
Maximum Edge Matching for Reconfigurable Computing

Markus Rullmann and Renate Merker
Dresden University of Technology, Germany

Circuits and Systems Laboratory
{rullmann, merker}@iee1.et.tu-dresden.de

Abstract

Reconfiguration of tasks implies considerable over-
head on the amount of configuration data and time.
Much overhead is caused by redundant configuration
generated by the design tools which implement similar
structures in the designs on different resources. In this
paper we propose a new method to identify structural
similarities in tasks. Based on this information, we
are able to generate automatically constraints to ensure
that the place and route tools use identical resources.
Thus we ensure that less redundant configuration is
produced. In this paper we give a formal description of
the underlaying maximum edge matching problem and
show a method to solve it optimally. We derive a trun-
cation criteria to restrict the search space efficiently.
We also propose an Ant Colony Optimization based so-
lution with a problem specific local heuristic and show
that it performs optimal as well in our examples, but
with considerable lower computational effort.

1 Introduction

Reconfigurable computing has received an ever in-
creasing interest in the research community in recent
years. The associated problems cover all aspects of dig-
ital system design, but a major driver is the potential
in flexibility, performance and power consumption of
such systems. A disadvantage is still the amount of de-
vice programming data required to reconfigure devices
at runtime. The configuration data needs to be stored
in the system memory and transferred to the program-
ming interface of the reconfigurable devices. As such a
large amount of configuration data has a negative im-
pact on system cost, reconfiguration time and power
dissipation.
Several methods to reduce reconfiguration costs

have been proposed. Generally, different tasks have to
be implemented in a device (e.g. FPGA). Due to a lack

of area the corresponding modules on a device have to
be reconfigured. Many authors consider task schedul-
ing and prefetching techniques to hide reconfiguration
time from the application [4, 5, 2, 8, 6]. However, re-
duced configuration data and power can be achieved by
the use of custom reconfigurable architectures [3, 14]
or by advanced implementation methods that exploit
similar properties of tasks. In [9] a method that uses
remapping of LUT based logic in FPGAs is proposed.
This method does not optimize routing configuration
which is dominant in todays FPGAs. Rakhmatov et al.
[10] proposes an algorithm to identify common rout-
ing channels in a design. The approach requires a de-
sign partitioning into functional and bus logic and can
not utilize common routes inside the datapath units.
Shirazi et al. [12] perform a matching of components
by using heuristic weights for routing and placement
similarities. The method produces maximum compo-
nent matches but a maximum routing match can not
be guaranteed. In [1] structural similarities are identi-
fied by common subgraph extraction, which exploits
only similarities represented by the largest common
subgraph. In our approach we search for structural
similarity of the different tasks, i.e. for such parts that
can be both mapped to the same resource types and
placed and routed using the same physical resources.
Moreane et al. [7] uses a similar approach for the de-
sign of reconfigurable datapath architectures.

Our approach targets at the mapping of tasks at
netlist level to a predefined reconfigurable architec-
ture. Generally tasks are implemented by the place-
ment and routing tools independent of each other.
Hence the tools generate different configurations for
similarly structured logic in each of the tasks. When
such tasks are reconfigured, a large amount of config-
uration data is used to implement the same similarly
structured logic on different physical resources. We call
this redundant configuration. The overhead associated
to reconfigurable systems can be reduced by eliminat-
ing the redundant configuration.

