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Abstract

In this paper an analysis of a dynamically 

reconfigurable processor is presented. The network 
processor incorporates a processor and a number of co-

processors that can be connected to the processor either 

directly or using a shared bus. The analysis investigates 
the configuration (in terms of co-processor distributions 

and interface), formulates the throughput that meets the 

network demands and the constraints of the platform 
(area, bus bandwidth, etc.) and takes into account the 

reconfiguration overhead. To find the configuration that 

meets the constraints, the platform is formulated into 
integer linear programming equations. Furthermore, the 

results of two case studies are presented, for a soft- and a 
hard- IP core processor, that uses three flows with 

different processing requirements (IP forward, encryption 

and media processing). In each case the number and the 
type of co-processors is shown in terms of the network 

distribution and the average packet size. Finally, the 

mapping of the framework in the Xilinx FPGA platform is 
discussed.   

1. Introduction 

The increase of the Internet bandwidth has created the 

need for more powerful processors, specifically designed 

for packet processing; the network processors. Network 

processors combine the flexibility of the general-purpose 

processors with the increased performance of the 

application specific integrated circuits (ASICs). Network 

processors have been evolved from simple TCP/IP 

accelerators to complete platforms able to process million 

of packets in core and access networks. The first network 

processors were used only for the processing of the lower 

OSI layers such as layer 2 or layer 3, while now some 

network processors are used even for layer 7 processing 

such as XML processors [7] and the web balancing 

processors. The architectures of the network processors 

(NP) vary from dataflow architectures such as the 

network processor from Xelerated [1] to multi-processors 

multi-threaded platforms such as the IXP2400 from Intel 

[2]. Many functions of a network processor, that are 

extremely demanding, have been implemented in district 

chips and are used as the co-processors. Some examples 

of these processors are Queue Managers, Traffic, 

Managers, Network Encryption processors, Intrusion 

detection processors etc. FPGAs with embedded 

processors are ideal platform candidates for the 

development of network processors that can be both 

flexible and high performance.  

The main challenge in network processors is to find the 

right micro-architecture for the targeting network 

workload. The network processors that are targeting core 

routers must be able to process million of packets per 

second but the processing requirements for each packet 

are not so demanding; usually the processing is a just an 

IP forwarding. On the other hand, the network processors 

that are targeting access networks or residential gateways 

have to process less packets but each packet has 

demanding processing requirements such as 

fragmentation and reassembly, encryption, transcoding etc.   

Furthermore, the traffic in the Internet varies from 

simple small packets used by Instant Message Services 

(IMS) to large packets used for media applications such as 

video and audio streams. Each application with different 

processing demands can be categorized into different 

flows. The distribution of the flows in time can vary 

significantly. For example, in a main server the majority 

of the packets in the working hours can be packets that 

need encryption processing based on the fact that many 

on-line transaction are processed in working hours. On the 

other-hand, media processing or transfer of media packets 

that need transcoding are usually take place in non-

working hours. In [13] and [15] there is a detailed analysis 

of how the network traffic changes during the day or the 

week. The changes are in terms of the application, the 
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protocol and the size of the packets. Hence, it is very 

difficult to design a network processor that will be able to 

efficiently process the changing networks flows. Usually, 

there is a range of processors, each one for different 

topology (core networks, access networks) that can meet 

the constraints of each topology, but none of them is 

optimal designed for each network workload.   

The main goal of this paper is to formulate a 

dynamically reconfigurable network processor that can be 

adapted to the network demands by using the co-

processor in the most efficient way. Hence the main 

contribution of this paper is: 

a formulation for the throughput of a dynamically 

reconfigurable network processor 

a method to find a configuration that meets the 

network demands and a limited number of platform 

constraints (area, bus bandwidth, etc.) and takes 

into account the reconfiguration overhead 

two case studies for a soft- and a hard-IP core 

processor with different workload demands on 

several average packet sizes  

a mapping of the dynamically reconfigurable 

network processor into a Xilinx FPGA platform 

In Section 2 we present the related work in design space 

exploration of network processors. Section 3 presents the 

architecture framework of the system. Section 4 presents 

the analysis of the system and the formulation, while 

section 5 presents the experimental results for a case study 

with three different workloads for two processors and the 

mapping into an FPGA. Finally, section 6 presents the 

conclusions and the future work. 

