are less addresses to be compared. It also reduces the 
activity in the data TLB, the cache tag and cache data arrays. 
This is achieved by caching the cache line location and 
address translation in the corresponding SAMIE-LSQ entry 
once the access of one of the instructions in an entry is 
performed, so instructions that share an entry can reuse the 
translation, avoid the tag check and get the data directly from 
the concrete cache way without checking the others. Besides, 
the delay of the proposed scheme is lower than that required 
by a conventional LSQ. 

We show that the SAMIE-LSQ saves 82% dynamic energy 
for the load/store queue, 42% for the L1 data cache and 73% 
for the data TLB, with a negligible impact on performance 
(0.6%). 

1. Introduction 

As technology evolves, power dissipation increases and 
cooling systems become more complex and expensive. 
Reduction of power dissipation in the hottest spots of the 
processor can be very beneficial not only in terms of energy 
reduction, but also for reducing cooling costs or increasing 
performance for a given thermal solution. 

The load/store queue (LSQ) of superscalar processors is 
one of their main hotspots. Besides, the LSQ has a significant 
delay due to its complexity and it is difficult to pipeline. 
Overall, the design of a low latency and low power LSQ is an 
important challenge for continuing scaling up the 
performance of superscalar processors. 

The LSQ is typically implemented using fully-associative 
schemes to check dependences between load and store
instructions. When the address of a load instruction is known, 
it must be compared with the address of the older in-flight 
store instructions to catch the right data in case of a match. 
Similarly, when the address of a store instruction is known, it 
must be compared with the address of the younger in-flight 
load instructions to forward them the right data in case of a 
match. Even though this approach may help to improve 
instruction-level parallelism (ILP), its latency may be high 
and offset its potential benefits. Additionally, its complexity 
grows drastically if we increase the number of ports or the 
LSQ size. Large instruction windows are required for 
augmenting the opportunities to extract more ILP, which in 
turn requires wider pipelines. Hence, large and highly ported 
LSQs are desirable in high-performance processors, provided 
that their latency and power dissipation is reasonable. 

This paper presents a set-associative, multiple-instruction 
entry LSQ (SAMIE-LSQ), which is a new LSQ scheme for 
low power and low-complexity. The SAMIE-LSQ is much 
more suitable for high-performance superscalar processors 
with large instruction windows than conventional LSQs and 
scales much better than a fully-associative LSQ. The SAMIE-
LSQ design is based on two observations: first, many in-flight 
memory instructions access the same cache line so they can 
be placed in entries where the cache line address is shared by 
several load/store instructions; second, in-flight load/store 
instructions access very few cache lines with the same low-
order bits, and thus, we can use a set-associative structure 
since it produces few conflicts for most of the programs. 

The SAMIE-LSQ achieves significant energy savings with 
respect to a conventional LSQ. Moreover, since the SAMIE-
LSQ entries can hold multiple memory instructions, it enables 
caching some information like the location of the cache line 
in the L1 data cache and the address translation provided by 
the data TLB. As a consequence, a significant number of load 

1-4244-0054-6/06/$20.00  ©2006 IEEE



and store instructions do not need to check L1 data cache tags 
nor access all ways of a set-associative L1 data cache, and the 
number of data TLB accesses is reduced. This results in 
significant energy savings in the L1 data cache and the data 
TLB with negligible performance overhead. 

The rest of the paper is organized as follows. Section 2 
reviews some related work. Section 3 presents the proposed 
scheme and section 4 evaluates its performance. Section 5 
summarizes the main conclusions of this work. 

2. Related Work 

Dynamic memory disambiguation has been extensively 
studied. This section reviews some techniques to increase the 
performance and/or save energy of the logic devoted to 
disambiguate loads and stores.  

Some techniques [3][6][8][14] focus on predicting 
dependences between loads and stores. If the address of a 
load is known but there are older stores whose addresses are 
still unknown, they predict whether the load depends on those 
stores or not. On a missprediction, a significant overhead may 
be incurred because the pipeline must be flushed like in a 
branch missprediction. 

Other approaches [5] simplify the logic devoted to 
memory disambiguation by executing loads without 
comparing their addresses against stores addresses. Loads are 
later validated by re-executing them right before commit. If 
there is a mismatch between the data loaded at the execution 
stage and the data loaded at the re-execution stage, then the 
pipeline is flushed. Different mechanisms [2][10][11] have 
been proposed to filter the number of instructions that need 
re-execution since they require memory ports, which are a 
scarce resource. 

Based on the observation that it is usual to have some 
loads in-flight that fetch the same data, Nicolaescu et al. [7] 
propose forwarding the data to among loads instead of 
accessing several times the same data in cache. This 
technique reduces the L1 data cache energy consumption but 
requires that loads can obtain their data forwarded not only 
from stores, but also from loads. 