1-4244-0054-6/06/$20.00 ©2006 IEEE

We consider fine grain reconfigurable systems. From
a lot of experiments follows that in these systems most
configuration data is spend on the routing configura-
tion. This is partly due to the fact that there exists
a number of possible routes between two physical re-
sources. The target of the routing tool is just to find
one possible route that meets the design constraints.
To reduce redundant configuration we search for

structural similarity between two tasks first. Secondly,
this information guides the place and route tools to
occupy the same physical resources in the modules. In
[11] we described how modules can be especially de-
signed to improve structural similarities.
This paper proposes a novel method to extract struc-

tural similarities in two given tasks at netlist level.
The structural similarities describe exactly which con-
nections between instances in one task are equivalent
to connections in the other task. The information is
used to map these instances of both tasks onto the
same physical resources and to implement the routing
of the equivalent connections on the same physical re-
sources, too. Therefore similar structures in both tasks
do not need reconfiguration because the constraints
during place and route ensure that they will have an
identical configuration. The method can be integrated
into existing FPGA design flows directly by the use of
our automated optimization tool.
The rest of the paper is structured as follows: The

netlists are transformed to an equivalent graph model
(Section 2) that can be treated more formally using the
methods described in Section 3. The computational
complexity of the underlaying problem is too high to
be solved optimal. We developed an Ant Colony Opti-
mization method (Section 4) that has optimal perfor-
mance in our examples in Section 5.

2 Graphs for Modeling Netlists

A netlist consists of instances and nets connecting
the ports of these instances (see Figure 1(a)). Instances
can be modelled as nodes in a graph. Each net is rep-
resented by a number of directed edges in the graph:
Each directed connection in the net between the output
port of a driving and input ports of receiving instances
is represented by a directed edge in the graph. In addi-
tion, all nodes representing instances that are mapped
to the same physical resource type belong to the same
class of nodes. In Figure 1 an example for a netlist (a)
and the equivalent graph (b) is shown. The instances
are mapped to two types of physical resources (white
and gray shaded), dividing the nodes into two classes:
{0, 1, 3} and {2, 4}. Net 1 connects the output port of
instance 1 with the input ports of the instances 1,2,3

7

5

6 7

98

0

1 2

3 4

0

1

3

2

4

5

6

8

94

3

2

1

0

net 1

net 2

N1

G1 G2 GB

N2

Netlist 1

a) d)b) c)

Figure 1. Two example input graphs G1, G2,
the netlist 1 for G1 and the resulting bipartite
graph GB .

and 4, while net 2 connects the output port of instance
0 with the input port of instance 1, hence the graph
contains 4 edges starting at node 1 and one edge from
node 0 to node 1.

3 Maximum Edge Matching Problem

In this section we introduce the maximum edge
matching problem. We derive a specialized branch and
bound method to find a globally optimal solution for
this problem.

3.1 Problem Definition

At first we define G(N,E) as a finite digraph with
a set of nodes N and a set of edges E. A directed edge
from node r ∈ N to node s ∈ N is denoted as (r, s).
Two digraphs G1(N1, E1), G2(N2, E2) are considered
as an input to the edge matching problem.
We define a complete bipartite graph GB(N1 ∪

N2, EB) with ∀(r, s) ∈ EB . r ∈ N1 ∧ s ∈ N2. We
assume that N1∪N2 =

⋃m
n=1 Sn, where Sn are disjoint

sets. All edges (r, s) ∈ EB must satisfy the condition:

r, s ∈ Sn ∧ r ∈ N1 ∧ s ∈ N2. (1)

Hence follows, the bipartite graph GB(N1 ∪ N2, EB)
consists of m bipartite subgraphs Gn(Sn, ES) where
(r, s) ∈ ES if condition (1) holds.
In Figure 1(b,c) two input graphs with five nodes

each are shown. The nodes are classified into the sets
S1 and S2 (gray and white filled respectively). The
resulting bipartite graph GB has two bipartite sub-
graphs.
Within the bipartite subgraphs, a graph matching

can be performed. A matching is a set M ⊆ EB of
non-adjacent edges in GB. Two edges (r, s) ∈ EB and
(r′, s′) ∈ EB with (r, s) �= (r′, s′) are adjacent, if r = r′

or s = s′.

Definition 1 The edge (r, s) ∈ E1 is a matching edge
if there is an edge (r′, s′) ∈ E2 such that (r, r′) ∈ M
and (s, s′) ∈ M . MEM1 ⊂ E1 is the set of matching
edges of E1.