2. Related work 

The use of design space exploration (DSE) tools can be 

very useful when designing the micro-architecture of the 

network processor. EXPO [3] is a DSE tool that uses the 

theory of the arrival and service curves to model the 

operation of a network processor. The computation 

complexity in this case is too expensive, thus they use a 

piecewise linear approximation of all arrival and service 

curves. The network processors can be modeled in a task 

graph and given the mapping of tasks to available 

resources it can estimate the Pareto-optimal solution for 

access and backbone networks. The tool is restricted to 

model a system with a common bus that every resource is 

attached to this bus. In [4, 12] an automated exploration 

framework is developed that is used in a soft multi-

processors platform. The application is modeled as a task 

graph and each task is allocated in one of the processors. 

The tool is used to find the optimum partitioning of the 

IPv4 packet forward application into an array of 

processors, but this tool does not incorporate co-

processors which are essential parts in network processors. 

In [5] a design space exploration is performed using 

several parameters of a general-purpose processor such as 

the processor clock rate, the instruction and data cache 

size, the area and the memory access time. The 

CommBench benchmark [23] is used to illustrate the 

difference of the optimum configuration using packets 

that only need header processing versus packet that need 

also payload processing. The model is applied both to a 

single processor and multiple processors. In [24] a design 

space exploration is performed for network programs on 

different architectures. The compared architectures are a 

speculative super-scalar processor, a fine-grained 

multithreaded processor, a single chip multiprocessor and 

a simultaneous multithreaded processor (SMT). The 

benchmark that it was used includes IP forward and MD5 

and DES encryption processing. In [18] a design space 

exploration of the System-On-a-Chip (SoC) 

communication of the components is performed. The 

number of busses and bridges are investigated in order to 

find the optimum configuration for a given graph of 

connected modules. In [8, 9] a platform has been 

developed that use hardware plug-ins to accelerate the 

performance of a programmable router. The hardware 

modules are connected with external SRAM and DRAMs 

memories. The hardware plug-ins are allocated in a 

separate chip from the one that incorporates the 

processing elements. Furthermore, there is not a design 

space exploration thus it is quite difficult to find the 

configuration that meets the network and application 

demands. Finally, STMicroelectronics has presented a 

system-level exploration platform for Network processors 

called StepNP in [25, 26]. In that case the platform 

contains multi-threaded processors connected with a 

custom network-on-a-chip. The system is modeled at the 

functional and transaction levels and not at a cycle-

accurate level. 

In our case the design space exploration targets a 

single chip dynamically reconfigurable architecture that 

can be adapted to meet the workload of the network. The 

framework incorporates a processor with a library of co-

processors that can be connected to the processor either 

directly or using a shared bus in order to find a high-

throughput configuration that meets the constraints and in 

addition taking into account the configuration overhead.  

3. Reconfigurable Network Processor Frame-

work 

The reconfigurable network processor architecture is 

targeting the Xilinx Platform. In this work, two 

frameworks have been designed and analyzed. In the first 

case we used a soft-core processor and in the second case 

a hard-core processor. An analysis of the performance and 

the constraints is presented for both cases. In the first case 



the MicroBlaze soft-core processor has been used 

augmented with co-processors connected with a direct 

connection and a bus with the processor. The direct 

connection is called Fast Simplex Link (FSL) [19] and 

can be used for the direct communication of the register’s 

value with the co-processors. The maximum number of 

FSL interfaces that are supported by the MicroBlaze is 

eight. The shared bus that it was used was the On-chip-

Peripheral-Bus (OPB) [21] which is able to sustain 

500Mbytes/sec throughput. The MicroBlaze is also 

connected with one block of RAM for Instruction and 

Data Memory using the Local Memory Bus (LMB), while 

it is also connected, through the bus, to one block of 

larger RAMs that is used as the source RAM of the 

packets. The network interfaces are not shown since the 

main motivation for this system is the exploration of the 

network processing. An additional block RAM is also 

attached to the OPB bus and it is used as a small IPv4 

Forwarding Table. The block diagram of the architecture 

that it was used as an experimental platform is shown in 

Fig. 1.   
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Figure 1. The MicroBlaze framework 

