
Multiprocessor on Chip : Beating the Simulation Wall Through

Multiobjective Design Space Exploration with Direct Execution

Riad Ben Mouhoub1 and Omar Hammami2

1ENSTA 2ENSTA

32 Bvd Victor 32 Bvd Victor

75739 FRANCE 75739 FRANCE

riad.benmouhoub@ensta.fr hammami@ensta.fr

Abstract

Design space exploration of multiprocessors on chip

requires both automatic performance analysis tech-

niques and efficient multiprocessors configuration per-

formance evaluation. Prohibitive simulation time of

single multiprocessor configuration makes large design

space exploration impossible without massive use of

computing resources and still implementation issues

are not tackled. This paper proposes a new perfor-

mance evaluation methodology for multiprocessors on

chip which conduct a multiobjective design space ex-

ploration through emulation. The proposed approach

is validated on a 4 way multiprocessor on chip design

space exploration where a 6 order of magnitude im-

provement have been achieved over cycle accurate sim-

ulation.

1. Introduction

Systems on chip are increasingly becoming complex
to design, test and fabricate. SoC design methodolo-
gies make intensive use of intellectual properties (IPs)
[16] to reduce the design cycle time and meet strin-
gent time to market constraints. However, associated
tools still lag behind when addressing the huge associ-
ated design space exposed by the combination of soft
IP. In addition, failure to meet an efficient distribution
in terms of performance, area and energy consumption
makes the whole design inappropriate. Although this
problem is already hard to solve in the ASIC domain,
it is exacerbated in the system on programmable chip
(SoPC) domain. SoPC are large scale devices offering
abundant resources but in fixed amount and in fixed
location on chip. Implementing embedded multipro-

cessors on these devices present several advantages the
most important being to be able to quickly evaluate
various configurations and tune them accordingly. In-
deed, embedded multiprocessor design is highly appli-
cation driven and it is therefore highly advantageous
to execute applications on real prototypes. However,
due to the fact that specific resources are located at
fixed positions on these large chips it is hard not take
into account the important impact of place and route
results on the critical paths and therefore on the over-
all performance. In this paper we address this multi-
objective optimization problem [6] restricted to perfor-
mance and area through the combination of an efficient
design space exploration (DSE) technique coupled with
direct execution on an FPGA board [2]. The direct
execution removes the prohibitive simulation time as-
sociated with the evaluation of embedded multiproces-
sor systems. A side effect of this approach is that di-
rect execution requires actual on chip implementation
of the various multiprocessor configurations to be ex-
plored which provides actual post synthesis and place
and route area information. The resulting flow is fully
integrated from multiprocessor platform specification
to execution. The paper is organized as follows. In Sec-
tion 2, we review previous work. Section 3 describes
an example of soft IP based multiprocessor and the
breadth of the problem associated with the design of
such multiprocessor on a particular instance embed-
ded memories optimization. Section 4 presents our
approach MOCDEX based on Multi-objective Evolu-
tionary Algorithms (MOEA) and direct execution. In
Section 5 we describe a case study and validation while
Section 6 provides exploration results. Finally, we con-
clude in section 7 with remarks and directions for fu-
ture works.