Considering the example in Figure 1 and a given
matching M = {(0, 5), (1, 6), (3, 7), (2, 8)}, we get
MEM1 = {(0, 1), (1, 3), (1, 2)}.

Definition 2 The matching weight of matching M is
wM =|MEM1 |.

The maximum edge matching problem consists in
finding a matching MMax ⊆ EB that results in a max-
imum matching weight.
The maximum matching MMax describes the struc-

tural similarity of the two input netlists. The matching
weight of MMax defines the number of routes between
the instances of the netlist that should use the same
routing configuration. The instances represented by
the nodes (r, s) ∈ MMax must be placed on the same
physical resources, too.

3.2 Complexity of the Maximum Edge
Matching Problem

ObviouslyMMax is a subset of one of the maximum
matchings MP in GB . A matching M is a maximum
matching MP , if MP contains the maximum possible
number of elements where

|MP |=
m∑
n=1

min(| N1 ∩ Sn |, | N2 ∩ Sn |).

Hence follows for finding MMax all maximum match-
ings MP have to be investigated. The set of all MP
in GB is denoted as AP and the set of all maximum
matchings MSn in Gn as ASn . The total number of
maximum matchingsMP can be determined as follows.
The number of possible maximum matchings MSn

in a bipartite subgraph Gn is:

| ASn | = (i)j = i(i− 1) . . . (i− j + 1)

with i = max(| N1 ∩ Sn |, | N2 ∩ Sn |)

j = min(| N1 ∩ Sn |, | N2 ∩ Sn |).

The total number of maximum matchings in GB is
then:

| AP |=
m∏
n=1

| ASn | . (2)

In the given example (Figure 1) | AP | is:

| AP |= (3)3 · (2)2 = 6 · 2 = 12.

(2,8)

(4,9)

(2,9)

(4,8)

(2,8)

(4,9)

(2,9)

(4,8)

(2,8)

(4,9)

(2,9)

(4,8)

(2,8)

(4,9)

(2,9)

(4,8)

(2,8)

(4,9)

(2,9)

(4,8)

(2,8)

(4,9)

(2,9)

(4,8)

(0,5) (0,6) (0,7)

(1,6) (1,7)

(3,7) (3,6)

(1,5)

(3,7)

(1,7)

(3,5)

(1,6)(1,5)

(3,5)

(,)

(3,6)

Figure 2. The search tree T for the example
from Figure 1. The vertices below the dashed
line can be excluded from the search by the
truncation criteria.

3.3 An Algorithm for Finding MMax

It is now apparent that a search for MMax can sim-
ply enumerate all MP matchings. However, this will
be impossible for most practical problems. We derive
an efficient measure to establish a truncated search. It
ensures that all MP matchings are excluded from the
search if they can not provide a better solution than
the currently best one found.
The enumeration of the maximum matchings MP

can be implemented as a depth–first search on the tree
T containing all possible matchings M ⊆ EB. Each
path from the root vertex to one of the leaf vertexes
represents a possible maximum matching MP .
In Figure 2 an example search tree T (NT , ET) with

vertices NT labeled (r, s) ∈ EB is shown. We already
calculated the number | AP |= 12 in Section 3.2, which
is equal to the number of leaf vertices in T .
Suppose that at any stage in the depth–first search

a matching M is selected. M contains all edges EB
selected by the path from the root vertex to a vertex
(r, s) ∈ NT . If it can be proven that M �⊂ MMax
than none of the MP with M ⊂ MP can be MMax.
Thus the descent in the depth–first search is canceled
and all MP containing the matching M are discarded
from the search. This property is used to truncate
the search tree for MMax and to reduce the average
runtime. The following definitions are needed to derive
the truncation condition:

Definition 3 The set MEC1 of candidate edges is de-
fined as follows:

MEC1 = {(r, s) ∈ E1 | (r, r
′) �∈M ∨ (s, s′) �∈M ; r′, s′ ∈ N2}.