Sethumadhavan et al. [12] propose using hash encoding of 
the memory addresses to check dependences between loads 
and stores. When the filter (Bloom filter) predicts that a given 
load or store has no dependences with other memory 
instructions, the instruction can be executed safely. On the 
other hand, if the filter predicts that the memory instruction 
may have a conflict, the associative search in the LSQ must 
be done to check whether the dependence exists or not. This 
mechanism saves a significant number of power-hungry 
associative searches in the LSQ by checking only the low 
power filter, but does not reduce the intrinsic complexity of 
the LSQ and introduces indeterminism in the latency to check 
address dependences.  

Park et al. [9] propose a segmented LSQ to reduce its 
latency although checking for the dependences of a load/store 
may take several cycles since LSQ segments are checked 
sequentially. 

Franklin and Sohi [4] propose distributing the LSQ into N
banks and classifying the instructions in the banks according 
to the addresses they access. Each bank has M different 
addresses, and each address has space for P instructions, 
being P the maximum number of in-flight loads/stores 
allowed. There is space for N·M·P instructions but only P
instructions are allowed in total. This scheme relies on the 
idea that as we increase N, M can be decreased. As shown in 
the next section, even if N is large, many programs require M
to be also large. Thus, N·M must be large not to lose 
significant performance, which implies that a lot of space is 
wasted, and small benefits are achieved with respect to a 
conventional LSQ. 

We propose the SAMIE-LSQ, which is an extreme 
distribution of the LSQ into multiple queues that is based on 
the loads/stores addresses and requires very few entries per 
queue. We add a small queue for instructions that do not have 
room in their corresponding queue. Our approach is based on 
the observation that it is very common having several in-
flight instructions that access the same cache line. The 
proposed LSQ can hold several instructions that access the 
same cache line in a single entry, which results in several 
benefits: 
• Loads and stores that are placed in the LSQ must 

compare their address only with other very few cache 
line addresses, which saves significant energy. 

• Once an instruction has accessed the L1 data cache, the 
LSQ entry records where the cache line is located. Then, 
further accesses to the same cache line can access the 
data cache as if it was a direct-mapped cache (just a 
single bank) even if the cache is set-associative in 
practice, and it is not necessary to compare the tag. 
Hence, many cache accesses require little energy and 
lower latency. 

• Once an instruction has accessed the data TLB to 
translate its address, the translation can be cached in the 
LSQ entry. The other instructions of the same LSQ entry 
do not access the TLB, which results in significant 
energy savings in the TLB and may reduce the latency of 
memory instructions. 

Additionally, SAMIE-LSQ can be easily combined with 
any technique that filters the number of accesses to the LSQ, 
and with those techniques that execute loads speculatively. 

3. SAMIE-LSQ 

The load/store queue is one of the most complex 
components of today’s microprocessors. Its energy 
requirements and complexity motivates the research on 
alternative designs. As outlined in the previous section, the 
ARB [4] reduces the complexity and energy consumption of 
the LSQ by distributing it into several banks where 
instructions are allocated depending on the memory address 
to be accessed. To achieve significant dynamic power savings 
the ARB requires a high degree of banking of their LSQ. 
Figure 1 shows the performance of ARB with respect to an 
unbounded size LSQ for different configurations of number 
of   banks   and   addresses    per   bank.    For   instance,    the 



Figure 1. IPC of ARB with respect to an ideal 
unbounded LSQ. Configurations with different number 

of banks and addresses per bank are shown. 

configuration 2x64 corresponds to having 2 banks with 64 
different addresses each. The processor configuration is 
detailed in the evaluation section. The most relevant 
processor parameters are its width (8) and the window size 
(256 instructions).  

Looking at Figure 1 we can see that when the number of 
banks is very low, the dynamic power savings are very low 
since the number of addresses to be compared in a given bank 
is significant. As we increase the degree of banking and 
reduce the number of entries per bank, the power savings 
potential increases but the performance decreases 
dramatically. The configuration with 64 banks and 2 
addresses each loses as much as 28% IPC. Additionally, the 
ARB requires that each entry has space for an address and in 
the worst case as many memory instructions as total number 
of in-flight instructions. Thus, the leakage of ARB may be 
very high. For instance, assuming a maximum of 128 loads 
and stores in-flight, the ARB storage has to be as large as 
16384 (128·128) loads and stores. On the other hand, 
reducing the number of banks, addresses per bank or allowed 
in-flight memory instructions significantly harms 
performance. For instance, we can observe in the figure the 
performance when the number of in-flight memory 
instructions allowed is reduced to the half. The performance 
loss is 16% for the fully associative configuration (1 bank 
with 64 addresses). 