1-4244-0054-6/06/$20.00 ©2006 IEEE

2 Previous Work

Our work adresses three different points: (1) how to
efficiently and automatically explore the design space
of multiprocessors on chip ? (2) how to reduce evalu-
ation time of multiprocessor configurations during de-
sign space exploration ? how to integrate implementa-
tion issues (i.e. chip area) in this exploration ? Tra-
ditional parallel computer architectures performance
evaluation techniques do not provide automatic explo-
ration besides exhaustive evaluation on a few param-
eters [8]. Paul and al [18] propose a technique called
MESH a high level modeling and simulation technique
of single chip programmable heterogeneous multipro-
cessors based on a layered approach. This technique
does not integrate implementation issues and design
space exploration is not fully automatic and restricted.
Chidester and al [4] propose the use of parallel simu-
lation for the evaluation of chip multiprocessor archi-
tecture through the use of a 9 nodes of dual cluster-
CPU workstations. Although the evaluation of a sin-
gle configuration is improved they neither address the
issue of automatic exploration nor they tackle imple-
mentation issues. Simulation can be obtained in dif-
ferent modes. The most important ways for simulation
are : Event-based simulators, cycle-based simulators,
transaction based verification and cosimulation. The
event-based simulation provides a functional and tim-
ing simulation results. It takes as input an HDL be-
havioural description, RTL code, gate level or transis-
tor level netlist. Cycle-based simulation is well suited
for Systems-On-Chips with an important number of
processors and peripherals. The runtime of cycle-based
simulation is improved by taking into account only the
necessary calculations at each cycle clock edge. An-
other advantage of the cycle-based simulation is that
it uses less memory in the host machine allowing simu-
lation of larger designs (compared to event-based sim-
ulation) [20]. Even with the runtime improvements
provided by the cycle-based simulation, verification of
actual systems is still slow and unfeasible. The Trans-
action Level Modeling is an alternative approach for
simulation where the aims were to provide a real im-
provement in runtime simulation and cycle accuracy for
large scale SoC. This is due to the separation of com-
munication and computation aspects of a design and
by making abstraction of the communication by con-
sidering transaction requests instead [13]. TLM level
shows performance improvements of 353 faster than in
RTL simulation and a simulation speed able to reach
456 KCycles/sec. This system level modeling permits a
rapid performance evaluation. Although, no real infor-
mation about physical constraints of implementation

are provided and till now there is no tested and ap-
proved tool assuming conversion of a TLM specifica-
tion to a synthesizable RTL description. The idea of
using FPGA platform for emulating parallel multipro-
cessors on chip have been used in the RPM [12] and
RPM-2 [15] project. Although the approach is based
on FPGA neither an automatic exploration flow nor
a multi-objective design space exploration approach is
proposed. Finally recently Copolla and al [14] proposed
an open platform for developing multiprocessor SoCs
based on emulation. However again no automatic and
multi-objective approach is proposed.

To the best of our knowledge our work is the first
to fully integrate and therefore close the gap between
design automation tools and architecture design space
exploration technique in a multi-objective constraints
paradigm with actual execution for all multiprocessor
on chip configurations explored during the design space
exploration process.

3 Soft IP Based Embedded Multipro-

cessor System

Embedded systems based on soft IPs are SoC includ-
ing; soft IP processors, interconnect infrastructure and
memories. An example of such a system is described
below. It is principally based on Xilinx Embedded De-
velopment Kit (EDK) IPs [21].

3.1 The Microblaze soft IP processor

The Microblaze soft [21] is a 32-bit 3-stages single
issue pipelined Harvard style embedded processor ar-
chitecture provided by Xilinx as part of their embedded
design tool kit.

Figure 1. Microblaze soft IP processor

Both caches are direct-mapped, with 4 word cache
line allowing configurable cache and tag size and user
selectable cacheable memory area. Data cache uses a
write-through policy. The Microblaze core configura-
bility extends to functional unit through user selectable

barrel shifter (BS), hardware multiplier (HWM), di-
vider (HWD) and floating point unit (FPU). The Mi-
croblaze has neither static nor dynamic branch predic-
tion unit and supports branches with delay slots. For
its communication purposes, the Microblaze uses either
a bus or a direct link. The On-Chip-peripheral Bus
(OPB) is part of IBM CoreConnect [21] bus architec-
ture and allows the design of complete single processor
systems with peripherals and user designed hardware
accelerators (e.g. [3]). However, even for a simple em-
bedded processor such as the Microblaze, the OPB bus
is not suitable for multiprocessors designs because of
its lack of scalability. Another approach is provided
by ”Fast Simplex Link” [21] which allows direct con-
nection between embedded processors through FIFO
channels.