We can now formulate an upper bound for the match-
ing weight of all maximum matchings MMP ∈ AP con-

Matching M wM |MEC1
| |MEM1

|+ |MEC1
|

(0,5) 0 5 5
(0,5)(1,6) 1 3 4
(0,5)(1,6)(3,7) 2 2 4
(0,5)(1,6)(3,7)(2,8) 3 1 4
(0,5)(1,6)(3,7)(2,8)(4,9) 3 0 3
(0,5)(1,6)(3,7)(2,9) 2 1 3
(0,5)(1,6)(3,7)(2,9)(4,8) 3 0 3
(0,5)(1,7) 0 3 3
(0,5)(1,7)(3,6) 0 2 2S

(0,6) 0 5 5
(0,6)(1,5) 0 3 3
(0,6)(1,5)(3,7) 0 2 2S

(0,6)(1,7) 1 3 4
(0,6)(1,7)(3,5) 2 1 3
(0,6)(1,7)(3,5)(2,8) 1 1 2S

(0,6)(1,7)(3,5)(2,9) 2 1 3
(0,6)(1,7)(3,5)(2,9)(4,8) 2 0 2S

(0,7) 0 5 5
(0,7)(1,5) 0 3 3
(0,7)(1,5)(3,6) 1 2 3
(0,7)(1,5)(3,6)(2,8) 1 1 2S

(0,7)(1,5)(3,6)(2,9) 1 1 2S

(0,7)(1,6) 0 3 3
(0,7)(1,6)(3,5) 0 2 2S

Table 1. Matchings evaluated by the trun-
cated search method. The symbol S marks
the truncation of the search for a subtree.

taining the matching M as a subset:

wMM
P
≤ |MEC1 | + |MEM1 | .

The depth–first search can be truncated if condition (3)
is true for a matching M constructed while traversing
T :

|MEC1 | + |MEM1 |< wMP,best . (3)

wMP,best is the maximum matching weight of all previ-
ously evaluated matches MP .

In Table 1 the truncated search for the search tree in
Figure 2 is illustrated. The depth–first search follows
the leftmost edge first and computes the upper bound
for every new matching M . If condition (3) is met,
the descent in the tree is stopped. As it is illustrated
in Figure 2 the search tree contains now only 25 ver-
tices. This is a significant reduction compared to the
full search tree which has 40 vertices.

Our experiments show a significant reduction in the
average runtime using this method. Still, it can not be
guaranteed that this method reduces the search prob-
lem since it is clearly dependend on the input graphs
and the particular order of the search tree.

4 An ACO Algorithm to Solve the
Maximum Edge Matching Problem

Even though the truncated search can find the global
optimum of larger problem instances than the com-
plete search does, it is still necessary to use a suitable
heuristic in most applications. Therefore an heuris-
tic search algorithm based on the Ant Colony Opti-
mization (ACO) metaheuristic has been developed. It
has been demonstrated that ACO algorithms are com-
petitive with other heuristic methods on similar prob-
lems e.g. the traveling salesman problem (TSP) and
quadratic assignment problem (QAP) (see [13] for fur-
ther references). Our algorithm uses the extensions of
the Max–Min Ant System by Stützle et al. [13].

4.1 The ACO Search Space

The ACO is based on a set of agents, so-called ants,
which construct different solutions to the maximum
edge matching problem. Each ant m has its own lim-
ited view of the search space.
At each level l an ant adds one edge (r, s) ∈ ElB with

E0B = EB to the ant’s matching. The edge is chosen
depending on the associated probability that is calcu-
lated from a parameter that resembles the quality of
the matching from the previous iterations (pheromone
levels τ) and on a parameter based on a local heuris-
tic weight (η). The set El+1B for the subsequent level
contains all elements from ElB that are not adjacent to
(r, s) in the graph GB .
E.g. in level 1 (Figure 3) any (r, s) ∈ EB can be

chosen. In the example, the selected edge is (0, 5).
The level 2 contains all edges from GB except both
(0, 5) and all edges adjacent to (0, 5) in GB . The graph
construction is continued until ElB = ∅. The example
shows a path in the search space that leads to a match-
ing similar to the example in Section 3.3.

