
SAMIE-LSQ: Set-Associative Multiple-Instruction Entry Load/Store Queue

Jaume Abella and Antonio González

Intel Barcelona Research Center
Intel Labs, Universitat Politècnica de Catalunya

Barcelona (Spain)

 Computer Architecture Department
Universitat Politècnica de Catalunya

Barcelona (Spain)

{jaumex.abella, antonio.gonzalez}@intel.com

Abstract

The load/store queue (LSQ) is one of the most complex
parts of contemporary processors. Its latency is critical for
the processor performance and it is usually one of the
processor hotspots.

This paper presents a highly banked, set-associative,
multiple-instruction entry LSQ (SAMIE-LSQ) that achieves
high performance with small energy requirements. The
SAMIE-LSQ classifies the memory instructions (loads and
stores) based on the address to be accessed, and groups those
instructions accessing the same cache line in the same entry.
Our approach relies on the fact that many in-flight memory
instructions access the same cache lines. Each SAMIE-LSQ
entry has space for several memory instructions accessing the
same cache line. This arrangement has a number of
advantages. First, it significantly reduces the address
comparison activity needed for memory disambiguation since
there are less addresses to be compared. It also reduces the
activity in the data TLB, the cache tag and cache data arrays.
This is achieved by caching the cache line location and
address translation in the corresponding SAMIE-LSQ entry
once the access of one of the instructions in an entry is
performed, so instructions that share an entry can reuse the
translation, avoid the tag check and get the data directly from
the concrete cache way without checking the others. Besides,
the delay of the proposed scheme is lower than that required
by a conventional LSQ.

We show that the SAMIE-LSQ saves 82% dynamic energy
for the load/store queue, 42% for the L1 data cache and 73%
for the data TLB, with a negligible impact on performance
(0.6%).

1. Introduction

As technology evolves, power dissipation increases and
cooling systems become more complex and expensive.
Reduction of power dissipation in the hottest spots of the
processor can be very beneficial not only in terms of energy
reduction, but also for reducing cooling costs or increasing
performance for a given thermal solution.

The load/store queue (LSQ) of superscalar processors is
one of their main hotspots. Besides, the LSQ has a significant
delay due to its complexity and it is difficult to pipeline.
Overall, the design of a low latency and low power LSQ is an
important challenge for continuing scaling up the
performance of superscalar processors.

The LSQ is typically implemented using fully-associative
schemes to check dependences between load and store
instructions. When the address of a load instruction is known,
it must be compared with the address of the older in-flight
store instructions to catch the right data in case of a match.
Similarly, when the address of a store instruction is known, it
must be compared with the address of the younger in-flight
load instructions to forward them the right data in case of a
match. Even though this approach may help to improve
instruction-level parallelism (ILP), its latency may be high
and offset its potential benefits. Additionally, its complexity
grows drastically if we increase the number of ports or the
LSQ size. Large instruction windows are required for
augmenting the opportunities to extract more ILP, which in
turn requires wider pipelines. Hence, large and highly ported
LSQs are desirable in high-performance processors, provided
that their latency and power dissipation is reasonable.

This paper presents a set-associative, multiple-instruction
entry LSQ (SAMIE-LSQ), which is a new LSQ scheme for
low power and low-complexity. The SAMIE-LSQ is much
more suitable for high-performance superscalar processors
with large instruction windows than conventional LSQs and
scales much better than a fully-associative LSQ. The SAMIE-
LSQ design is based on two observations: first, many in-flight
memory instructions access the same cache line so they can
be placed in entries where the cache line address is shared by
several load/store instructions; second, in-flight load/store
instructions access very few cache lines with the same low-
order bits, and thus, we can use a set-associative structure
since it produces few conflicts for most of the programs.

The SAMIE-LSQ achieves significant energy savings with
respect to a conventional LSQ. Moreover, since the SAMIE-
LSQ entries can hold multiple memory instructions, it enables
caching some information like the location of the cache line
in the L1 data cache and the address translation provided by
the data TLB. As a consequence, a significant number of load

1-4244-0054-6/06/$20.00 ©2006 IEEE

and store instructions do not need to check L1 data cache tags
nor access all ways of a set-associative L1 data cache, and the
number of data TLB accesses is reduced. This results in
significant energy savings in the L1 data cache and the data
TLB with negligible performance overhead.

The rest of the paper is organized as follows. Section 2
reviews some related work. Section 3 presents the proposed
scheme and section 4 evaluates its performance. Section 5
summarizes the main conclusions of this work.

2. Related Work

Dynamic memory disambiguation has been extensively
studied. This section reviews some techniques to increase the
performance and/or save energy of the logic devoted to
disambiguate loads and stores.

Some techniques [3][6][8][14] focus on predicting
dependences between loads and stores. If the address of a
load is known but there are older stores whose addresses are
still unknown, they predict whether the load depends on those
stores or not. On a missprediction, a significant overhead may
be incurred because the pipeline must be flushed like in a
branch missprediction.

Other approaches [5] simplify the logic devoted to
memory disambiguation by executing loads without
comparing their addresses against stores addresses. Loads are
later validated by re-executing them right before commit. If
there is a mismatch between the data loaded at the execution
stage and the data loaded at the re-execution stage, then the
pipeline is flushed. Different mechanisms [2][10][11] have
been proposed to filter the number of instructions that need
re-execution since they require memory ports, which are a
scarce resource.

Based on the observation that it is usual to have some
loads in-flight that fetch the same data, Nicolaescu et al. [7]
propose forwarding the data to among loads instead of
accessing several times the same data in cache. This
technique reduces the L1 data cache energy consumption but
requires that loads can obtain their data forwarded not only
from stores, but also from loads.

