
Saburo, a tool for I/O and concurrency management in servers

Gautier Loyauté, Rémi Forax and Gilles Roussel

Institut Gaspard-Monge, Université de Marne-la-Vallée
5, Boulevard Descartes Champs-sur-Marne - 77454 Marne-la-Vallée Cedex 2 - France�

loyaute, forax, roussel � @univ-mlv.fr

Abstract

This paper presents a Java framework based on sepa-
ration of concerns and code generation concepts that fa-
cilitates development of concurrency and I/O in servers.
In this approach, the application is modeled by a graph
whose vertices correspond to units of treatment connected
by channels. It allows to build all kind of servers: multi-
threaded, Single-Process Event-Driven, Staged Event
Driven Architecture, etc. without modification of the func-
tional part. This architecture also permits to extend very
easily an application, adding vertices and edges to the
graph. The aim of our development tool is to improve pro-
grammer productivity and portability, decreasing develop-
ment time, and reducing bugs or deadlock problems.

1 Introduction

Development of concurrency and I/O in servers or mid-
dlewares becomes more and more complex because of the
increasing demands for effectiveness (minimization of la-
tency and maximization of bandwidth [10]), dynamic vari-
ability (the ability for elements to evolve or change at run-
time [9]), dynamicity (elements can be added, modified or
removed during the execution of an application [17]) and
scalability [9, 15, 17]. This complexity induces an increas-
ing number of errors such as random behaviors, falls of per-
formance or deadlocks. This is why the development of
new tools (languages, concepts, libraries, etc.) that helps
the implementation of such softwares is important [10, 13].

In this paper, we present Saburo, a Java framework,
based on the concepts of separation of concerns and code
generation, conceived to develop concurrency and I/O parts
of servers and middlewares. Our approach tries to answer
the performance problems previously described in [10] and
offers several other advantages.

Using Saburo to develop servers implies separation be-
tween the functional aspects and the concurrency model to

be used, abstracting technical aspects from the service of-
fered. By adopting this approach, it is very easy to switch
from one model to another without having to modify the
functional part. Thus, only the technical code is changed,
generated more exactly, automatically and transparently for
the user [5]. Because there is no consensus on the best con-
current model [14, 1, 17], this method should allow to eas-
ily select the model more adapted to underlying architecture
(cluster, multi-core, etc.).

Several works suggesting the use of concurrency by co-
operation (the exchange of information between processes
in order to handle a particular task), rather than by com-
petition (only one process is selected to entirely handle a
request), reveal an implementation less intuitive and more
complex [7, 3], and, for the other model, difficulties to man-
age synchronization [7]. This is why, in Saburo we propose
to develop an application in linear way (without synchro-
nization) and abstracts the concurrency model to be used.
To reach this goal, we chose to represent the application as
a directed graph, in which each vertex corresponds to an
atomic unit of treatment (for example, reading on a socket)
and the edges reflect the channels between them (function
calls, local queues, networks). This modeling also allows
to extend very quickly and easily an application adding ver-
tices and edges to the graph.

In Saburo, specifications and code generations are 100%
Java. It insures the portability of the applications developed
using our framework.

All these features should simplify the specification of
the applications, decreasing development time and reduc-
ing bugs and security problems.

In the rest of this article, we present the existing con-
currency models [9] and, then, some related works. Lastly,
we detail Saburo, our component model and its use in the
development of a simple “Echo” server.

1-4244-0054-6/06/$20.00 ©2006 IEEE

2 Concurrency models

To minimize latency and to maximize throughput, a
server must interlace the handling of several requests.
Indeed, it is then possible to overlap the disc, network and
processor(s) activities induced by the different requests.
The strategy used by the server is determined by its
concurrency model. We present here those taken into
account by Saburo.

Sequential
The sequential architecture uses a single process to han-

dle several requests and carries out all the steps required by
a request before accepting a new one. It respects the policy
first in, first out (the network is used as a request buffer).

read service write

This model does not exhibit real concurrency. It is very
easy to develop and may be used for servers sporadically
accessed.

Multi-process
The multi-process architecture assigns a process to each

request. Each process carries out all steps necessary to treat
the request before accepting another one. Since several pro-
cesses may be used, several requests are served at the “same
time” on the server.

Process 1

read service write

Process N

read service write

Moreover, the management of the overlapping between
disc activity, processor, and network access is carried out,
in a transparent way for the programmer, by the underlying
operating system. It manages the concurrent accesses to
these resources. In this model, the processes have their own
memory space that usually avoids the use of the synchro-
nization primitives. It also implies a containment of the
processes and thus greater safety, but it induces difficulties
to share information. Moreover, process creations induce
time overhead for each request.