4.2 ACO Algorithm

The ACO algorithm is an iterative process. In each
iteration a number of ants construct different match-
ings. The quality of the maximum matching is used to
update the probability of the edges in the search tree.
With an increasing number of iterations, edges that
lead to good global solutions strengthen their weights
and hence the paths chosen by the ants improve to-
wards an optimal solution. Often this solutions are
good local optima of the search problem but a global
optimum can not be guaranteed.
The following steps describe an iteration t of the

ACO algorithm to solve the maximum edge matching

(3,6) (3,7)

(3,6) (3,7) (2,8) (2,9) (4,8) (4,9)

(,)

(0,6) (0,7) (1,5) (1,6) (1,7) (3,5)(0,5)

(2,8) (2,9) (4,8) (4,9)(1,6)(1,7)

(3,7) (4,9) (4,8)(2,9)(2,8)

(2,8)(2,9) (4,8) (4,9)

(4,9)

all 0

0 0 0 0 0 0 01

0 01 1 1

110 0

0

0:

1:

2:

3:

4:

5:

Figure 3. Search tree for constructing a
matching with the ACO algorithm.

problem:

1. For each ant k, construct a match m ∈ MkP using
the method described in Section 4.1. The proba-
bility to choose an edge (r, s) ∈ EB in step l from
all remaining edges is:

plr,s(t) =
[τr,s(t)]

α · [ηr,s]β∑
(r′,s′)∈EB

[τr′,s′(t)]α · [ηr′,s′]β

where α, β are tuning parameters for the ACO al-
gorithm. τr,s and ηr,s resemble the pheromone lev-
els and the local heuristic weight for the chosen
match, respectively.

2. After all ants have constructed their maximum
matching, the pheromone levels are updated based
on the rules:

τr,s(t+ 1) = (1− ρ) · τr,s(t) +
m∑
k=1

∆τkr,s(t) (4)

∆τkr,s(t) =

⎧⎨
⎩
wMk

P
if edge (r, s) is used by

ant k in iteration t
0 otherwise

.

(5)

Equation (4) implements a decay of the
pheromone level from the previous iteration (evap-
oration) and an enforcement of the weight that is
proportional to maximum matching weights of all
paths containing the edge (r, s). The evaporation
is controlled by the parameter ρ.

3. Continue with the next iteration t + 1 at step 1,
until the desired number of iterations is reached.

The best path found in all iterations represents the lo-
cally optimal solution to the maximum edge matching
problem. Furthermore in the Max–Min Ant System it

is differentiated between the globally best solutionMgb
and the best solution found in a single iterationMib(t).
The local heuristic weight η is used to improve the

ants’ behavior. There is no local information that de-
pends only on the edge (r, s) ∈ EB independently of
the context. Therefore the matching weight developed
in Section 3.3 is used. For every possible edge leaving
the current matchingM of an ant, the heuristic weight
for a matching node (r, s) is calculated as the number
of matching edges added in the context of the already
chosen matching:

ηr,s = wM ′ − wM + ηoff = ∆w
r,s
M + ηoff

withM ′ = {M, (r, s)}.

The value of ηr,s resembles the local improvement if
a particular edge (r, s) ∈ EB is included in M . E.g. in
Figure 3 the edges are labeled with ∆wr,sM for further
illustration. A minor drawback of this method is that
during path construction, ηr,s must be calculated for
every possible edge since it is not known in advance, as
in e.g. TSP related problems [13]. The parameter ηoff
is an constant weight offset to ensure that ηr,s > 0.