Sethumadhavan et al. [12] propose using hash encoding of
the memory addresses to check dependences between loads
and stores. When the filter (Bloom filter) predicts that a given
load or store has no dependences with other memory
instructions, the instruction can be executed safely. On the
other hand, if the filter predicts that the memory instruction
may have a conflict, the associative search in the LSQ must
be done to check whether the dependence exists or not. This
mechanism saves a significant number of power-hungry
associative searches in the LSQ by checking only the low
power filter, but does not reduce the intrinsic complexity of
the LSQ and introduces indeterminism in the latency to check
address dependences.

Park et al. [9] propose a segmented LSQ to reduce its
latency although checking for the dependences of a load/store
may take several cycles since LSQ segments are checked
sequentially.

Franklin and Sohi [4] propose distributing the LSQ into N
banks and classifying the instructions in the banks according
to the addresses they access. Each bank has M different
addresses, and each address has space for P instructions,
being P the maximum number of in-flight loads/stores
allowed. There is space for N·M·P instructions but only P
instructions are allowed in total. This scheme relies on the
idea that as we increase N, M can be decreased. As shown in
the next section, even if N is large, many programs require M
to be also large. Thus, N·M must be large not to lose
significant performance, which implies that a lot of space is
wasted, and small benefits are achieved with respect to a
conventional LSQ.

We propose the SAMIE-LSQ, which is an extreme
distribution of the LSQ into multiple queues that is based on
the loads/stores addresses and requires very few entries per
queue. We add a small queue for instructions that do not have
room in their corresponding queue. Our approach is based on
the observation that it is very common having several in-
flight instructions that access the same cache line. The
proposed LSQ can hold several instructions that access the
same cache line in a single entry, which results in several
benefits:
• Loads and stores that are placed in the LSQ must

compare their address only with other very few cache
line addresses, which saves significant energy.

• Once an instruction has accessed the L1 data cache, the
LSQ entry records where the cache line is located. Then,
further accesses to the same cache line can access the
data cache as if it was a direct-mapped cache (just a
single bank) even if the cache is set-associative in
practice, and it is not necessary to compare the tag.
Hence, many cache accesses require little energy and
lower latency.

• Once an instruction has accessed the data TLB to
translate its address, the translation can be cached in the
LSQ entry. The other instructions of the same LSQ entry
do not access the TLB, which results in significant
energy savings in the TLB and may reduce the latency of
memory instructions.

Additionally, SAMIE-LSQ can be easily combined with
any technique that filters the number of accesses to the LSQ,
and with those techniques that execute loads speculatively.

3. SAMIE-LSQ

The load/store queue is one of the most complex
components of today’s microprocessors. Its energy
requirements and complexity motivates the research on
alternative designs. As outlined in the previous section, the
ARB [4] reduces the complexity and energy consumption of
the LSQ by distributing it into several banks where
instructions are allocated depending on the memory address
to be accessed. To achieve significant dynamic power savings
the ARB requires a high degree of banking of their LSQ.
Figure 1 shows the performance of ARB with respect to an
unbounded size LSQ for different configurations of number
of banks and addresses per bank. For instance, the

Figure 1. IPC of ARB with respect to an ideal
unbounded LSQ. Configurations with different number

of banks and addresses per bank are shown.

configuration 2x64 corresponds to having 2 banks with 64
different addresses each. The processor configuration is
detailed in the evaluation section. The most relevant
processor parameters are its width (8) and the window size
(256 instructions).

Looking at Figure 1 we can see that when the number of
banks is very low, the dynamic power savings are very low
since the number of addresses to be compared in a given bank
is significant. As we increase the degree of banking and
reduce the number of entries per bank, the power savings
potential increases but the performance decreases
dramatically. The configuration with 64 banks and 2
addresses each loses as much as 28% IPC. Additionally, the
ARB requires that each entry has space for an address and in
the worst case as many memory instructions as total number
of in-flight instructions. Thus, the leakage of ARB may be
very high. For instance, assuming a maximum of 128 loads
and stores in-flight, the ARB storage has to be as large as
16384 (128·128) loads and stores. On the other hand,
reducing the number of banks, addresses per bank or allowed
in-flight memory instructions significantly harms
performance. For instance, we can observe in the figure the
performance when the number of in-flight memory
instructions allowed is reduced to the half. The performance
loss is 16% for the fully associative configuration (1 bank
with 64 addresses).

Our objective is distributing the LSQ in many small banks
to save dynamic power with moderate total LSQ storage
requirements. The distribution is based on the memory
address to be accessed.

3.1 Structures

Figure 2 shows a block diagram of the SAMIE-LSQ. We
observe three main structures: DistribLSQ, SharedLSQ and
AddrBuffer.

DistribLSQ is a banked LSQ (4 banks in the figure). Each
bank can hold instructions accessing to different data cache
lines (2 different cache lines per bank in the example). For

Figure 2. SAMIE-LSQ organization.

each LSQ entry we have an associated cache line and several
instructions. We refer to these parts of an entry as slots. The
basic information required for each instruction is its offset
within the cache line, its relative age identifier used for data
forwarding, and the data loaded or to be stored if available.
Additionally, each instruction needs a bit to know if its data is
available, another bit to know if older stores addresses are
known, and some bits with other instruction information like
the number of bytes to be loaded/stored, the type of
instruction (load/store), and the slot of the store that forwards
its data (if any) in case this instruction is a load.