Caches Values
Instruction 1K, 2K, 4K, 8K, 16K, 32K, 64K

data 2K,4K,8K,16K,32K,64K

Table 1. Cache memories configurable
values

3.2 Microblaze Fast Simplex Link

The Fast Simplex Link (FSL) [21] is an IP devel-
oped by Xilinx to achieve a fast unidirectional point-
to-point communication between any two components.
The FSL link is implemented as a 32-bit wide FIFO
with configurable depth and width option. The FSL
can be either a master or a slave interface depending
upon its use.

Figure 2. Fast Simplex Link

The Microblaze soft embedded processor allows up
to 8 masters and slaves FSL interfaces. Basic software
drivers are provided to simplify the use of FSL connec-
tion. They consist of read/write routines and control
functions. The read/write routines can be executed in
two different ways: blocking and non blocking mecha-
nism.

Figure 3. Mesh Platform 2x2

3.3 IBM Interconnect

The IBM Coreconnect [21] represents a set of IPs
used to develop SOC devices. It includes the PLB and
OPB bus, a PLB-OPB bridge and various peripherals.

3.4 MPSoC platform description

Our FPGA multiprocessor platform consists of four
Microblaze processors with instruction and data cache
units. These processors are connected with each other
through FSL channels. Each Microblaze is connected,
as shown in Figure 3 to an OPB bus, to use a timer
and an interrupt controller for threads and OS execu-
tion. Microblaze MB0 is connected to the OPB bus
which is connected to a PCI of the host bus (Work
station). This allows the designer to send and receive
data from the host to the multiprocessor system. We
implemented a soft layer of communication in each Mi-
croblaze which performs send and receive functions of
packets. The packets consist of headers representing
the destination and source addresses and the number of
flits in the payload. A wormhole routing algorithm was
used since it uses less memory, making it suitable for
network on chip communication. As it can be seen, a 4
way multiprocessor have been built based on the previ-
ously described soft IPs. The implementation of such
a soft IP multiprocessor on FPGA platform requires a
variable amount of resources as each soft IP compos-
ing the multiprocessor requires a variable amount of
resources depending on the configuration options [21].

Such a soft IP multiprocessor can be easily adapted
to the need of a particular application. However, these
systems for best efficiency and low memory latency re-
quire the use of embedded on chip memories. Unfor-
tunately, embedded memories are scarce resources for
which processors instruction and data cache memories
as well as bus and network on chip FIFO based inter-
faces will compete. This competition is dominated by
the absolute requirement of efficiency in performance,

area and energy consumption [1]. If we focus on cache
and FSL configurability we have for each cache memory
4 possible configurations and for each FSL 11 possible
configurations. The design space associated with those
parameters is 48×118 thus 14,048,223,625,216 different
configurations requiring 26,727,974 years of simulation
for 1 min simulation per configuration.

4 MOCDEX Multi-Objective Design

Space Exploration

4.1 Problem Formulation

The design challenge represented by soft IP based
multiprocessor design is a multiobjective optimization
problem [6]. The multi-objective optimization problem
is the problem of simultaneously minimizing the n com-
ponents (e.g. Chips area, number of execution cycles,
energy consumption), fk , k = 1,..., n of a possibly non
linear function f of a general decision variable x in a
universe U where :

f (x) = (f1 (x) , f2 (x) , ..., fn (x)) (1)

The problem has usually non unique optimal solution
but a set of non dominated alternative solutions known
as the Pareto-optimal set. The dominance is defined as
follows:
Definition 1: (Pareto dominance); A given vector u =
(u1, u2, ..., un) is said to dominate v = (v1, v2, ..., vn)
iff u is partially less than v(up < v) , i.e. ∀i ∈
{1, ..., n}ui ≤ vi and ∃i ∈ {1, ..., n}ui < vi

Definition 2: (Pareto optimality): A solution xu ∈ U

is said to be Pareto-optimal iff there is no xv ∈ U

for which v = f(xv) = (v1, v2, ..., vn) dominates u =
f(xu) = (u1, u2, ..., un).
Pareto-optimal solutions are also called efficient, non-
dominated and non inferior solutions. The correspond-
ing objective vectors are simply called non-dominated.
The set of all non-dominated vectors is known as the
non-dominated set or the tradeoff surface of the prob-
lem.