5 Experimental Results

In this section the behavior and the performance of
the described search algorithms are illustrated. The
advantage of the local heuristics is also justified by the
experiments.
Two examples were used for the analysis of the algo-

rithms. The first example (A) consists of two random
input graphs. Each graph contains 12 nodes of the
same node class and 40 random edges. Besides this a
second example (B) that is closely related to hardware
reconfiguration was used. The two input graphs are
derived from two netlists implementing a 4Bit adder
and a 4Bit subtract circuit synthesized for the VirtexI-
IPro architecture. Both circuits have a very similar
structure. The instances in the input netlists are rep-
resented by nodes of different classes. The number of
instances that belong to a class of nodes is given for
both examples in Table 2(a). The examples were cho-
sen because they allow a comparison between the ACO
and the Truncated Search method.

5.1 ACO Setup

The parameters for the ACO search algorithm were
chosen to improve the overall performance for the edge
matching problem. The number of ants in each iter-
ation was equal to the number of nodes in G1. The
number of iterations is a compromise between runtime

and quality of results, especially for large problems
where the global optimum is usually not found. The
exponents to weight the pheromone level and the local
heuristic are best set with α = β = 1. We found a
good value for ηoff = 1. The pheromone decay was
tuned to ρ = 0.3. The extensions of the Max–Min–Ant
System were used according to the recommendations
in [13]. The pheromone levels were initialized to τmax
and were updated using the global best matching Mgb
every three iterations.

5.2 Swarm Intelligence vs. Randomized
Greedy Algorithm

By using different settings for α and β it is possible
to tune the ACO behavior to a randomized heuristic
or to have ”blind” ants that have no local heuristic
information at all.

If α = 0 then the algorithm has no knowledge about
previously constructed matchings. The matchings are
chosen according to the local quality of a vertex. A
higher local heuristic value improves the probability to
choose a certain vertex. The resulting matchings are
random and the probability to achieve good results in-
creases with the number of iterations. In theory, setting
α = 0 and β =∞ would result in a greedy heuristic.

Setting β = 0 means the local heuristic does not ef-
fect the probability for an ant to choose a vertex, hence
heuristic information is not used. This sets the ACO
algorithm to a ”blind” behavior, the ants will only learn
good matchings by exploration. As the results show,
the convergence of the ACO towards the local opti-
mum is much decreased and the quality of results is
lower than with the proposed setup.

The experimental results for different settings of α
and β are illustrated in Figure 4. The recommended
setup in Figure 4(a) clearly shows the best performance
of all. There are only few iterations required to find the
optimum matching weight. In this example the algo-
rithm converges in the average solution towards the
optimum too. The ACO without the local heuristic
(Figure 4(b)) does also reach the desired optimum, but
requires almost the sixfold number of iterations. As a
result we can conclude that the provided local heuristic
improves the performance in this ACO algorithm. In
contrary, the local heuristic on its own does not pro-
vide a good basis for a probabilistic greedy search, as
it can be seen in Figure 4(c). In fact, the iteration
best matching weight is always in the range of the ini-
tial solution of the two parameter settings from Figure
4(a,b).

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400 450

M
at

ch
in

g
W

ei
gh

t

Iteration

ACO Matching Performance

Mgb
Mean
Mib

(a) α = 1, β = 1

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400 450

M
at

ch
in

g
W

ei
gh

t

Iteration

ACO Matching Performance

Mgb
Mean
Mib

(b) α = 1, β = 0

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400 450

M
at

ch
in

g
W

ei
gh

t

Iteration

ACO Matching Performance

Mgb
Mean
Mib

(c) α = 0, β = 1

Figure 4. Performance of the ACO algorithm
for example (B) with different settings for α
and β. Mgb is the best matching weight found
so far, Mit the best matching weight for this
iteration andMean denotes the mean match-
ing weight in this iteration.