Those instructions that do not find an available entry/slot
in its corresponding bank of the DistribLSQ are placed in the
SharedLSQ whose entries have the same fields as the
DistribLSQ. We assume 4 entries in the figure.

Finally, instructions that can be placed neither in the
DistribLSQ nor in the SharedLSQ, are placed in a waiting
buffer called AddrBuffer. Memory instructions in the
AddrBuffer cannot access cache; they have to go first to the
DistribLSQ or SharedLSQ for disambiguation. Each entry of
this buffer holds the complete address to be accessed (cache
line address and offset), the age identifier of the instruction,
and those bits indicating whether it is a load or a store and
how many bytes must be accessed.

To maintain coherence and do not allow loads to be issued
before knowing the addresses of older stores, the reorder
buffer is extended with some information. For each entry,
there is a bit (readyBit) used for memory disambiguation. If
the instruction is a store and its address is known, its readyBit
is set. Any load has its bit set only if there are no older stores
whose addresses are still unknown. A load cannot access
memory until this bit is set. The reorder buffer entries have
also a field telling where the instruction is placed
(whereLSQ). The whereLSQ field is only relevant for loads.
When a load is placed in the DistribLSQ or the SharedLSQ,
this field is set with the corresponding location.

Every time that a store address is computed, its readyBit is
set. In case there are no older stores whose addresses are still

@ inst. 0 inst. 1 inst. 2 inst. 3

@ inst. 0 inst. 1 inst. 2 inst. 3

DistribLSQ

SharedLSQ

AddrBuffer

ARB: % IPC w.r.t. unbounded LSQ

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
1x

12
8

2x
64

4x
32

8x
16

16
x8

32
x4

64
x2

12
8x

1

Banks x Addresses

Normal Half number of addresses

unknown, it also sets the readyBit of all the following
instructions in the reorder buffer until a store with unknown
address is reached. All loads whose readyBits are set during
this process are notified by using the whereLSQ field.

3.2 Operation

When the address of a memory instruction is computed, it
is forwarded to the LSQ. The DistribLSQ is a set-associative
structure where the banks are assigned in a direct-mapped
manner based on the effective address and the entries of each
bank are accessed in a fully-associative manner. If the
instruction finds its cache line address in any of the entries of
the corresponding bank and there is a free slot, the instruction
fills this slot. If no entry has the same cache address or it is
present but without free slots, a free entry is allocated and one
of its slots is used.

If an instruction fails to be placed in the DistribLSQ due to
lack of space, it is placed in the SharedLSQ, which is a small
fully-associative structure. The process is the same: a free slot
in an entry with the same cache line address is chosen if
available; otherwise, an empty entry is allocated. Both
structures are accessed in parallel, so the address of the
load/store is compared with any other address in the
corresponding bank of the DistribLSQ and all the addresses in
the SharedLSQ.

Finally, if neither the DistribLSQ nor the SharedLSQ have
room for the instruction, it is placed in the AddrBuffer. The
instructions in the AddrBuffer have priority over the ones
coming from the functional units when choosing which ones
are to be placed in the DistribLSQ or the SharedLSQ.

3.3 Deadlock Avoidance

It may happen that the oldest in-flight instruction is in the
AddrBuffer and it does not find free space in the LSQ
(DistribLSQ and SharedLSQ) because younger instructions
have filled the entries where this instruction can be placed.
This is easily detected by checking whether the head
instruction of the reorder buffer is not placed in the LSQ. Our
evaluations show that sizing properly the different structures
makes this happen very rarely (less than once every million
instructions). Thus, in case of detecting this scenario we take
the easy solution to avoid deadlocks: the pipeline is flushed.
Since the oldest instruction will be the first to re-enter the
pipeline, it will get an entry in the LSQ, which guarantees
forward progress.

There is another situation where the SAMIE-LSQ might
require the pipeline to be flushed: this is when an address
computation finishes and it cannot be placed in any of the
structures (DistribLSQ, SharedLSQ and AddrBuffer). Sizing
the structures properly prevents this to happen. For instance,
if the AddrBuffer has as many entries as in-flight memory
instructions allowed, this situation will never happen. Note
that the AddrBuffer is a simple FIFO structure so its
complexity is rather low (e.g., no associative searches are
performed in it). In our simulations, even assuming a smaller
AddrBuffer, it never happens. An alternative solution would

be not allowing address computations to be executed if they
are not guaranteed to have at least one free slot in the
AddrBuffer.

3.4 SAMIE-LSQ Extensions

SAMIE-LSQ puts several instructions that access the same
cache line in the same entry of the DistribLSQ or the
SharedLSQ. We take advantage of this to save energy in the
L1 data cache and the data TLB.

We can save L1 data cache (Dcache for short) energy by
caching the physical location of the cache line (set and way)
in the corresponding LSQ entry once it is accessed, and
adding a bit per cache line (presentBit) in the Dcache
indicating whether its physical location has been cached in
the LSQ or not. When the first instruction in a given entry
accesses the Dcache, the physical location (set and way) of
the cache line is stored in the LSQ entry and both the cache
line and LSQ entry presentBit are set. Any other access to
this cache line from this LSQ entry (note that all instructions
in the same entry access the same cache line) needs neither to
check the tags nor to read all the ways. These low power
accesses read the data from the cache line of the concrete way
without checking the tag. The storage to hold the physical
location of the cache line requires just few bits. For instance,
a 32KB cache with 32 bytes per line has 1024 lines, and thus,
10 bits are enough to record the physical location of the cache
line. The DistribLSQ may require fewer bits to encode the
physical cache line since, for a given DistribLSQ bank, only
one or few sets can be accessed. This simple mechanism
saves significant Dcache energy, and has two positive side
effects: these accesses have lower latency, and we know that
they will hit in advance. The benefits of these two effects are
not considered in the performance study presented in this
paper.