Our objective is distributing the LSQ in many small banks 
to save dynamic power with moderate total LSQ storage 
requirements. The distribution is based on the memory 
address to be accessed.  

3.1 Structures 

Figure 2 shows a block diagram of the SAMIE-LSQ. We 
observe three main structures: DistribLSQ, SharedLSQ and 
AddrBuffer.  

DistribLSQ is a banked LSQ (4 banks in the figure). Each 
bank can hold instructions accessing to different data cache 
lines (2  different cache  lines per  bank in  the example).  For  

Figure 2. SAMIE-LSQ organization. 

each LSQ entry we have an associated cache line and several 
instructions. We refer to these parts of an entry as slots. The 
basic information required for each instruction is its offset 
within the cache line, its relative age identifier used for data 
forwarding, and the data loaded or to be stored if available. 
Additionally, each instruction needs a bit to know if its data is 
available, another bit to know if older stores addresses are 
known, and some bits with other instruction information like 
the number of bytes to be loaded/stored, the type of 
instruction (load/store), and the slot of the store that forwards 
its data (if any) in case this instruction is a load. 

Those instructions that do not find an available entry/slot 
in its corresponding bank of the DistribLSQ are placed in the 
SharedLSQ whose entries have the same fields as the 
DistribLSQ. We assume 4 entries in the figure.  

Finally, instructions that can be placed neither in the 
DistribLSQ nor in the SharedLSQ, are placed in a waiting 
buffer called AddrBuffer. Memory instructions in the 
AddrBuffer cannot access cache; they have to go first to the 
DistribLSQ or SharedLSQ for disambiguation. Each entry of 
this buffer holds the complete address to be accessed (cache 
line address and offset), the age identifier of the instruction, 
and those bits indicating whether it is a load or a store and 
how many bytes must be accessed. 

To maintain coherence and do not allow loads to be issued 
before knowing the addresses of older stores, the reorder 
buffer is extended with some information. For each entry, 
there is a bit (readyBit) used for memory disambiguation. If 
the instruction is a store and its address is known, its readyBit
is set. Any load has its bit set only if there are no older stores 
whose addresses are still unknown. A load cannot access 
memory until this bit is set. The reorder buffer entries have 
also a field telling where the instruction is placed 
(whereLSQ). The whereLSQ field is only relevant for loads. 
When a load is placed in the DistribLSQ or the SharedLSQ, 
this field is set with the corresponding location. 

Every time that a store address is computed, its readyBit is 
set. In case there are no older stores whose addresses are still 
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unknown, it also sets the readyBit of all the following 
instructions in the reorder buffer until a store with unknown 
address is reached. All loads whose readyBits are set during 
this process are notified by using the whereLSQ field. 

3.2 Operation 

When the address of a memory instruction is computed, it 
is forwarded to the LSQ. The DistribLSQ is a set-associative 
structure where the banks are assigned in a direct-mapped 
manner based on the effective address and the entries of each 
bank are accessed in a fully-associative manner. If the 
instruction finds its cache line address in any of the entries of 
the corresponding bank and there is a free slot, the instruction 
fills this slot. If no entry has the same cache address or it is 
present but without free slots, a free entry is allocated and one 
of its slots is used. 

If an instruction fails to be placed in the DistribLSQ due to 
lack of space, it is placed in the SharedLSQ, which is a small 
fully-associative structure. The process is the same: a free slot 
in an entry with the same cache line address is chosen if 
available; otherwise, an empty entry is allocated. Both 
structures are accessed in parallel, so the address of the 
load/store is compared with any other address in the 
corresponding bank of the DistribLSQ and all the addresses in 
the SharedLSQ. 

Finally, if neither the DistribLSQ nor the SharedLSQ have 
room for the instruction, it is placed in the AddrBuffer. The 
instructions in the AddrBuffer have priority over the ones 
coming from the functional units when choosing which ones 
are to be placed in the DistribLSQ or the SharedLSQ. 

3.3 Deadlock Avoidance 

It may happen that the oldest in-flight instruction is in the 
AddrBuffer and it does not find free space in the LSQ 
(DistribLSQ and SharedLSQ) because younger instructions 
have filled the entries where this instruction can be placed. 
This is easily detected by checking whether the head 
instruction of the reorder buffer is not placed in the LSQ. Our 
evaluations show that sizing properly the different structures 
makes this happen very rarely (less than once every million 
instructions). Thus, in case of detecting this scenario we take 
the easy solution to avoid deadlocks: the pipeline is flushed. 
Since the oldest instruction will be the first to re-enter the 
pipeline, it will get an entry in the LSQ, which guarantees 
forward progress. 