In the second case, the hard-core processor PowerPC is 

used augmented again with co-processors communicating 

in a direct interface and in a bus with the processor. The 

direct interface is the Auxiliary-Processor-Unit (APU) [20] 

connected with the Fabric Coprocessor Module (FCM) 

which is similar to [14] and can be used to transfer the 

register’s value directly to the co-processors. The shared 

bus that has been used in this case is the Processor-Local-

Bus (PLB) [21] which is able to sustain 1600Mbytes/sec. 

The PowerPC is also connected to a block of RAM for 

Instructions and Data Memory using the On-Chip-

Memory (OCP) interface. An additional block RAM is 

also attached to the PLB bus and it is used as a small IPv4 

Forwarding Table. The block diagram of the architecture 

that it was used as the second experimental framework is 

shown in Fig. 2.  

  PowerPC

BRAM0 Co-Pn

Data

BRAM

Instruc.

BRAM
OCM

PLB

. . .

Co-P0

Co-P1

Co-P7

FCM

Chksum

DES

...

IDCT

IP

LookUp

Chksum

DES

...

IDCT

F
C

B

A
P

U

DMA

Engine

Figure 2. The PowerPC Framework 

In the current design three modules have been used as 

co-processors. A checksum hardware block is used for the 

calculation of the header’s checksum, a Data Encryption 

Standard (DES) unit for the processing of encrypted data 

and an Inverted Discrete Cosine Transformation (IDCT) 

unit for the transcoding of the payload. Although the 

transcoding needs more units for the processing such as 

variable length encoders, the use of IDCT is a major 

module to accelerate the transcoding. 

4. Analysis of the Reconfigurable Network 

Processor

The main goal of a network processor designer is to 

find the optimum micro-architecture for a specific 

workload given specific constraints. The constraints can 

be in aspects of power, energy, performance or area (or 

usually a combination of these). In this paper a 

formulation of a reconfigurable network processor is 

presented in order to find a configuration that meets the 

network workloads distribution and other constraints. The 

ability of the network processors to adapt itself to the 

different workload could increase the performance of the 

processors by using co-processors that are useful for the 

majority of the time. In this work, three different flows 

have been used with different processing requirements as 

it is shown in Table I.  

In the first case the IP packets are just forwarded. 

Hence, in this case the processor checks the several fields 

of the header such as the IP version, the Time to Live 

(TTL), the Checksum and the Destination IP and then 

modifies the checksum and forward the packet. In this 

case the Checksum module is used to check the checksum 

of the header, while the modification of the checksum is 

performed in the processor using the incremental 

checksum processing [28]. In the second case, the 

packet’s header is again processed by the processor and 

the payload is send to the DES module for encryption or 

decryption. In the third case, the processor elaborates the 

header and the payload is sent to the IDCT module. The 



payload is stored to the data RAM of the processor for 

further processing (i.e. transcoding). 

Table I. NETWORK FLOWS 

Flow Checksum DES IDCT

IP Forward 

Packet Encryption 

Packet Transcoding 

The goal is to find the configuration of the platform 

with a performance that meets the demands of a specific 

distribution of a network workload in a given area and to 

make this adaptation taking into account the dynamic 

partial reconfiguration overhead. In order to find this 

configuration we analyze the architecture in the form of 

linear programming equations. The variable that should 

be optimized is the aggregate throughput of the 

architecture. The constraints are: 

the number of co-processors directly connected 

to the processor, 

the number of co-processors attached to the bus, 

the network flow requirements, 

the bandwidth of the bus, 

the available headroom of the processor, and 

the available area for the co-processors. 