When a cache line is replaced, some LSQ entries in the
SharedLSQ and the DistribLSQ may have to reset their
presentBit flag. To avoid the comparison of the cache line
address being replaced and the addresses in the LSQ, we use
a very simple alternative, which consists of resetting the
presentBit flag of all entries that can be potentially affected.

Data TLB (DTLB for short) energy is also saved by
keeping the translated address in the LSQ entries. When the
first instruction in the entry access the data cache, the DTLB
is looked up and the address translation is cached in the
corresponding entry of the DistribLSQ or SharedLSQ. The
other instructions read this information from their LSQ entry.
Similarly to the technique applied to save Dcache energy,
there are two additional positive side effects whose benefit is
not considered in the quantitative evaluation later in this
paper: the translation has much lower latency and the
translation hit rate may increase since the DTLB is not
accessed for many instructions.

3.5 Sizing SAMIE-LSQ Structures

We initially experimented with a configuration without the
SharedLSQ that places all instructions in the DistribLSQ. We

Figure 3. Average number of entries occupied in an
unbounded SharedLSQ for different configurations of

the DistribLSQ.

have found that different programs (we use Spec2000
benchmarks [15]) show extremely different address patterns.
For instance, integer programs often require few entries in the
DistribLSQ and these entries are distributed across different
banks even if the number of banks is low. Hence, they hardly
use the SharedLSQ. Most of the FP (floating-point) programs
require a lot of entries in the DistribLSQ, but they exhibit
different patterns. Some FP programs use evenly the different
banks, which is beneficial to save energy in the DistribLSQ,
but other FP programs concentrate most of their entries in
few banks even if the number of banks is high. Increasing the
number of entries of all the DistribLSQ banks is a waste of
space since only a few banks will use them at any given point
in time. Thus, a most cost-effective solution is using the
SharedLSQ to hold the instructions that cannot be placed in
the DistribLSQ.

Another important design parameter is the number of slots
per entry. A large number benefits energy savings for address
comparisons, Dcache and DTLB, for those programs where
the number of in-flight memory instructions accessing the
same L1 data cache line is high. On the other hand, there are
some programs that do not take advantage of a large number
of slots per entry.

Summing up, we need a highly banked DistribLSQ with
enough entries to place most memory instructions, and some
entries in the SharedLSQ for conflicting addresses. Figure 3
shows the average occupancy of the SharedLSQ for different
configurations of the DistribLSQ varying the degree of
banking (banks x entries per bank). The SharedLSQ is
assumed to be unbounded, and there are 8 slots per entry in
both the DistribLSQ and the SharedLSQ. Other configuration
details are reported in the evaluation section. We observe that
a configuration with 128 banks of 1 entry each (128x1)
requires a significant number of entries in the SharedLSQ for
many programs. That means that the SharedLSQ must be
quite large and many comparisons will have to be done since
each address is compared with the addresses of the
corresponding bank of the DistribLSQ and all the addresses in
the SharedLSQ. Thus, this configuration is too much banked.

Figure 4. Number of programs that do not use the
AddrBuffer during the 99% of their execution for a

varying number of SharedLSQ entries.

On the other hand, we observe that the SharedLSQ space
requirements of the 64x2 DistribLSQ are only a bit higher
than those of the 32x4 DistribLSQ. Thus, we select the 64x2
configuration of the DistribLSQ because its banks are small
and its SharedLSQ space requirements low.

Figure 4 shows the number of programs that need a given
number of SharedLSQ entries in order not to require the
AddrBuffer during 99% of the time. It can be seen that 4
entries are enough for 16 over 26 programs, so 10 programs
may lose some performance, whereas 8 entries are enough for
21 programs. If we consider a SharedLSQ with 12 entries
only one more program has enough entries during the 99% of
the time of its execution. Hence, an 8-entry SharedLSQ seems
a good tradeoff and is what we assume in our experiments.

The number of slots per entry is set to 8. More slots per
entry would help to reduce the energy consumption since
more instructions may benefit from power reductions when
accessing the Dcache and the TLB. The drawback of
increasing the number of slots per entry is that leakage and
delay are increased.

Using a lower number of slots per entry would help to
save leakage and reduce the delay, but it is counterproductive
for some programs whose memory references tend to
concentrate in few cache lines, because the associated LSQ
bank or the SharedLSQ would require more entries. This may
offset the benefits of reducing the number of slots per entry.

As shown in Figure 3 some programs require a large
number of entries in the SharedLSQ. When they fail to place
an instruction in the SharedLSQ, the instruction has to wait in
the AddrBuffer. We have observed that an AddrBuffer of 64
entries is always enough for all programs. A few programs
such as ammp and facerec need more than 32 entries more
than 5% of their execution time. Since the AddrBuffer is a
cheap structure in terms of energy and delay, we set its size to
64 entries.