There is another situation where the SAMIE-LSQ might 
require the pipeline to be flushed: this is when an address 
computation finishes and it cannot be placed in any of the 
structures (DistribLSQ, SharedLSQ and AddrBuffer). Sizing 
the structures properly prevents this to happen. For instance, 
if the AddrBuffer has as many entries as in-flight memory 
instructions allowed, this situation will never happen. Note 
that the AddrBuffer is a simple FIFO structure so its 
complexity is rather low (e.g., no associative searches are 
performed in it). In our simulations, even assuming a smaller 
AddrBuffer, it never happens. An alternative solution would 

be not allowing address computations to be executed if they 
are not guaranteed to have at least one free slot in the 
AddrBuffer. 

3.4 SAMIE-LSQ Extensions 

SAMIE-LSQ puts several instructions that access the same 
cache line in the same entry of the DistribLSQ or the 
SharedLSQ. We take advantage of this to save energy in the 
L1 data cache and the data TLB. 

We can save L1 data cache (Dcache for short) energy by 
caching the physical location of the cache line (set and way) 
in the corresponding LSQ entry once it is accessed, and 
adding a bit per cache line (presentBit) in the Dcache 
indicating whether its physical location has been cached in 
the LSQ or not. When the first instruction in a given entry 
accesses the Dcache, the physical location (set and way) of 
the cache line is stored in the LSQ entry and both the cache 
line and LSQ entry presentBit are set. Any other access to 
this cache line from this LSQ entry (note that all instructions 
in the same entry access the same cache line) needs neither to 
check the tags nor to read all the ways. These low power 
accesses read the data from the cache line of the concrete way 
without checking the tag. The storage to hold the physical 
location of the cache line requires just few bits. For instance, 
a 32KB cache with 32 bytes per line has 1024 lines, and thus, 
10 bits are enough to record the physical location of the cache 
line. The DistribLSQ may require fewer bits to encode the 
physical cache line since, for a given DistribLSQ bank, only 
one or few sets can be accessed. This simple mechanism 
saves significant Dcache energy, and has two positive side 
effects: these accesses have lower latency, and we know that 
they will hit in advance. The benefits of these two effects are 
not considered in the performance study presented in this 
paper. 

When a cache line is replaced, some LSQ entries in the 
SharedLSQ and the DistribLSQ may have to reset their 
presentBit flag. To avoid the comparison of the cache line 
address being replaced and the addresses in the LSQ, we use 
a very simple alternative, which consists of resetting the 
presentBit flag of all entries that can be potentially affected. 

Data TLB (DTLB for short) energy is also saved by 
keeping the translated address in the LSQ entries. When the 
first instruction in the entry access the data cache, the DTLB 
is looked up and the address translation is cached in the 
corresponding entry of the DistribLSQ or SharedLSQ. The 
other instructions read this information from their LSQ entry. 
Similarly to the technique applied to save Dcache energy, 
there are two additional positive side effects whose benefit is 
not considered in the quantitative evaluation later in this 
paper: the translation has much lower latency and the 
translation hit rate may increase since the DTLB is not 
accessed for many instructions. 

3.5 Sizing SAMIE-LSQ Structures 

We initially experimented with a configuration without the 
SharedLSQ that places all instructions in the  DistribLSQ. We  



Figure 3. Average number of entries occupied in an 
unbounded SharedLSQ for different configurations of 

the DistribLSQ. 

have found that different programs (we use Spec2000 
benchmarks [15]) show extremely different address patterns. 
For instance, integer programs often require few entries in the 
DistribLSQ and these entries are distributed across different 
banks even if the number of banks is low. Hence, they hardly 
use the SharedLSQ. Most of the FP (floating-point) programs 
require a lot of entries in the DistribLSQ, but they exhibit 
different patterns. Some FP programs use evenly the different 
banks, which is beneficial to save energy in the DistribLSQ, 
but other FP programs concentrate most of their entries in 
few banks even if the number of banks is high. Increasing the 
number of entries of all the DistribLSQ banks is a waste of 
space since only a few banks will use them at any given point 
in time. Thus, a most cost-effective solution is using the 
SharedLSQ to hold the instructions that cannot be placed in 
the DistribLSQ.  

Another important design parameter is the number of slots 
per entry. A large number benefits energy savings for address 
comparisons, Dcache and DTLB, for those programs where 
the number of in-flight memory instructions accessing the 
same L1 data cache line is high. On the other hand, there are 
some programs that do not take advantage of a large number 
of slots per entry.  