4.2 Multi-objective Evolutionary algo-
rithms

Multi-objective optimization has not been addressed
properly by traditional optimization techniques (gradi-
ent based, simulated annealing, linear programming)
since most of these techniques are mono-objective.
Extending these techniques through approaches using
aggregation functions does not represent true multi-
objective optimization and does not produce multi-
ple solutions. Multi-objective Evolutionary algorithms

(MOEA) are more appropriate to solve optimization
problems with concurrent conflicting objectives and are
particularly suited for producing Pareto-optimal solu-
tions. Several Pareto-based evolutionary algorithms
have been proposed during the last decade SPEA-
2,PESA and NSGA-II [6, 5] to solve multi-criteria opti-
mization problems. The NSGA-II [7] is an MOEA con-
sidered to outperform other MOEA [19] and is briefly
presented below.

The NSGA-II algorithm runs in time
O(GNlogM−1N) where G is the number of gen-
erations, M is the number of objectives and N is
the population size [19]. In addition, our previous
experience on multi-objective optimization of soft IP
embedded processor emphasizes this choice [11].

4.3 MOCDEX

It is clear that MOEAs such as NSGA-II requires the
evaluation of individuals (MPSOC configurations) with
regard to the 3 objectives considered, BRAM, slices
and number of cycles. Although, BRAM and slices
could be estimated, we advocate the full use of design
automation tools including place and route to access
this information. Indeed, for complex systems on large
platform FPGA, place and route impact can not be
overlooked and can hardly be estimated with sufficient
accuracy to be used in an automatic multi-objective
design space exploration tool. The execution time of
multiprocessor on chip can be obtained through simu-
lation either at RTL level which would be prohibitive
for large design space exploration without massive use
of computing resources (compute farms) or at TLM
level (SystemC) as often advocated [9, 10]. However
although, SystemC level simulation has been regularly
proved to outperform RTL VHDL level simulation, it
does not outperform actual execution on FPGA. We
argue that for large scale MPSOC, platform FPGA
represents an opportunity to both : (1) reduce sim-
ulation time through actual execution and (2) increase
the design space exploration through this reduction of
the evaluation of each MPSoC configuration. Our pro-
posal follows:

MOCDEX

1. Generate random population of MPSOC configu-
rations

2. For all configurations

a. Generate hardware/software platform speci-
fication files

b. Generate through system EDA and IPs
Hw/SW model of the MPSOC

c. Synthesize/place and route MPSOC configu-
ration

d. Record place and route reports

e. Download configuration file on FPGA plat-
form

f. Execute MPSOC configuration and record
execution clock cycles

g. Rank the solution

3. Generate new population using MOEA algorithm

4. If the Pareto front is not satisfactory or the num-
ber of generations is not reached goto 3

5. Final Pareto front MPSOC configurations avail-
able for selection.

As shown in figure 4, both the DSE and physical de-
sign are executed on a host PC while the execution is
achieved on PCI based FPGA platform which commu-
nicates execution results to the host.

Figure 4. MPSoC exploration flow

5 Case study and validation

The previously described design flow have been ap-
plied in the framework of Xilinx FPGA platforms.

5.1 Filtering application

A design of four Xilinx Microblaze processors, com-
municating with eight FSL channels in a mesh topol-
ogy and executing image filtering algorithms was imple-
mented at 100 MHz in Xilinx Virtex-II 8000 device [22].
This application was chosen because it requires exten-
sive data processing and data communication among

Figure 5. Filtering platform

the filters for a good and fast testing of our exploration
framework.