3.6 Delay

The delay of the different components has been evaluated
using CACTI 3.0 [13] with 0.10µm technology. The largest
delay for SAMIE-LSQ corresponds to DistribLSQ (64 banks,
2 entries/bank, 8 slots/entry). We also assume an extra

SharedLSQ entries required

0

2

4

6

8

10

12

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
fm

a3
d

ga
lg

el
ga

p
gc

c
gz

ip
lu

ca
s

m
cf

m
es

a
m

gr
id

pa
rs

er
pe

rlb
m

k
si

xt
ra

ck
sw

im
tw

ol
f

vo
rt

ex vp
r

w
up

w
is

S
P

E
C

128x1 64x2 32x4

Stacked number of programs vs.
SharedLSQ entries required

0
2
4
6
8

10
12
14
16
18
20
22
24
26

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

SharedLSQ entries

N
u

m
b

er
 o

f p
ro

g
ra

m
s

Size Assoc. Ports Conventional
delay (ns)

Physical line
known delay (ns)

Improvement over
conventional

8KB 2 way 2 0.865 0.700 19.4%
8KB 2 way 4 1.014 0.875 13.7%
8KB 4 way 2 1.008 0.878 12.9%
8KB 4 way 4 1.307 1.266 3.1%
32KB 2 way 2 1.195 1.092 8.7%
32KB 2 way 4 1.551 1.490 4.0%
32KB 4 way 2 1.194 1.165 2.5%
32KB 4 way 4 1.693 1.693 0.0%

Table 1. Access time of conventional cache accesses
and access time when the physical cache line is

known for different cache configurations. The number
of bytes per line is 32 in all configurations.

latency to send the addresses to the banks with respect to a
conventional LSQ because it is a larger structure. We have
assumed this additional delay to be equal to the delay of the
buses (bitlines and wordlines) of a 128-entry structure with
the same total capacity. The maximum delay of DistribLSQ is
the delay to send an address to a bank (0.124ns) plus the
delay of comparing the cache line addresses in such a bank
(0.590ns). Thus, the total DistribLSQ delay is 0.714ns. The
delays for SharedLSQ (8 entries, 8 slots/entry) and
AddrBuffer (64 slots) are 0.617ns and 0.319ns respectively.

The assumed baseline LSQ (128 entries) has a delay of
0.881ns, which is 23% higher than the delay of SAMIE-LSQ.
We also have found that a conventional LSQ with 16 entries
has a delay similar (4% larger) to our SAMIE-LSQ
configuration.

In terms of delay, we have found that those accesses to the
Dcache where the physical cache line to access is known,
may be done with lower delay than conventional Dcache
accesses. Table 1 shows the access time of both types of
accesses for different cache configurations. It can be observed
that most of the configurations have lower access time when
the physical cache line is known beforehand. Although in this
work we do not take advantage of this lower access time for
Dcache accesses, we consider that this feature of the SAMIE-
LSQ can provide additional benefits and will be the target of
future work.

4. Evaluation

This section presents performance and energy statistics for
the SAMIE-LSQ and a baseline with a conventional fully-
associative LSQ. First, the experimental framework for
performance and energy modeling is presented. Then, the
impact of the SAMIE-LSQ in performance, dynamic energy
and leakage is discussed.

4.1 Experimental Framework

The SAMIE-LSQ performance has been evaluated with an
enhanced version of sim-outorder, which is a
microarchitecture-level performance simulator included in the
Simplescalar toolset [1]. The main enhancements are the
separation of the reorder buffer and the issue queue, and the
modeling of ports for different structures. Energy results are
derived from CACTI 3.0 [13], which is a timing, power and

Fetch, decode, commit width: 8 instructions
Issue width: 8 INT + 8FP instructions
Branch predictor: Hybrid 2K Gshare, 2K bimodal, 1K selector
BTB: 2048 entries, 4-way

L1 Icache: 64KB, 2-way, 32 byte line (1 cycle)
L1 Dcache: 8KB, 4-way, 32 byte line, 4 R/W ports (2 cycles)
L2 unified cache: 512KB, 4-way, 64 byte line (10 cycles hit, 100

cycles miss, 2 cycles interchunk)
ITLB: 128 entries fully-associative (1 cycle)
DTLB: 128 entries fully-associative (1 cycle)
Fetch queue: 64 entries
Issue queue: 128 INT + 128 FP entries
Reorder buffer: 256 entries
Load/store queue: 128 entries for the baseline
Register file: 160 INT + 160 FP registers

INT functional units:
6 ALU (1 cycle)
3 mult/div (3 cycles mult, 20 cycles non-pipelined div)
FP functional units:
4 ALU (2 cycles)
2 mult/div (4 cycles mult, 12 cycles non-pipelined div)
Technology: 0.10 µm

Table 2. Processor configuration.

DistribLSQ: 64 banks
2 entries per bank
8 slots per entry

SharedLSQ: 8 entries
8 slots per entry

AddrBuffer: 64 slots

Table 3. SAMIE-LSQ configuration.

area model for memory-like structures. Table 2 shows the
processor configuration and Table 3 shows the SAMIE-LSQ
configuration.

For this study we have used the whole Spec2000
benchmark suite [15] with the ref input data set. We have
simulated 100 million instructions for each benchmark after
skipping the initialization part and warming up the cache for
100 million instructions. The benchmarks have been
compiled with the HP/Alpha compiler with –O4 -
non_shared flags.

4.2 Energy Model for the LSQ

The energy and area parameters used are derived from
CACTI 3.0 [13]. The baseline LSQ is a conventional fully-
associative structure of 128 entries. For the sake of a fair
comparison, we assume for the baseline that a load address is
only compared with the addresses of the older stores whose
address is known. On the other hand, a store address is only
compared with the addresses of the younger loads whose
address is known. If there is any match, the matching loads
data are forwarded from a store when it is available and the
load does not access the Dcache. Table 4 details the energy
consumption for the different types of accesses.

Our proposed SAMIE-LSQ requires comparing each
address with all the addresses (entries) in-use of the
corresponding bank of the DistribLSQ and all the addresses
in-use of the SharedLSQ. Additionally, the age identifier (it is
implemented as the reorder buffer position plus an extra bit)

LSQ Energy
Address comparison 452 pJ + 3.53 pJ per address compared
Read/Write an address 57.1 pJ
Read/Write a datum 93.2 pJ

Table 4. Energy consumption of the different types of
accesses to a 128-entry conventional LSQ.