Summing up, we need a highly banked DistribLSQ with 
enough entries to place most memory instructions, and some 
entries in the SharedLSQ for conflicting addresses. Figure 3 
shows the average occupancy of the SharedLSQ for different 
configurations of the DistribLSQ varying the degree of 
banking (banks x entries per bank). The SharedLSQ is 
assumed to be unbounded, and there are 8 slots per entry in 
both the DistribLSQ and the SharedLSQ. Other configuration 
details are reported in the evaluation section. We observe that 
a configuration with 128 banks of 1 entry each (128x1) 
requires a significant number of entries in the SharedLSQ for 
many programs. That means that the SharedLSQ must be 
quite large and many comparisons will have to be done since 
each address is compared with the addresses of the 
corresponding bank of the DistribLSQ and all the addresses in 
the SharedLSQ. Thus, this configuration is too much  banked.  

Figure 4. Number of programs that do not use the 
AddrBuffer during the 99% of their execution for a 

varying number of SharedLSQ entries. 

On the other hand, we observe that the SharedLSQ space 
requirements of the 64x2 DistribLSQ are only a bit higher 
than those of the 32x4 DistribLSQ. Thus, we select the 64x2 
configuration of the DistribLSQ because its banks are small 
and its SharedLSQ space requirements low. 

Figure 4 shows the number of programs that need a given 
number of SharedLSQ entries in order not to require the 
AddrBuffer during 99% of the time. It can be seen that 4 
entries are enough for 16 over 26 programs, so 10 programs 
may lose some performance, whereas 8 entries are enough for 
21 programs. If we consider a SharedLSQ with 12 entries 
only one more program has enough entries during the 99% of 
the time of its execution. Hence, an 8-entry SharedLSQ seems 
a good tradeoff and is what we assume in our experiments. 

The number of slots per entry is set to 8. More slots per 
entry would help to reduce the energy consumption since 
more instructions may benefit from power reductions when 
accessing the Dcache and the TLB. The drawback of 
increasing the number of slots per entry is that leakage and 
delay are increased.  

Using a lower number of slots per entry would help to 
save leakage and reduce the delay, but it is counterproductive 
for some programs whose memory references tend to 
concentrate in few cache lines, because the associated LSQ 
bank or the SharedLSQ would require more entries. This may 
offset the benefits of reducing the number of slots per entry. 

As shown in Figure 3 some programs require a large 
number of entries in the SharedLSQ. When they fail to place 
an instruction in the SharedLSQ, the instruction has to wait in 
the AddrBuffer. We have observed that an AddrBuffer of 64 
entries is always enough for all programs. A few programs 
such as ammp and facerec need more than 32 entries more 
than 5% of their execution time. Since the AddrBuffer is a 
cheap structure in terms of energy and delay, we set its size to 
64 entries. 

3.6 Delay  

The delay of the different components has been evaluated 
using CACTI 3.0 [13] with 0.10µm technology. The largest 
delay for SAMIE-LSQ corresponds to DistribLSQ (64 banks, 
2  entries/bank,   8  slots/entry).   We  also   assume  an   extra  
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Size Assoc. Ports Conventional 
delay (ns) 

Physical line 
known delay (ns)

Improvement over 
conventional 

8KB 2 way 2 0.865 0.700 19.4% 
8KB 2 way 4 1.014 0.875 13.7% 
8KB 4 way 2 1.008 0.878 12.9% 
8KB 4 way 4 1.307 1.266 3.1% 
32KB 2 way 2 1.195 1.092 8.7% 
32KB 2 way 4 1.551 1.490 4.0% 
32KB 4 way 2 1.194 1.165 2.5% 
32KB 4 way 4 1.693 1.693 0.0% 

Table 1. Access time of conventional cache accesses 
and access time when the physical cache line is 

known for different cache configurations. The number 
of bytes per line is 32 in all configurations. 

latency to send the addresses to the banks with respect to a 
conventional LSQ because it is a larger structure. We have 
assumed this additional delay to be equal to the delay of the 
buses (bitlines and wordlines) of a 128-entry structure with 
the same total capacity. The maximum delay of DistribLSQ is 
the delay to send an address to a bank (0.124ns) plus the 
delay of comparing the cache line addresses in such a bank 
(0.590ns). Thus, the total DistribLSQ delay is 0.714ns. The 
delays for SharedLSQ (8 entries, 8 slots/entry) and 
AddrBuffer (64 slots) are 0.617ns and 0.319ns respectively. 

The assumed baseline LSQ (128 entries) has a delay of 
0.881ns, which is 23% higher than the delay of SAMIE-LSQ. 
We also have found that a conventional LSQ with 16 entries 
has a delay similar (4% larger) to our SAMIE-LSQ
configuration. 