The Figure 5 shows our filtering methodology. As
we can see, the execution is achieved in a pipelined way
where image lines are sent from a processor to another
as soon as the previous processor has finished its work
on it. Obviously, this type of execution makes us save a
significant amount of time and memory which are often
the major constraints for embedded systems in general
and for our platform in particular. Indeed, perform-
ing this task in a pipelined way allows us to have a
maximum of three image lines stored in the associated
processor’s memory rather than the whole image. The
rest of the image lines will enter the FIFOs (FSLs) of
their respective processors one by one. The proces-
sor P0 in Figure 5, receives image data from the host
computer through the PCI bus. Once it receives the
data it instantly send it to the next processor which
is P1. P1 performs a median filtering which results in
noise reduction from the image. It is performed on a
3 by 3 pixel window where the center pixel value is re-
placed by the median of the neighboring pixel values.
This value is obtained by sorting the pixels based on
their numerical values and then replacing the pixel to
be processed by the middle value. The processor P2
fetches the line coming from P1 and performs a con-
servative smoothing on it which is an operation that
preserves the high spatial frequency details. Finally,
the third processor P3 performs a mean filtering which
consists of very simple method used for noise reduction
where the pixel to be processed is replaced by the aver-
age value of its neighbors. We can visibly mention that
the three operations have clearly different behavior and
use various arithmetic operators. Thus the execution
time for each algorithm differs and hence involves an
unequal FIFOs occupancy. We remind that the pur-
pose of our study is to have an optimal distribution
of memory utilization. Therefore, the application used
has to be naturally unbalanced to thoroughly analyze
the problem. At this time, we suppose that the filter
algorithms are optimally implemented and the only im-
provement can be achieved from the effective sizing of

the FIFO interfaces and the different cache memories.

5.2 Exploration Results

For this work we initially executed two explorations
where the first consisted of a population size of 22 indi-
viduals and 10 generations (Figure 6). Figure 7 repre-
sents Pareto solutions for the second exploration where
we attempted to increase the population size to 30 indi-
viduals and the number of generations to 14 in order to
observe the behavior of the evolutionary algorithm for
bigger explorations. From the results of second explo-
ration it is obvious that the algorithm is converging to
optimal solutions showing that larger population size
and generation number increase convergence. From
these two exploration flow executions, we observed that
we have not a very significant variation in the num-
ber of occupied slices, however the variations are much
more significant concerning both the number of occu-
pied BRAMs and the execution time. So we decided
to continue the execution of the proposed exploration
flow in order to see its evolution.

Figure 6. For 10 generations - popsize
= 22

For this second part of the exploration, we fixed
arbitrarily the population size to 30 individuals and
changed the number of generation to 30 and finally
60 generations (Figure 9). From these different figures
we can clearly observe that the NSGA-II evolutionary
algorithm tends to converge to the optimal Pareto so-
lutions front which proves the correct implementation
of the algorithm.

The figures show different execution times for the

Figure 7. For 14 generations - popsize
= 30

same BRAM occupation meaning that using more
BRAM will not systematically result in performance
improvements. However, to achieve better results
BRAM needs to be well distributed among the IPs
where it would be used for getting optimal resource
utilization.

Users willing to invest more on design space explo-
ration by increasing the number of generations and the
population size, might be done in the same way that
parallel computer architecture performance evaluation
studies.

The run time of a single embedded multiprocessor
platform for our chosen application takes 15 minutes
on a 4GB P4 desktop WS and thus 7.5 hours for one
population size of 30 individuals. 99.86% of the time
is spent in the synthesis and Place/Route step. For re-
solving this execution time problem, we currently par-
allelize the NSGA-II evolutionary algorithm by execut-
ing concurrently the SPR step of a whole population on
a workstations network, thus reducing the SPR time of
a generation to the SPR time of one individual.
As an example, the tables 2 and 3 give two different in-
dividuals with there respective FSL and both instruc-
tion and data cache memory size configuration.

The configurations chosen represents respectively
69,64 %, 61,90 % and 64,88 % of all BRAM resources.
11,11 % BRAM reduction is obtained in the 2nd config-
uration for a 0.004 % increase in execution time while
a 6,8 % BRAM reduction is obtained in the 3rd config-
uration for a 0.009 % increase in the execution time.