 14

 16

 18

 20

 22

 24

 26

 10 100 1000 10000 100000 1e+06 1e+07 1e+08

M
at

ch
in

g
W

ei
gh

t

Number of Matchings

Matching Performance Comparison

ACO
ACO b=0
ACO a=0
Trunc

Figure 5. Example (A) Random: Performance
of different settings for the matching algo-
rithm.

5.3 Runtime Behavior

A major difference between the search algorithms
is in the runtime behavior. While the runtime of the
truncated search depends only on the layout of the
search tree, the ACO algorithm can be adjusted by set-
ting the number of iterations and ants that solve the
problem to the users needs. Allowing more computa-
tional effort will improve the solution towards the max-
imum matching weight. However it is quite impossible
for large problems to find the optimal result with the
truncated search method, because of the large compu-
tational complexity. As an illustration of the required
effort, the number of different calculated matchings was
recorded for both types of algorithms, see Table 2(b).
It can be seen that the truncated search already prunes
a lot of obviously bad matchings from the search tree.
E.g. in example (B) only 1

840000 of all possible maxi-
mum matchings are searched for the optimal solution.
The ACO algorithm requires even less search steps to
find the optimum matching. The results are compared
for both examples in Figure 5 and 6. In order to com-
pare the behavior of both algorithms, the advances to-
wards the optimum are plotted against the number of
calculated matchings. In addition, the runtime behav-
ior of the investigated parameter settings α = 1, β = 0
and α = 0, β = 1 are also included. It appears that the
advantages of the ACO and the truncated search are
more prominent in example (B), which is more regular
structured than example (A).

However, the effort to evaluate a single matching
with both algorithms is very different. The truncated
search strictly follows the search tree described in Sec-

 25

 30

 35

 40

 10 100 1000 10000 100000 1e+06 1e+07

M
at

ch
in

g
W

ei
gh

t

Number of Matchings

Matching Performance Comparison

ACO
ACO b=0
ACO a=0
Trunc

Figure 6. Example (B) Adder/Subtract: Perfor-
mance of different settings for the matching
algorithm.

Example Trunc. Search ACO
per matching total per matching total

(A) 2.4 · 10−6s 278s 3.2 · 10−4s 0.92s
(B) 9.6 · 10−7s 1s 2.6 · 10−4s 0.41s

Table 3. Average matching construction
times and total runtimes for both examples
and algorithms.

tion 3.3, which means that many different evaluated
matchings contain a common matching, making the
processing very efficient. The ACO algorithm instead
uses a different exploration of the search tree for ev-
ery ant. As a result we observed that the construction
of a single matching requires several orders of magni-
tude more time than the average construction time of
a matching with the truncated search method, see Ta-
ble 3. It is still true that the ACO algorithm requires
much less computational effort for most problems due
to the very tight search space exploration.

We implemented example (B) with the Xilinx ISE
tools. Design constraints ensured that matching in-
stances in both netlists occupied identical physical re-
sources. Due to the mapping process some routes
where implemented in the logic resources itself. The
Guide Mode of the place and route tools configured 13
nets in each task identically. Thus, only a very small
number (1 and 2 nets in task 1 and 2, respectively) of
nets have to be reonfigured between both tasks. Our
tools automatically identified the structural similari-
ties and generated the design constraints for the FPGA
tools.

Ex. A Ex. B
G1 G2 G1 G2

| Nx ∩ S1 | 12 12 1 1
| Nx ∩ S2 | 3 5
| Nx ∩ S3 | 5 5
| Nx ∩ S4 | 4 5
| Nx ∩ S5 | 4 4
| Nx ∩ S6 | 8 8
| Ex | 40 40 44 49

(a)

Example Complexity # Matchings
Eq. (2) Trunc. S. ACO∗

(A) Random 4.8 · 108 115857881 2899

(B) Adder / Subtract 8.4 · 1011 1036366 1586
∗Average number of matchings analyzed before the optimum was
found.

(b)

Table 2. Parameters of the input graphs (a), the associated theoretical problem complexity and the
number of different matchings analyzed for the Truncated Search and the ACO algorithm (b).