Multi-threaded
Like the multi-process architecture, in the multi-threaded

architecture a thread is in charged of one request before ac-
cepting a new one.

read service write

Contrarily to processes, threads share their address
spaces and it is very easy pass information through global
variables. However, synchronization mechanisms are
required to control their accesses. These synchronizations
involve time overhead, greater difficulty of program-
ming [7] and safety problems. Moreover, the cost of
thread creation, although less important than process one,
remains. It induces an important fall of performances when
the number of threads reaches a particular threshold [17].

Single-Process Event-Driven
The SPED architecture uses only one process to handle

the requests. Contrary to the sequential architecture, the
server use non blocking calls to carry out asynchronous I/O.
A selection mechanism allows to know what operations can
be performed without blocking.

Event Dispatcher

read service write

In fact, this architecture corresponds to a finite state
machine which performs the instructions associated with
the state in which the request is. State changes when
the I/O in progress finishes. Thanks to non blocking and
asynchronous I/O there is an interlacing between multiple
requests. In addition to its difficulty of implementation,
the main problem of this architecture is the lack of reliable
support for asynchronous disc operations in most operating
systems [15].

Asymmetric Multi-Process Event-Driven
The AMPED model answers the problem of disc I/O

which are not always asynchronous by combining the SPED
architecture with threads in charge of carrying out the
blocking I/O.

Event Dispatcher

read service write

IO handler IO handler

The main process performs all instructions except disc
I/O and delegates them to dedicated processes. Using
this architecture, one preserves the effectiveness of SPED
while avoiding the problem of blocking discs I/O. The
number of processes involved in I/O being modest with
respect to the number of potentially managed requests, the

scheduling, cache error and context switching overhead
remain negligible.

Staged Event Driven Architecture
SEDA performs the steps necessary to handle a request

as a finite state machine.

read service write

A state corresponds to a component, called stage, that
represents a fundamental unit of treatment. The transitions
are queues or networks. A stage is composed of an input
events queue, a thread pool and an event handler.

Event handler

Thread Pool

Event
Queue

Controller

Event handler

Event handler

The handler represents the functional part of the stage,
i.e. the instructions performed given an input event. It han-
dles each event found in the input queue and produces new
events as output that are pushed into the queues of its suc-
cessors. Moreover, each stage is managed by a controller
in charge of adapting the resources according to statically
specified policies. Like AMPED, SEDA uses a thread pool
to simulate non blocking disc operations.

3 Related Work

Several frameworks and libraries may be used for rapid
implementation of servers and middleware, but none of
them uses a graph model, separation of concerns and code
generation, all together.

Tuxedo [2] is a commercial library that supports four
different communication methods (request / response, mes-
sage queuing, publish / subscribre and conversational).
These functions can be used in Java or C++. The library
supports event-driven and multi-threaded applications on
several platforms but it is difficult to finely control the pro-
gram.

Twisted [12] is a Python framework that uses an event-
driven model. Unlike many other tools mentioned here,
it allows access to the underlying platform if a developer
wishes more control over his application.

SEDA [17] is a Java framework for developing event-
driven servers. In this framework an application is repre-
sented as a directed graph where various stages are con-
nected by queues. The concurrent model is fixed.

Serveez [11] is a library written in C that provides many
functionalities necessary to quickly write servers. One of its
main goals is portability. The concept of portability for the

highly concurrent applications is very important, but sug-
gests the use of languages such as Java and Python.

JAWS [10, 9] is a C++ framework allowing to write con-
current applications. It provides design patterns and recur-
ring solutions to increase flexibility, reusability and modu-
larity of applications. It is used in many projects such as
embedded systems or real time ones, illustrating its robust-
ness and effectiveness.

MSPL is a specification language [6] used to easily de-
scribe Internet protocols. A compiler is used to generate the
low-level implantation of the communication for both the
client and server side from a declarative description of the
protocol. One of the drawbacks of this approach is that it
does not give access to the underlying implementation lan-
guage.

NEST [18] is a specification language approach close to
Lex and Yacc allowing to generate the server code automat-
ically from a grammatical description of the protocol. One
of the principal characteristics of this approach is the pos-
sibility of generating three types of servers (multi-process,
multi-threads and event-driven).