DistribLSQ Energy
Address comparison 4.33 pJ + 2.17 pJ per address compared
Read/Write an address 4.07 pJ
Age id comparison in one entry 19.4 pJ + 1.21 pJ per age id compared
Read/Write an age id 1.64 pJ
Read/Write a datum 10.9 pJ
Read/Write a TLB @ translation 6.02 pJ
Read/Write a cache line id 0.236 pJ
Bus to DistribLSQ
Send an address 54.4 pJ

SharedLSQ
Address comparison 22.7 pJ + 2.83 pJ per address compared
Read/Write an address 6.16 pJ
Age id comparison in one entry 19.4 pJ + 2.43 pJ per age id compared
Read/Write an age id 1.64 pJ
Read/Write a datum 10.9 pJ
Read/Write a TLB @ translation 8.73 pJ
Read/Write a cache line id 0.342 pJ
AddrBuffer
Read/Write a datum 31.6 pJ
Read/Write an age id 15.7 pJ

Table 5. Energy consumption for the different activities
of the SAMIE-LSQ.

of the instruction whose address has just been computed is
compared with all the age identifiers of the slots in-use in the
corresponding bank of the DistribLSQ and all the age
identifiers of the SharedLSQ. This way, if it is a load, it will
record the slot where there is the store that forwards its data.
If it is a store, it updates the forwarding information of the
loads. The energy consumption for the different activities is
shown in Table 5.

The energy consumption of a Dcache access is 1009 pJ,
whereas the energy consumption is 276 pJ when only one of
the ways is accessed and no address is compared for a 8KB 4-
way cache. For the DTLB, the energy of an access is 273 pJ.

Since CACTI does not estimate leakage, we keep track of
the active area for the baseline LSQ and the SAMIE-LSQ,
which is closely related to the leakage energy. Both
mechanisms are intended to be energy efficient, so we
assume that the conventional LSQ has active all in-use entries
plus four extra entries for new instructions. This limitation
hardly impacts the performance (less than 0.1% IPC loss) and
significantly reduces leakage. On the other hand, the SAMIE-
LSQ has active all in-use entries plus one extra entry in each
bank of the DistribLSQ and one extra entry in the
SharedLSQ. In each entry, the slots in-use plus an extra slot
are considered to be active. The AddrBuffer has all in-use
slots plus four extra slots active. As in the conventional LSQ,
the performance degradation of these limitations is negligible.
The type and area of the different cells is detailed in Table 6.

Conventional LSQ Type Area
Address CAM 28 µm2

Datum RAM 20 µm2

DistribLSQ
Address CAM 10 µm2

Age id CAM 10 µm2

Datum RAM 6 µm2

TLB address translation RAM 6 µm2

Cache line id RAM 6 µm2

SharedLSQ
Address CAM 10 µm2

Age id CAM 10 µm2

Datum RAM 6 µm2

TLB address translation RAM 6 µm2

Cache line id RAM 6 µm2

AddrBuffer
Datum RAM 20 µm2

Age id RAM 20 µm2

Table 6. Area of the different components of the
conventional LSQ and SAMIE-LSQ.

Figure 5. % IPC loss of SAMIE-LSQ with respect to the
128-entry conventional LSQ.

4.3 Performance

Figure 5 presents the IPC of the SAMIE-LSQ with respect
to the conventional LSQ. We observe that SAMIE-LSQ loses
some performance for ammp, apsi and mgrid. As shown in
Figure 3, these programs would require a large number of
SharedLSQ entries. Thus, the SharedLSQ often becomes full
and some instructions have to wait in the AddrBuffer, which
implies than some instructions that are ready to execute have
to wait for an available entry/slot in the proper bank of the
DistribLSQ or the SharedLSQ. Furthermore, since some
instructions have to wait in the AddrBuffer, it may happen
that the oldest memory instruction cannot be placed neither in
the DistribLSQ or the SharedLSQ, firing the deadlock
avoidance scheme (i.e. pipeline flush) described above.
Figure 6 shows the number of deadlocks per million of
cycles. It can be seen that ammp is the only program with a
significant number of deadlocks.

In Figure 5 we also observe that some programs such as
facerec and fma3d perform better with the SAMIE-LSQ
than with the conventional LSQ. This is so because these

% IPC loss of SAMIE-LSQ w.r.t. the
conventional LSQ

-4%

-2%

0%

2%

4%

6%

8%

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
fm

a3
d

ga
lg

el
ga

p
gc

c
gz

ip
lu

ca
s

m
cf

m
es

a
m

gr
id

pa
rs

er
pe

rlb
m

k
si

xt
ra

ck
sw

im
tw

ol
f

vo
rt

ex vp
r

w
up

w
is

S
P

E
C

Figure 6. Number of deadlock-avoidance pipeline
flushes per million of cycles for SAMIE-LSQ.

Figure 7. Dynamic energy consumption for the LSQ.

programs have high LSQ pressure and the conventional LSQ
can hold up to 128 memory instructions, whereas the SAMIE-
LSQ can hold many more if they are well distributed among
the different banks.

On average, the SAMIE-LSQ loses 0.6% IPC with respect
to the conventional LSQ. This does not take into account the
potential benefits from the fact that the delay of the SAMIE-
LSQ is lower than that of the conventional LSQ, as shown in
section 3.