These requirements are described in the following 

equations: 
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where, 

P  : Aggregated throughput 

tij : throughput of the i module connected to j

nij : number of the i modules connected using j

aij : area of the hardware i acceleration unit  

bij : co-processor’s bandwidth allocated in the bus 

cij : number of cycles allocated in the processor 

i   : {C: Checksum, D: DES, I: IDCT} 

j   : {D: Direct, B: Bus} 

The throughput of each module can be calculated using 

the time to send the data for processing, the time of 

processing and the time to receive the data. For example, 

in the case of the DES module connected in the OPB the 

time to transfer the data using DMA and the time to 

transfer the data to the FSL module is given by equation 

(10) and (11) respectively. 

cyclensferPerWordTraInitDMADB tncwordsnct )( (10) 

cyclensferPerWordTraDD tncwordst (11) 

where, 

nc : number of cycles 

tcycle : the period of the clock 

In this case, using 10ns clock cycle, the time to transfer 

5 words (20 bytes) is faster using the direct connection 

(680ns using the shared bus and 550ns using the direct 

connection), while the time to transfer 16 words (64 bytes) 

is faster using the bus (1240ns using the shared bus and 

1760ns using the direct bus). Consequently, depending on 

the data transfers is more efficient to use either the direct 

interface or the shared bus. 

Besides the performance, the linear programming 

equation could also include power considerations. For 

example, the system could be solved by minimizing the 

power consumption of the configuration given the 

constraints (2)-(9) as it is shown in Equation 12 or the 

power consumption limits could be also added to the 

constraints.

         
n

i
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1
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The percentage of the workload can be measured 

during the operation of the network processor. In order to 

make the partial reconfiguration efficient the 

reconfiguration overhead must be taken into account. The 

new configuration must be performed only if the 

throughput of the new configuration accumulated with the 

configuration overhead is greater than the current 

throughput as it is shown in the following equation (13).  

)( ationreconfiguroldnew ttThrtThr

oldnew

ationreconfigurold

ThrThr

tThr
t (13) 

where, 

t            : time the new configuration is active 

Throld    : the throughput of the previous configuration 

Thrnew   : the throughput of the new configuration 



5. Implementation and Experimental Results 

The design is targeting a Xilinx Virtex 2 for the 

MicroBlaze Framework and the Virtex 4 FX device for 

the PowerPC framework using the Xilinx Platform Studio 

v7.1.2. The DES module is provided by OpenCores [27] 

and the IDCT module was from Xilinx IDCT [10]. A 

testbench framework for IP Packet Forwarding has been 

developed to measure the performance of each 

configuration. In this testbench a packet is received and 

stored in the first block RAM. The processor scheduler 

sends the required data (header or payload) in one of the 

co-processors and stores the results to the Data Block 

RAM for further processing. The processor checks the 

packet’s header and based on the classification it perform 

one of the following action:  

process the header 

process the header and encrypt/decrypt the 

payload 

process the header and transcode the payload.  

In addition, it updates a counter that is used to measure 

the distribution of each network flow. When the 

aggregated number of packets is over a threshold (e.g. 

1000 packets) the processor checks the distribution and 

decides to trigger a partial reconfiguration or not. After 

the processing by the hardware acceleration units, the 

packet is forwarded to the local RAM of the processor for 

further processing. The processor uses one block of RAM 

as a forward table and classifier. The IP LookUp Forward 

table is performed in 4 to 6 OPB accesses using the 

destination IP address for each access, as it is described in 

[11]. In the case of the MicroBlaze framework, the 

processor can be customized to include some additional 

features such as hardware multiplier, divider and barrel 

shifters. It is worthy to notice that the use of barrel shifter 

has improved the performance of the testbench program 

by over 30% while the area overhead is almost negligible 

(4 hardwired multipliers). This is due to the fact that most 

of the network applications include many shift 

instructions and the use of a barrel shifter can relieve the 

processor. Table II shows the throughput (in terms of 

packets, each packet is 512 bytes) and the area for the co-

processor modules. 