In terms of delay, we have found that those accesses to the 
Dcache where the physical cache line to access is known, 
may be done with lower delay than conventional Dcache 
accesses. Table 1 shows the access time of both types of 
accesses for different cache configurations. It can be observed 
that most of the configurations have lower access time when 
the physical cache line is known beforehand. Although in this 
work we do not take advantage of this lower access time for 
Dcache accesses, we consider that this feature of the SAMIE-
LSQ can provide additional benefits and will be the target of 
future work. 

4. Evaluation 

This section presents performance and energy statistics for 
the SAMIE-LSQ and a baseline with a conventional fully-
associative LSQ. First, the experimental framework for 
performance and energy modeling is presented. Then, the 
impact of the SAMIE-LSQ in performance, dynamic energy 
and leakage is discussed. 

4.1 Experimental Framework 

The SAMIE-LSQ performance has been evaluated with an 
enhanced version of sim-outorder, which is a 
microarchitecture-level performance simulator included in the 
Simplescalar toolset [1]. The main enhancements are the 
separation of the reorder buffer and the issue queue, and the 
modeling of ports for different structures. Energy results are 
derived from CACTI 3.0 [13],  which is a  timing, power  and 

Fetch, decode, commit width: 8 instructions 
Issue width: 8 INT + 8FP instructions
Branch predictor: Hybrid 2K Gshare, 2K  bimodal, 1K  selector
BTB: 2048 entries, 4-way

L1 Icache: 64KB, 2-way, 32 byte line (1 cycle)
L1 Dcache: 8KB, 4-way, 32 byte line, 4 R/W ports (2 cycles)
L2 unified cache: 512KB, 4-way, 64 byte line (10 cycles hit, 100 

cycles miss, 2 cycles interchunk) 
ITLB: 128 entries fully-associative (1 cycle)
DTLB: 128 entries fully-associative (1 cycle)
Fetch queue: 64 entries
Issue queue: 128 INT + 128 FP entries
Reorder buffer: 256 entries 
Load/store queue: 128 entries for the baseline
Register file: 160 INT + 160 FP registers

INT functional units:  
6 ALU (1 cycle)  
3 mult/div (3 cycles mult, 20 cycles non-pipelined div)
FP functional units:  
4 ALU (2 cycles) 
2 mult/div (4 cycles mult, 12 cycles non-pipelined div)
Technology: 0.10 µm

Table 2. Processor configuration. 

DistribLSQ:  64 banks 
2 entries per bank 
8 slots per entry

SharedLSQ:  8 entries 
8 slots per entry

AddrBuffer: 64 slots

Table 3. SAMIE-LSQ configuration. 

area model for memory-like structures. Table 2 shows the 
processor configuration and Table 3 shows the SAMIE-LSQ
configuration. 

For this study we have used the whole Spec2000 
benchmark suite [15] with the ref input data set. We have 
simulated 100 million instructions for each benchmark after 
skipping the initialization part and warming up the cache for 
100 million instructions. The benchmarks have been 
compiled with the HP/Alpha compiler with –O4 -
non_shared flags. 

4.2 Energy Model for the LSQ 

The energy and area parameters used are derived from 
CACTI 3.0 [13]. The baseline LSQ is a conventional fully-
associative structure of 128 entries. For the sake of a fair 
comparison, we assume for the baseline that a load address is 
only compared with the addresses of the older stores whose 
address is known. On the other hand, a store address is only 
compared with the addresses of the younger loads whose 
address is known. If there is any match, the matching loads 
data are forwarded from a store when it is available and the 
load does not access the Dcache. Table 4 details the energy 
consumption for the different types of accesses. 

Our proposed SAMIE-LSQ requires comparing each 
address with all the addresses (entries) in-use of the 
corresponding bank of the DistribLSQ and all the addresses 
in-use of the SharedLSQ. Additionally, the age identifier (it is 
implemented as the  reorder buffer  position plus an  extra bit) 



LSQ Energy 
Address comparison 452 pJ + 3.53 pJ per address compared 
Read/Write an address 57.1 pJ 
Read/Write a datum 93.2 pJ 

Table 4. Energy consumption of the different types of 
accesses to a 128-entry conventional LSQ. 