4.4 Dynamic Energy

Figure 7 shows the dynamic energy consumption of the
conventional LSQ and the SAMIE-LSQ. We observe that the
SAMIE-LSQ is much more energy-efficient than the
conventional LSQ for all but one program. In fact, the
programs that have high energy consumption with the
SAMIE-LSQ are those with high SharedLSQ requirements.
This trend can be seen in Figure 8 where the energy of the
SAMIE-LSQ is broken down. Most of the programs spend the
energy in the DistribLSQ and the buses, but ammp, apsi,
facerec and mgrid have significant number of conflicts
and require large space in the SharedLSQ and the AddrBuffer.

Figure 8. Dynamic energy consumption breakdown for
the SAMIE-LSQ.

On average, the SAMIE-LSQ saves 82% of the dynamic
energy of the conventional LSQ with negligible performance
degradation.

As stated in section 3, the SAMIE-LSQ enables significant
energy savings in the L1 data cache and the data TLB by
caching the location of the data in cache and the address
translation respectively. Figure 9 shows the energy
consumption of the Dcache for both the conventional LSQ
and the SAMIE-LSQ. It can be seen that the energy savings
for the SAMIE-LSQ are consistent across all benchmarks. On
average, 42% of the L1 data cache energy can be saved,
ammp and swim being the programs with highest savings
(58%), and sixtrack being the program with lowest
energy savings (21%).

Figure 10 shows the data TLB energy consumption. In
general, those Dcache accesses that do not compare the
address and only access one way, do not access the DTLB
because the address translation has also been cached. Thus,
the fraction of energy savings for the DTLB is higher than
that for the Dcache. On average, 73% DTLB energy is saved
if we compare the SAMIE-LSQ with a conventional LSQ. The
highest savings correspond to ammp (84%) and the lowest to
mcf (55%).

4.5 Leakage

The SAMIE-LSQ is larger than the conventional LSQ
because it has practically the same number of addresses but
space for 8 instructions per address, whereas the conventional
LSQ only has space for one instruction per address.
Nevertheless, the SAMIE-LSQ can work with an active area
similar to that of the conventional LSQ as shown in Figure
11. We accumulate the area every cycle instead of using the
average area to take into account the longer or shorter
execution time of the different programs. The accumulated
active area for both the conventional LSQ and the SAMIE-
LSQ are very similar, and slightly favorable to the SAMIE-
LSQ (5%). The best scheme in terms of active area depends
on the program, some integer programs (bzip2, crafty,
gcc, parser, perlbmk) being the worst programs for

Deadlocks per 1.000.000 cycles for SAMIE-LSQ

0

50

100

150

200

250

300
am

m
p

ap
pl

u
ap

si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
fm

a3
d

ga
lg

el
ga

p
gc

c
gz

ip
lu

ca
s

m
cf

m
es

a
m

gr
id

pa
rs

er
pe

rlb
m

k
si

xt
ra

ck
sw

im
tw

ol
f

vo
rt

ex vp
r

w
up

w
is

S
P

E
C

Dynamic Energy (nJ) LSQ

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

50000000

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
fm

a3
d

ga
lg

el
ga

p
gc

c
gz

ip
lu

ca
s

m
cf

m
es

a
m

gr
id

pa
rs

er
pe

rlb
m

k
si

xt
ra

ck
sw

im
tw

ol
f

vo
rt

ex vp
r

w
up

w
is

S
P

E
C

Conventional LSQ SAMIE-LSQ

Dynamic Energy Breakdown for SAMIE-LSQ

0%

20%

40%

60%

80%

100%

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
fm

a3
d

ga
lg

el
ga

p
gc

c
gz

ip
lu

ca
s

m
cf

m
es

a
m

gr
id

pa
rs

er
pe

rlb
m

k
si

xt
ra

ck
sw

im
tw

ol
f

vo
rt

ex vp
r

w
up

w
is

S
P

E
C

DistribLSQ SharedLSQ AddrBuffer Bus

Figure 9. Dynamic energy consumption for the L1 data
cache.

Figure 10. Dynamic energy consumption for the data
TLB.

Figure 11. Accumulated active area in mm2 for the
LSQ.

SAMIE-LSQ because they have very low LSQ space
requirements and the SAMIE-LSQ keeps larger empty area
active than the conventional LSQ.

Figure 12 shows the area breakdown for SAMIE-LSQ. The
DistribLSQ is the structure with the largest active area, and
the SharedLSQ active area is noticeable only in those

Figure 12. Active area breakdown for the SAMIE-LSQ.

programs with high SharedLSQ space requirements (ammp,
apsi, art, facerec, mgrid).

5. Conclusions and Future Work

We have presented the SAMIE-LSQ, which is a new
power-aware load/store queue design. The SAMIE-LSQ
exploits the fact that many in-flight loads and stores access
the same cache line and places these instructions in the same
entry. This reduces the required number of address
comparisons and other activity in the data cache and the TLB.
This number of comparisons is further reduced by using a set-
associative organization instead of a fully-associative one.

The SAMIE-LSQ saves 82% dynamic energy for the
load/store queue, 42% for the L1 data cache and 73% for the
data TLB, with a negligible impact on performance (0.6%).

Additionally, the delay of the SAMIE-LSQ is lower than
that of a conventional load/store queue, and the access time
for many L1 data cache references is also reduced. This
enables further opportunities for optimizations to improve the
performance and/or energy requirements, which have not
been exploited in this work and will be the target of our
future research. Another interesting future research direction
is the coupling of the SAMIE-LSQ with the L1 data cache by
integrating the DistribLSQ entries and their corresponding
cache set(s) in the same physical structure to further reduce
the cache access time.