Table II. MODULE PROPERTIES 

Module 
Thoughput 

(Kpack./sec) 

Area 

(slices)

Checksum-FSL 512 44 

Checksum-OPB 581 87 

DES-FSL 42 789 

DES-OPB 54 832 

IDCT-FSL 43 944 

IDCT-OPB 56 987 

The linear equations can be solved using any linear 

programming solver such as the Excel  or the MPL Solver. 

Fig. 3 and Fig. 4 provide the optimized configuration for 

several workloads distribution for an average packet size 

of 512 bytes for the MicroBlaze and the PowerPC 

framework respectively. Five different workloads have 

been used. In the first one, 70% of the traffic is packets 

that need only to be forwarded, 20% belong to Virtual 

Private Networks (VPNs) that need either encryption or 

decryption, while 10% of the packets are media streams 

that need media processing, e.g. transcoding. The other 

distributions are shown in Fig. 3. The MicroBlaze frame-

work uses 100 MHz clock frequency both for the 

processor, the bus and the modules. In the case of the 

PowerPC framework, the clock frequency of the PowerPC 

is 300 MHz and the remaining modules are clocked to 

100MHz. 

We must note that in this testbench the source of the 

packet is the block RAM attached to the bus and the 

destination is the data block RAM of each processor that 

further uses the processed data. Hence, in the case of the 

MicroBlaze, when the FSL interface is used the data are 

transfer from the OPB RAM to the FSL co-processors and 

then from the FSL co-processors to the LMB RAM. In the 

case that the OPB co-processor is used, the processor send 

the data using DMA from the OPB RAM to the OPB co-

processor and after the processing the data are send to the 

LMB RAM. These transfers are illustrated in Table III. In 

the case that the packets wouldn’t have to be further 

processed by the processor it is obvious that the DMA 

mechanism is much more efficient than the direct 

interface of the processor with the modules. Moreover, if 

the network module could transfer the packets to the data 

RAM of the processor using a dual port RAM it is 

obvious that the throughput of the co-processors attached 

directly to the processors would be more efficient; hence 

they would be used more often. 

Table III. DATA TRANSFERS 

MicroBlaze  Source Destination 

      FSL modules 

OPB BRAM FSL module 

FSL module LMB BRAM 

      OPB modules 

OPB BRAM OPB module 

OPB module LMB BRAM 

PowerPC Source Destination 

      APU modules 

PLB BRAM APU module 

APU module OCM BRAM 

      PLB modules 

PLB BRAM PLB module 

PLB module OCM BRAM 



Fig. 3 presents the optimum configuration for several 

workload distributions in the case of the MicroBlaze 

framework. When the majority of packets need only IP 

forwarding, then the checksum modules are attached to 

both the OPB and the FSL interface. When then majority 

of the packets need payload processing, then the number 

of DES and the IDCT modules attached to the OPB bus 

increases and the checksum is only attached to the FSL 

interface. As it is shown, the payload co-processors are 

rarely attached to the FSL interface because of the 

processor’s cycles that are wasted for the transfer of the 

data. They are only attached to the FSL interface, when 

there is available headroom and the maximum number of 

OPB slaves has been reached.  

Fig. 4 presents the optimum configuration for several 

workload distributions for the PowerPC framework. In 

this framework the modules that are attached to the APU 

interface are less. This is mainly because the PLB bus can 

support burst traffics providing more throughput and 

using the Direct Memory Access (DMA) the processor 

can be off-loaded. These modules will be only attached to 

the direct interface only when the number of bus slaves is 

in the limit and there are available cycles in the processor 

or when the maximum number of slaves in the bus is 

reached. Fig. 5 and 6 shows the distribution of the 

modules, for the MicroBlaze and the PowerPC framework 

respectively, in the case of the 25/50/25 distribution for 

several packet sizes. As it is shown in the case of the 

MicroBlaze, when the average packet size is small, only a 

small number of payload engines is used and the 

checksum modules are attached to the bus. When the 

average size increases then the processing requirements 

increase. Hence more payload modules are attached to the 

bus, the maximum number of bus slaves is reached and 

the checksum modules have to use the FSL interface. In 

the case of the PowerPC, when the average packet size 

increase then the checksum modules move from the PLB 

bus to the APU interface. In the same figure we can see 

that none of the DES and IDCT modules are attached to 

the APU interface because of the high throughput that the 

PLB burst mode provides. 