4 Description of Saburo

In Saburo, applications are modeled by a directed graph,
in which each vertex, or stage (in reference to SEDA), cor-
responds to an atomic unit of treatment and edges corre-
spond to the channels between them. The vertices con-
sist of a sequence of instructions ending with a blocking
call (I/O, synchronization). The edges may correspond to
method calls, local queues or sockets. For communication,
the stages define input and output interfaces which are re-
spectively used for the reception and the emission of events.
More exactly, there are three types of vertices, the initial
ones define only an output interface, the final ones require
only an input interface and the unspecified ones define at
the same time an input and output interface. The communi-
cation between the vertices can be direct, which avoids bot-
tlenecks at the level of the application and simplifies com-
munication implementation, or centralized. It corresponds
to the two modes of communication in the event-driven sys-
tems, explicit (the vertices are directly connected) or im-
plicit (we use a centralized vertex to connect the others).

The graph can be seen as a finite state machine. The con-
struction of this graph relies on the enumeration of all syn-
chronization and I/O operations that the application must
carry out to provide a service. This concept of blocking
graph was already used in [3] for thread scheduling at run-
time, but it has never been used to modularize a concurrent
application to facilitate its development, as we do in Saburo.

This modeling, thanks to its local aspect, allows to
(re)configure very quickly, and possibly dynamically, an ap-
plication by simple addition of vertex or edge in the graph.

5 Implementation

To illustrate the three steps of the Saburo development
process, we describe the implementation of a simple “Echo”
server. This server uses three stages, the first one accepts
new clients, the second one reads data received on the con-
nection and, finally, the last one writes them back to the
client. The directed graph below models the connection of
these stages:

accept read write

Description of events
According to the position of a stage in the graph, the

developer has to define the interfaces for its input and/or
output events.

For the accept stage, which is the initial vertex, an inter-
face is only defined for output events as:
public inter face OutputAcceptEvent extends Event �

public void sendAcceptSaburoSocket (SaburoSocket s) ;�

The read stage, which is an unspecified vertex, must de-
fine an input and output interface.
public inter face InputReadEvent extends Event �

public SaburoSocket receiveAcceptSaburoSocket () ;�

public inter face OutputReadEvent extends Event �
public void sendReadSaburoByteBuffer (SaburoByteBuffer b) ;�

Lastly, the write stage, which is a final vertex, only de-
fines an input interface, as follows:
public inter face InputWr i teEvent extends Event �

public SaburoSocket receiveAcceptSaburoSocket () ;
public SaburoByteBuffer receiveReadSaburoByteBuffer () ;�

Description of stages
Once the various interfaces of the events defined, the de-

veloper must implement the stages. Each stage contains a
handle() method which corresponds to intructions carried
out by the stage. Its parameters are input and output events.
This is used to connect the stages and allows to check the
reachability of all the vertices of the graph.

The accept stage is implemented by:
public class AcceptStage extends AbstractSourceStage �

public void handle (OutputAcceptEvent o) �
SaburoSocket s = server . accept () ;
o . sendAcceptSaburoSocket (s) ;
dispatchToSuccessor (o) ;�

�

The read stage may be:
public class ReadStage extends AbstractQueueStage �

public void handle (InputReadEvent i ,
OutputReadEvent o) �

SaburoSocket c = i . receiveAcceptSaburoSocket () ;

SaburoByteBuffer b = c . read () ;
o . sendSaburoByteBuffer (b) ;
dispatchToSuccessor (o) ;�

�

Lastly, the write stage can be implemented by:
public class WriteStage extends AbstractSinkStage �

public void handle (InputWr i teEvent i) �
SaburoSocket c = i . receiveAcceptSaburoSocket () ;
c . w r i t e (i . receiveReadSaburoByteBuffer ()) ;�

�

The Saburo’s implementation is based on the NIO
API [16] which provides blocking and non blocking
I/O. Because the use of this API is complex, we provide
encapsulation classes which simplifies implementation
in our context. Particularly, complete writing of data in
non-blocking mode is managed by this layer.

Connection of stages
Then, the connection of the various stages has to be spec-

ified. It is implemented using an abstract class which is
common to all servers whatever is the concurrency model,
as follows:
public abstract class AbstractEchoServ ice

extends Abst rac tServ ice �
public void connect () �

AcceptStage accept = new AcceptStage () ;
ReadStage read = new ReadStage () ;
Wri teStage w r i t e = new WriteStage () ;
/ / Connection o f stages
accept . setSuccessor (read) ;
read . setSuccessor (w r i t e) ;
/ / Add stages i n se rv i ce
addStage (accept) ;
addStage (read) ;
addStage (w r i t e) ;�

�

Currently, this step is hand-coded but should be gener-
ated automatically via an Eclipse plugin.