Acknowledgements

This work has been partially supported by the Ministry of
Education and Science under grants AP2002-3677, TIN2004-
07739-C02-01 and TIN2004-03072, the CICYT project
TIC2001-0995-C02-01, Feder funds, and Intel Corporation.
We would like to thank the anonymous reviewers by their
comments.

Dynamic Energy (nJ) L1 Data Cache

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000
am

m
p

ap
pl

u
ap

si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
fm

a3
d

ga
lg

el
ga

p
gc

c
gz

ip
lu

ca
s

m
cf

m
es

a
m

gr
id

pa
rs

er
pe

rlb
m

k
si

xt
ra

ck
sw

im
tw

ol
f

vo
rt

ex vp
r

w
up

w
is

S
P

E
C

Conventional LSQ SAMIE-LSQ

Dynamic Energy (nJ) Data TLB

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
fm

a3
d

ga
lg

el
ga

p
gc

c
gz

ip
lu

ca
s

m
cf

m
es

a
m

gr
id

pa
rs

er
pe

rlb
m

k
si

xt
ra

ck
sw

im
tw

ol
f

vo
rt

ex vp
r

w
up

w
is

S
P

E
C

Conventional LSQ SAMIE-LSQ

Active LSQ Area (mm2)

0

10000000

20000000

30000000

40000000

50000000

60000000

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
fm

a3
d

ga
lg

el
ga

p
gc

c
gz

ip
lu

ca
s

m
cf

m
es

a
m

gr
id

pa
rs

er
pe

rlb
m

k
si

xt
ra

ck
sw

im
tw

ol
f

vo
rt

ex vp
r

w
up

w
is

S
P

E
C

Conventional LSQ SAMIE-LSQ

Active Area Breakdown for SAMIE-LSQ

0%

20%

40%

60%

80%

100%

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
fm

a3
d

ga
lg

el
ga

p
gc

c
gz

ip
lu

ca
s

m
cf

m
es

a
m

gr
id

pa
rs

er
pe

rlb
m

k
si

xt
ra

ck
sw

im
tw

ol
f

vo
rt

ex vp
r

w
up

w
is

S
P

E
C

DistribLSQ SharedLSQ AddrBuffer

References

[1] D. Burger, T. Austin. The SimpleScalar Tool Set, Version
3.0. Technical report, Computer Sciences Department,
University of Wisconsin-Madison, 1999.

[2] H. Cain, M. Lipasti. Memory Ordering: A Value Based
Definition. In proceedings of the 31st International
Symposium on Computer Architecture (ISCA’04),
München (Germany), June 2004.

[3] G. Chrysos, J. Emer. Memory Dependence Prediction using
Store Sets. In proceedings of the 25th International
Symposium on Computer Architecture (ISCA’98),
Barcelona (Spain), June 1998.

[4] M. Franklin, G.S. Sohi. ARB: A Hardware Mechanism for
Dynamic Reordering of Memory References. In IEEE
Transactions on Computers, volume 45, issue 5, May 1996.

[5] K. Gharachorloo, A. Gupta, J. Hennessy. Two Techniques
to Enhance the Performance of Memory Consistency
Models. In proceedings of the International Conference on
Parallel Processing (ICPP’91), Austin (Texas), August
1991.

[6] A. Moshovos, S. Breach, T.N. Vijaykumar, G.S. Sohi.
Dynamic Speculation and Synchronization of Data
Dependences. In proceedings of the 24th International
Symposium on Computer Architecture (ISCA’97), Denver
(Colorado), June 1997.

[7] D. Nicolaescu, A. Veidenbaum, A. Nicolau. Reducing Data
Cache Energy Consumption via Cached Load/Store Queue.
In proceedings of the 9th International Symposium on Low
Power Electronics and Design (ISLPED’03), Seoul (Corea),
August 2003.

[8] S. Onder, R. Gupta. Dynamic Memory Disambiguation in
the Presence of Out-of-order Store Issuing. In proceedings
of the 32nd International Symposium on Microarchitecture
(MICRO’99), Haifa (Israel), November 1999.

[9] I. Park, C.L. Ooi, T.N. Vijaykumar. Reducing Design
Complexity of the Load/Store Queue. In proceedings of the
36th International Symposium on Microarchitecture
(MICRO’03), San Diego (California), December 2003.

[10] A. Roth. A High Bandwidth Low Latency Load/Store Unit
for Single and Multi- Threaded Processors. Technical
Report MS-CIS-04-09, University of Pennsylvania, August
2004.

[11] A. Roth. Store Vulnerability Window (SVW): Re-Execution
Filtering for Enhanced Load/Store Optimization. Technical
Report MS-CIS-04-29, University of Pennsylvania,
December 2004.

[12] S. Sethumadhavan, R. Desikan, D. Burger, C.R. Moore,
S.W. Keckler. Scalable Hardware Memory Disambiguation
for High ILP Processors. In proceedings of the 36th

International Symposium on Microarchitecture
(MICRO’03), San Diego (California), December 2003.

[13] P. Shivakumar and N.P. Jouppi. CACTI 3.0: An Integrated
Cache Timing, Power and Area Model. Research report
2001/2, WRL, Palo Alto, CA (USA), 2001.

[14] A. Yoaz, M. Erez, R. Ronen, S. Jourdan. Speculation
Techniques for Improving Load-Related Instruction
Scheduling. In proceedings of the 26th International
Symposium on Computer Architecture (ISCA’99), Atlanta
(Georgia), May 1999.

[15] SPEC 2000 http://www.specbench.org/osg/cpu2000/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