The main difference between the two frameworks is 

that in the case of the MicroBlaze the throughput is 

mainly constrained by the OPB Bandwidth and the 

headroom of the processor. On the other hand, the 

PowerPC framework use more efficient bus that supports 

burst mode and has the processing power of the processor 

is higher. Hence, the throughput is usually constrained by 

the performance of the co-processors. These figures show 

that the use of a reconfigurable framework that adapts its 

co-processors to the network distribution and the average 

packet size can improve the overall performance of the 

system. 
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For the implementation of the dynamic reconfigurable 

network processor the design has to be partitioned in 

reconfigurable and fixed logic modules according to the 

Xilinx flow for modular partial reconfiguration [16]. 

According to this flow, each reconfigurable area must 

have the height of the device; hence two reconfigurable 

modules were used on the left and on the right part of the 

FPGA. Between the fixed and the reconfigurable area 

special modules should be used to connect these areas, 

called bus macros. These modules can be the only 

common signals between the reconfigurable and the static 

area. In our case the bus macros should be used to 

separate the coprocessors used in the reconfigurable area 

with the fixed logic that contains the processors and it’s 

RAM. In the case of the MicroBlaze framework the Bus 

Macros must be used in the FSL interface and the OPB 

bus. Fig. 7 shows the way the architecture should be 

mapped to the Virtex 2 FPGA platform in the case of the 

MicroBlaze Framework. 

It must be noted that although all the possible 

combination of the reconfigurable area are usually too 

large to store into an external RAM, it is still possible to 

evaluate the most common network distribution and use a 

small RAM for storing the most efficient bitstreams for 

these workloads. In addition, Xilinx is towards a new 

design flow [17] that will enable the use of dynamically 

reconfigurable modules without the constraint of 

occupying the whole height of the device. In this case it 

will be possible to partially reconfigure the device by only 

storing the new co-processor over the previous without 

affecting the remaining co-processors that are attached on 

the same bus.  
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Fig. 8 shows when the partial reconfiguration should 

be performed depending on the available area for the 

coprocessors based on the Equation 13 and the 

configuration information shown in [17]. Four different 

devices have been used. For each device three scenarios 

are calculated. In the first scenario only the FSL modules 

are reconfigured. In the second scenario only the shared 

bus modules are reconfigured and in the third scenario 

both the FSL modules and the shared bus modules are 

reconfigured for the MicroBlaze framework. As it is 

shown the FSL units consume less area than the OPB 

modules (since the FSL area is usually consists of 

checksum modules) hence it takes much less time to 

reconfigure the device. 
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6. Conclusions

In this paper the design and the analysis of 

dynamically reconfigurable network processor is 

presented. The processor is embedded in an FPGA that 

can be dynamically partially reconfigured to change 

hardware acceleration units based on the distribution of 

network workload. The system is analyzed and 

formulated in order to find an optimized distribution of 

the co-processors that meets the network workload 

demands and the constraints of the platform. The 

experimental results show that the optimum distribution 

of the co-processors depends both on the average packet 

size and the distribution of the network. The system must 

be carefully designed in order to find the configuration in 

which both the processor and the co-processors will be 

fully exploited in a balanced way.  

A possible extension to this work would be the 

development of an analytical model that can be used to 

explore homogeneous or heterogeneous multi-processor 

platforms. In this case the analysis must also include the 

topology of the connected processors and the ability of the 

co-processors and the memories to be shared by many 

processors. 
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