DistribLSQ Energy 
Address comparison 4.33 pJ + 2.17 pJ per address compared 
Read/Write an address 4.07 pJ 
Age id comparison in one entry 19.4 pJ + 1.21 pJ per age id compared 
Read/Write an age id 1.64 pJ 
Read/Write a datum 10.9 pJ 
Read/Write a TLB @ translation 6.02 pJ 
Read/Write a cache line id 0.236 pJ 
Bus to DistribLSQ
Send an address 54.4 pJ 

SharedLSQ 
Address comparison 22.7 pJ + 2.83 pJ per address compared 
Read/Write an address 6.16 pJ 
Age id comparison in one entry 19.4 pJ + 2.43 pJ per age id compared 
Read/Write an age id 1.64 pJ 
Read/Write a datum 10.9 pJ 
Read/Write a TLB @ translation 8.73 pJ 
Read/Write a cache line id 0.342 pJ 
AddrBuffer 
Read/Write a datum 31.6 pJ 
Read/Write an age id 15.7 pJ 

Table 5. Energy consumption for the different activities 
of the SAMIE-LSQ. 

of the instruction whose address has just been computed is 
compared with all the age identifiers of the slots in-use in the 
corresponding bank of the DistribLSQ and all the age 
identifiers of the SharedLSQ. This way, if it is a load, it will 
record the slot where there is the store that forwards its data. 
If it is a store, it updates the forwarding information of the 
loads. The energy consumption for the different activities is 
shown in Table 5. 

The energy consumption of a Dcache access is 1009 pJ, 
whereas the energy consumption is 276 pJ when only one of 
the ways is accessed and no address is compared for a 8KB 4-
way cache. For the DTLB, the energy of an access is 273 pJ. 

Since CACTI does not estimate leakage, we keep track of 
the active area for the baseline LSQ and the SAMIE-LSQ, 
which is closely related to the leakage energy. Both 
mechanisms are intended to be energy efficient, so we 
assume that the conventional LSQ has active all in-use entries 
plus four extra entries for new instructions. This limitation 
hardly impacts the performance (less than 0.1% IPC loss) and 
significantly reduces leakage. On the other hand, the SAMIE-
LSQ has active all in-use entries plus one extra entry in each 
bank of the DistribLSQ and one extra entry in the 
SharedLSQ. In each entry, the slots in-use plus an extra slot 
are considered to be active. The AddrBuffer has all in-use 
slots plus four extra slots active. As in the conventional LSQ, 
the performance degradation of these limitations is negligible. 
The type and area of the different cells is detailed in Table 6. 

Conventional LSQ Type Area  
Address CAM 28 µm2

Datum RAM 20 µm2

DistribLSQ   
Address CAM 10 µm2

Age id CAM 10 µm2

Datum RAM 6 µm2

TLB address translation RAM 6 µm2

Cache line id RAM 6 µm2

SharedLSQ   
Address CAM 10 µm2

Age id CAM 10 µm2

Datum RAM 6 µm2

TLB address translation RAM 6 µm2

Cache line id RAM 6 µm2

AddrBuffer   
Datum RAM 20 µm2

Age id RAM 20 µm2

Table 6. Area of the different components of the 
conventional LSQ and SAMIE-LSQ. 

Figure 5. % IPC loss of SAMIE-LSQ with respect to the 
128-entry conventional LSQ. 

4.3 Performance 

Figure 5 presents the IPC of the SAMIE-LSQ with respect 
to the conventional LSQ. We observe that SAMIE-LSQ loses 
some performance for ammp, apsi and mgrid. As shown in 
Figure 3, these programs would require a large number of 
SharedLSQ entries. Thus, the SharedLSQ often becomes full 
and some instructions have to wait in the AddrBuffer, which 
implies than some instructions that are ready to execute have 
to wait for an available entry/slot in the proper bank of the 
DistribLSQ or the SharedLSQ. Furthermore, since some 
instructions have to wait in the AddrBuffer, it may happen 
that the oldest memory instruction cannot be placed neither in 
the DistribLSQ or the SharedLSQ, firing the deadlock 
avoidance scheme (i.e. pipeline flush) described above. 
Figure 6 shows the number of deadlocks per million of 
cycles. It can be seen that ammp is the only program with a 
significant number of deadlocks.  

In Figure 5 we also observe that some programs such as 
facerec and fma3d perform better with the SAMIE-LSQ
than  with  the  conventional  LSQ.  This  is  so because  these  

% IPC loss of SAMIE-LSQ w.r.t. the 
conventional LSQ
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Figure 6. Number of deadlock-avoidance pipeline 
flushes per million of cycles for SAMIE-LSQ. 

Figure 7. Dynamic energy consumption for the LSQ. 

programs have high LSQ pressure and the conventional LSQ 
can hold up to 128 memory instructions, whereas the SAMIE-
LSQ can hold many more if they are well distributed among 
the different banks. 

On average, the SAMIE-LSQ loses 0.6% IPC with respect 
to the conventional LSQ. This does not take into account the 
potential benefits from the fact that the delay of the SAMIE-
LSQ is lower than that of the conventional LSQ, as shown in 
section 3. 