Figure 8. For 30 generations - popsize
= 30

Figure 9. For 60 generations - popsize
= 30

6 Discussion

The results achieved in the previous section required
the performance evaluation of 3120 different multipro-
cessor on chip configurations. These evaluations have
been cycle-accurate after actual implementation on sin-
gle chip large scale FPGA devices. Contrary to tradi-
tional board based multiprocessor, multiprocessor on
chip are implemented on single chip and due to the
complexity of these architectures and the scale of the
target devices, it is not possible to overlook the im-
pact of place and route on the number of cycles re-
quired for various operations and on the cycle time.
It results from this fact that comparing different mul-
tiprocessors on chip configuration on the number of
execution cycles is meaningless if one does not take
into account the impact of place and route on each
distinct configuration resulting from actual implemen-
tation. From this point mainly two alternatives ex-

Procs FSL1Out FSL2Out D-Cache I-Cache
MB0 2048 2048 1024 4096
MB1 512 512 1024 1024
MB2 2048 512 2048 2048
MB3 1024 1024 4096 4096

Table 2. Pareto cycles: 138,844,064
BRAM:117

Procs FSL1Out FSL2Out D-Cache I-Cache
MB0 2048 128 2048 2048
MB1 256 32 2048 512
MB2 512 16 4069 512
MB3 1024 32 4096 2048

Table 3. Pareto cycles: 138,974,816
BRAM:109

ist:(1) post place and route simulation which will accu-
rately represents the multiprocessor on chip behavior
(2) emulation through direct execution. We conducted
cycle accurate simulations using a powerful multilan-
gage (SystemC, VHDL, Verilog HDL) simulator Mod-
elsim 6.0 [17].Indeed, ModelSIM6.0a SE can handle
large and complex designs and allow their simulation
in a behavioral, post-synthesis and post-Place&Route
modes.Table 4 illustrates the very important time sav-
ing while using direct execution instead of simulation.

Timings

E.A (ms)

Indi. Gene. 190
Obj Functions Eval. 293
Selection 0.116
Crossover 0.033
Mutation 1.118

Synthesis (sec)
Synth. 523.503
P and R 655.174
P/R & Bitgen 797.856

Execution
Simulation 64x64 30 Hours
Direct Exe. 256x256 2796.136 ms

Total
Explor. 60x30
Sim. Lena64x64 2250 Days
Exec. Lena256x256 1.39 Hour

Table 4. Cycle Accurate Simulation vs
Emulation

In order to reach the same speed simulation at this
level of accuracy would require a compute farm (grip
computing) of well over 25,000 workstations.

7 Conclusion

The design space exploration of complex multipro-
cessor on chips can hardly be conducted solely based on
simulation due to prohibitive simulation time.Although
various techniques have been developed to reduce sim-
ulation time they increasingly face a simulation wall
resulting from the exponential increase of Moore’s law.
Reducing the design space by reducing the number of
parameters to be tuned or by reducing the potential
values of these parameters in order to alleviate this
problem obviously prevent numerous potential perfor-
mance improvements resulting in inefficient designs.
In this paper we describe a fully automatic design
space exploration flow for the design of multiproces-
sor on chips which is not based on simulation and
take advantage of the reconfigurable nature of FPGA
devices to evaluate multiprocessor on chips configu-
rations through direct execution on single chip large
scale FPGA. This automatic performance analysis is
conducted in conjunction with chip area evaluation for
each multiprocessor on chip through actual chip imple-
mentation for each multiprocessor configuration. The
performance modeling and evaluation of such parallel
systems is therefore achieved through a multiobjective
design space exploration taking into account both per-
formance and chip area with a 6 order of magnitude
improvement over a cycle accurate simulation.

To the best of our knowledge our work is the first to
address the automatic performance analysis of parallel
systems (i.e. multiprocessors on chip) through multiob-
jective design space exploration with direct execution
on reconfigurable large scale single chip device.