Generation of the technical code
Interfaces of input and output events defined previously

are then all implemented by the DefaultEvent class. Then,
the application uses a single event object through all stages
and can reuse it efficiently. The bytecode of the Default-
Event class is generated automatically form the list of inter-
faces by the event generator using ASM [4].

The following source code has been obtained decompil-
ing the Java bytecode generated by event generator from the
interfaces previously defined.
public class Defau l tEvent implements OutputAcceptEvent

InputReadEvent , OutputReadEvent , InputWr i teEvent �
private SaburoSocket acceptSaburoSocket ;
public SaburoSocket receiveAcceptSaburoSocket () �

return acceptSaburoSocket ;�

public void sendAcceptSaburoSocket (SaburoSocket s) �
th is . acceptSaburoSocket = s ;�

private SaburoByteBuffer readSaburoByteBuffer ;
public SaburoByteBuffer receiveReadSaburoByteBuffer () �

return readSaburoByteBuffer ;�

public void sendReadSaburoByteBuffer (SaburoByteBuffer b) �
th is . readSaburoByteBuffer = b ;�

�

The stages with successors use the dispatchToSucces-
sor() method to send their output events, while the stages
with predecessors define a push() method allowing them to
receive input events.

The implementation of the push() method is generated
automatically according to the concurrency model. Indeed,
if only one process is used to handle a request (competition),
the method is only a function call. On the other hand, if
several processes are used (cooperation), it is necessary to
introduce queues. Finally for distributed applications, this
method will establish the connections between peers.

Given the functional code above, we illustrate the imple-
mentation of a multi-threads server and of a single-process
event-driven server. The differences between the various
concurrency models are visible in these two examples. This
last step consists in generating the configuration of the I/O
mode for each stage and the technical part of the server us-
ing one of the server generator.

The multi-thread server accepts new client and instan-
tiates processes for each of them; the I/O are in blocking
mode. The accept and read stages are not connected ex-
plicitly because they are performed in the same thread (in-
dicated by the pushToSameThread(false) function).
public class Mult iThreadEchoService

extends AbstractEchoServ ice �
public void serv i ce () throws Serv iceExcept ion �

accept . pushToSameThread (fa lse) ;
/ / Conf igure IO mode
accept . con f igure IOBlock ing (true) ;
read . con f igure IOBlock ing (true) ;
w r i t e . con f igure IOBlock ing (true) ;
while (true) �

f i n a l Event acceptOutput = new Defau l tEvent () ;
f i n a l Event readOutput = new Defau l tEvent () ;
accept . handle (acceptOutput) ;
new Thread (new Runnable () �

public void run () �
read . push (acceptOutput , readOutput) ;� �
) . s t a r t () ;�

�
�

In the single-process event-driven server, all the stages
are connected and the main process performs the selection
of an I/O event at each iteration; the I/O are in non blocking
mode.
public class SpedService

extends AbstractEchoServ ice �
public void serv i ce () throws Serv iceExcept ion �

/ / Conf igure IO mode
accept . con f igure IOBlock ing (fa lse) ;
read . con f igure IOBlock ing (fa lse) ;
w r i t e . con f igure IOBlock ing (fa lse) ;

while (true)
doSelect () ;�

�

In order to only focus the developer on the functional
part, these last two classes have to be generated automati-
cally. This separation between functional part, specified by
the developer, and technical part, generated automatically,
enforces the independence of the functional part from the
underlying platform, and prepares future adaptations and
evolutions.

The figure below summarizes the “Echo” server. It de-
tails the connections between stages (zigzag), inputs / out-
puts events for each stage (label on zigzag) and the different
parts of the implementation : generated (dot lines), hand-
coded (ovals) and libraries (frames).

Nio API

Saburo API

AcceptStage

dispatchToSuccessor

(Socket)

Nio API

Saburo API

ReadStage push

dispatchToSuccessor

(S
oc

ke
t,

B
uf

fe
r)

Push

WriteStage

Saburo API

Nio API

The table below summarizes the various development
steps and the way they are obtained (specification or byte-
code generation using ASM [4]).