4.4 Dynamic Energy 

Figure 7 shows the dynamic energy consumption of the 
conventional LSQ and the SAMIE-LSQ. We observe that the 
SAMIE-LSQ is much more energy-efficient than the 
conventional LSQ for all but one program. In fact, the 
programs that have high energy consumption with the 
SAMIE-LSQ are those with high SharedLSQ requirements. 
This trend can be seen in Figure 8 where the energy of the 
SAMIE-LSQ is broken down. Most of the programs spend the 
energy in the DistribLSQ and the buses, but ammp, apsi, 
facerec and mgrid have significant number of conflicts 
and require large space in the SharedLSQ and the AddrBuffer.  

Figure 8. Dynamic energy consumption breakdown for 
the SAMIE-LSQ. 

On  average, the SAMIE-LSQ saves 82% of the dynamic 
energy of the conventional LSQ with negligible performance 
degradation.  

As stated in section 3, the SAMIE-LSQ enables significant 
energy savings in the L1 data cache and the data TLB by 
caching the location of the data in cache and the address 
translation respectively. Figure 9 shows the energy 
consumption of the Dcache for both the conventional LSQ 
and the SAMIE-LSQ. It can be seen that the energy savings 
for the SAMIE-LSQ are consistent across all benchmarks. On 
average, 42% of the L1 data cache energy can be saved, 
ammp and swim being the programs with highest savings 
(58%), and sixtrack being the program with lowest 
energy savings (21%). 

Figure 10 shows the data TLB energy consumption. In 
general, those Dcache accesses that do not compare the 
address and only access one way, do not access the DTLB 
because the address translation has also been cached. Thus, 
the fraction of energy savings for the DTLB is higher than 
that for the Dcache. On average, 73% DTLB energy is saved 
if we compare the SAMIE-LSQ with a conventional LSQ. The 
highest savings correspond to ammp (84%) and the lowest to 
mcf (55%). 

4.5 Leakage 

The SAMIE-LSQ is larger than the conventional LSQ 
because it has practically the same number of addresses but 
space for 8 instructions per address, whereas the conventional 
LSQ only has space for one instruction per address. 
Nevertheless, the SAMIE-LSQ can work with an active area 
similar to that of the conventional LSQ as shown in Figure 
11. We accumulate the area every cycle instead of using the 
average area to take into account the longer or shorter 
execution time of the different programs. The accumulated 
active area for both the conventional LSQ and the SAMIE-
LSQ are very similar, and slightly favorable to the SAMIE-
LSQ (5%). The best scheme in terms of active area depends 
on the program, some integer programs (bzip2, crafty, 
gcc,   parser,  perlbmk)  being  the  worst  programs  for  

Deadlocks per 1.000.000 cycles for SAMIE-LSQ
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Figure 9. Dynamic energy consumption for the L1 data 
cache. 

Figure 10. Dynamic energy consumption for the data 
TLB. 

Figure 11. Accumulated active area in mm2 for the 
LSQ. 

SAMIE-LSQ because they have very low LSQ space 
requirements and the SAMIE-LSQ keeps larger empty area 
active than the conventional LSQ. 

Figure 12 shows the area breakdown for SAMIE-LSQ. The 
DistribLSQ is the structure with the largest active area, and 
the   SharedLSQ  active   area  is   noticeable   only   in   those  

Figure 12. Active area breakdown for the SAMIE-LSQ. 

programs with high SharedLSQ space requirements (ammp, 
apsi, art, facerec, mgrid). 

5. Conclusions and Future Work 

We have presented the SAMIE-LSQ, which is a new 
power-aware load/store queue design. The SAMIE-LSQ
exploits the fact that many in-flight loads and stores access 
the same cache line and places these instructions in the same 
entry. This reduces the required number of address 
comparisons and other activity in the data cache and the TLB. 
This number of comparisons is further reduced by using a set-
associative organization instead of a fully-associative one.  

The SAMIE-LSQ saves 82% dynamic energy for the 
load/store queue, 42% for the L1 data cache and 73% for the 
data TLB, with a negligible impact on performance (0.6%). 

Additionally, the delay of the SAMIE-LSQ is lower than 
that of a conventional load/store queue, and the access time 
for many L1 data cache references is also reduced. This 
enables further opportunities for optimizations to improve the 
performance and/or energy requirements, which have not 
been exploited in this work and will be the target of our 
future research. Another interesting future research direction 
is the coupling of the SAMIE-LSQ with the L1 data cache by 
integrating the DistribLSQ entries and their corresponding 
cache set(s) in the same physical structure to further reduce 
the cache access time. 
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