6 Conclusion

In this paper we proposed a method to identify
structural similarities in tasks of a reconfigurable sys-
tem. We identified the edge matching problem and
proposed two algorithms to solve it. The algorithms
have been demonstrated on suitable examples. We
have shown that the information about structural sim-
ilarity can guide the implemention tools to avoid un-
necessary configuration.
In the future the techniques will be applied to real

world examples. Also the method can be used to aid
the design of custom reconfigurable computing archi-
tectures. The method provides a measure to assess
which reconfigurable routing resources must be pro-
vided to support the selected tasks in that architecture.

References

[1] D. Aravind and A. Sudarsanam. High level - applica-
tion analysis techniques & architectures - to explore
design possibilities for reduced reconfiguration area
overheads in FPGAs executing compute intensive ap-
plications. In Parallel and Distributed Processing Sym-
posium, 2005. Proceedings. 19th IEEE International,
April 2005.

[2] G. Chen, M. Kandemir, and U. Sezer. Configuration-
sensitive process scheduling for fpga-based computing
platforms. In DATE ’04: Proceedings of the conference
on Design, automation and test in Europe, page 10486,
Washington, DC, USA, 2004. IEEE Computer Society.

[3] R. Hartenstein. A decade of reconfigurable computing:
a visionary retrospective. In Proceedings of the Con-
ference on Design, Automation and Test in Europe,
pages 642–649, 2001.

[4] S. Hauck. Configuration prefetch for single context
reconfigurable coprocessors. In Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field
programmable gate arrays, pages 65–74, 1998.

[5] Z. Li, K. Compton, and S. Hauck. Configuration
caching management techniques for reconfigurable
computing. In FCCM, pages 22–38, 2000.

[6] R. Maestre, F. J. Kurdahi, M. Fernandez, R. Hermida,
N. Bagherzadeh, and H. Singh. A framework for re-
configurable computing: task scheduling and context
management. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 9(6):858–873, December
2001.

[7] N. Moreano, E. Borin, C. de Souza, and G. Araujo.
Efficient datapath merging for partially reconfigurable
architectures. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 24(7):969–
980, July 2005.

[8] J. Noguera and R. M. Badia. Dynamic run-time
hw/sw scheduling techniques for reconfigurable archi-
tectures. In CODES ’02: Proceedings of the tenth
international symposium on Hardware/software code-
sign, pages 205–210, New York, NY, USA, 2002. ACM
Press.

[9] K. P. Raghuraman, H. Wang, and S. Tragoudas. A
novel approach to minimizing reconfiguration cost for
LUT-based FPGAs. InVLSI Design, 2005. 18th Inter-
national Conference on, pages 673–676, January 2005.

[10] D. Rakhmatov and S. B. K. Vrudhula. Minimiz-
ing routing configuration cost in dynamically recon-
figurable FPGAs. In Parallel and Distributed Process-
ing Symposium., Proceedings 15th International, pages
1481–1488, April 2001.

[11] M. Rullmann, S. Siegel, and R. Merker. Optimiza-
tion of reconfiguration overhead by algorithmic trans-
formations and hardware matching. In Parallel and
Distributed Processing Symposium, 2005. Proceedings.
19th IEEE International, pages 151–156. IEEE, April
2005.

[12] N. Shirazi, W. Luk, and P. Cheung. Automating
production of run-time reconfigurable designs. In
Proc. IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, pages 147–156. IEEE Com-
puter Society Press, April 1998.

[13] T. Stützle and H. H. Hoos. MAX-MIN Ant system.
Future Gener. Comput. Syst., 16(9):889–914, 2000.

[14] T. J. Todman, G. A. Constantinides, S. J. E. Wilton,
O. Mencer, W. Luk, and P. Y. K. Cheung. Reconfig-
urable computing: architectures and design methods.
IEE Proceedings in Computers and Digital Techniques,
152(2):193–207, March 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