Input / Output interfaces specified in Java

Events generated from interfaces

Functionnal code of a stage specified in Java

Technical code of a stage generated from concurrency

Stages’s connection specified in Java

Concurrency generated from concurrency

All code generators presented here can be used dynami-
cally, even if they are usually used statically.

6 Conclusion and perspectives

In this paper, we present Saburo, a tool that simplifies
the development of servers or middlewares. It allows to
switch, with minimum overhead, between different concur-
rent models (SPED, AMPED, SEDA, etc.). Its development
model induces a weak interlacing between the functional
code and the concurrent model introducing an high level
specification of the application (the technical code is gener-
ated automatically). It should improve programmer produc-
tivity since he only focuses on the functional aspect of the
software. Saburo also allows to extend very quickly appli-
cations by simple addition of vertices or edges in a graph.

Although this work is still under progress, Saburo
presents many advantages compared to other existing tools.
One of the perspectives of this work consists in applying
model checking tools, such as SPIN [8], to automatically
detect, thanks to the modeling of the application as a fi-
nite state machine, deadlock, unreachable states, or tempo-
ral properties of the application.

References

[1] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R.
Douceur. Cooperative Task Management without Manual
Stack Management. In Proceedings of the USENIX An-
nual Technical Conference, pages 289 – 302, Monterey, CA,
USA, June 2002.

[2] BEA. Tuxedo. http://www.bea.com. White papers.
[3] R. V. Behren, J. Condit, F. Zhou, G. C. Necula, and

E. Brewer. Capriccio : Scalable Threads for Internet Ser-
vices. In Nineteenth ACM Symposium on Operating Systems
Principles, pages 268 – 281, Bolton Landing, NY, USA,
Oct. 2003. ACM Press.

[4] E. Bruneton, R. Lenglet, and T. Coupaye. ASM : A Code
Manipulation Tool for the Construction of Adaptable Sys-
tems. In Adaptable and Extensible Component Systems,
Grenoble, France, Nov. 2002. ACM Press.

[5] K. Czarnecki and U. W. Eisenecker. Generative Program-
ming, Methods, Tools and Applications. Addison Wesley
Professional, June 2000.

[6] M. A. L. Douglas and P. K. Chan. A Protocol Language
Approach to Generating Client-Server Software. Technical
report, Florida Institute of Technology, Melbourne, Florida,
USA, 2000.

[7] D. Gupta and R. Jaiswal. Threads vs. Events. Report for
CSE221, University of California, San Diego, USA, Dec.
2003.

[8] G. J. Holzmann. The SPIN Model Checker : Primer and Ref-
erence Manual. Addison Wesley Professional, Sept. 2003.

[9] J. Hu and D. C. Schmidt. Domain-Specific Application
Frameworks : Frameworks Experience by Industry, chapter
JAWS : A Framework for High-Performance Web Servers,
pages 339 – 376. John Wiley and Sons Ltd, 1999.

[10] J. C. Hu and D. C. Schmidt. Developing Flexible and High-
Performance Web Servers with Frameworks and Patterns.
ACM Computing Surveys, 32(1):39 – 45, Mar. 2000.

[11] S. Jahn. Serveez documentation. http://www.gnu.
org/software/serveez/manual/index.html.

[12] G. Lefkowitz and I. Shtull-Trauring. Network Programming
for the Rest of Us. In Proceedings of the USENIX Annual
Technical Conference, pages 77 – 89, San Antonio, USA,
June 2003.

[13] R. Lenglet. Composition Flexible et Efficace de Transfor-
mations de Programmes. PhD thesis, Institut National Poly-
technique de Grenoble, Nov. 2004.

[14] J. Ousterhout. Why Threads Are a Bad Idea (for most pur-
poses). In Proceedings of the USENIX Annual Technical
Conference, San Diego, CA, USA, Jan. 1996. Invited talk.

[15] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash : An
Efficient and Portable Web Server. In Proceedings of the
USENIX Annual Technical Conference, pages 199 – 212,
Monterey, CA, USA, June 1999.

[16] Sun Microsystems. New I/O APIs, 2002.
http://java.sun.com/j2se/1.4.2/docs/guide/nio/.

[17] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA : An Ar-
chitecture for Well-Conditioned, Scalable Internet Services.
In Eighteenth Symposium on Operating Systems Principles,
pages 230 – 243, Chateau Lake Louise, Canada, Oct. 2001.
ACM Press.

[18] K. Wilson and J. Aycok. NEST : NEtwork Server Tool.
Technical Report TR-2004-746-11, The University of Cal-
gary, Apr. 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