References

[1] A.A.Jerraya and W.Wolf. Multiprocessor Systems-on-
Chips. Morgan Kaufmann, June 2004.

[2] Alpha-Data. Adm-xrc-ii pci mezzanine card. Available
on: http://www.alpha-data.com/adm-xrc-ii.htm.

[3] R. Benmouhoub, I. Aouadi, and O. Hammami. System
on programmable chip plateform based design of jpeg-
2000 entropy coder. In Workshop on synthesis and
system integration of mixed information technologies
(SASIMI’04), pages 103–106, Oct 2004.

[4] C.Matthew and A.George. Parallel simulation of chip-
multiprocessor architectures. In ACM Trasaction on
Modeling and Computer Simulation, volume 12, pages
176–200, July 2002.

[5] C. A. C. Coello. An updated survey of ga-based mul-
tiobjective optimization techniques. In ACM Comput-
ing Surveys, pages 109–143, June 2000.

[6] C. A. C. Coello, D. V. Veldhuizen, and G. B. Lamont.
Evolutionary Algorithms for Solving Multi-Objective

Problems, volume 5. Genetic Alrorithms and Evolutiu-
nary Computation Kluwer Academic Publishers, May
2002.

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:nsga-
ii. In IEEE Transaction on Evolutionary Computation,
volume 6, pages 182–197, Apr 2002.

[8] D.E.Culler, A.Gupta, and J.P.Singh. Parallel Com-
puter Architecture: A Hardware/Software Approach.
Morgan Kaufmann, 1997.

[9] F.Fummi, S.Martini, G.Perbellini, and M.Poncino.
Iss-systemc integration for the co-simulation of multi-
processor soc. In DATE, 2004.

[10] F.Ghenassia. Transaction-Level Modeling with Sys-
temC TLM Concepts and Applications for Embedded
Systems. Springer, 2005.

[11] K.Ghali and O.Hammami. Embedded processor char-
acteristics specification through multiobjective evolu-
tionary algorithms. In IEEE International Symposium
on Industrial Electronics, volume 2, pages 907–912,
June 2003.

[12] L.A.Barroso, S.Iman, M.Dubois, and K.Ramamurthy.
Rpm: a rapid prototyping engine for multiprocessor
systems. In Computer, volume 28, pages 26–34, Feb
1995.

[13] L.Cai and D.Gajski. Transaction level modeling: an
overview. In Hardware/Software Codesign and System
Synthesis, pages 19–24, Oct 2003.

[14] M.D.Nava, P.Blouet, P.Teninge, M.Coppola, T.Ben-
Ismail, S.Picchiottino, and R.Wilson. An open plat-
form for developing multiprocessor socs. In IEEE
Computer, volume 38, pages 60–67, July 2005.

[15] M.Dubois, J. Jeong, Y. H. Song, and A.Moga. Rapid
hardware prototyping on rpm-2. In Design Test of
Computers, IEEE, volume 15, pages 112–118, july-
Sept 1998.

[16] M.Keating and P.Bricaud. Reuse Methodology Manual
for System-On-A-Chip Designs. Springer, 2002.

[17] ModelSim. Modelsim 6.0a se. Available on:
http://www.model.com/.

[18] J. M.Paul, D. E.Thomas, and A. S.CASSIDY. High-
level modeling and simulation of single-chip pro-
grammable heterogeneous multiprocessors. In ACM
Transactions on Design Automation of Electronic Sys-
tems, volume 10, pages 431–461, July 2005.

[19] M.T.Jensen. Reducing the run-time complexity of
multiobjective eas: The nsga-ii and other algorithms.
In 5, editor, IEEE Transactions on Evolutionary Com-
putation, volume 7, pages 305–515, October 2003.

[20] P. Rashinkar, P. Paterson, and L. Singh. System-
On-a-Chip Verification, Methodology and techniques.
Kluwer Academic Publishers, 2001.

[21] Xilinx. Embedded system tools guide. Available on:
http://www.xilinx.com/ise/embedded/edk docs.htm.

[22] Xilinx. Virtex-ii data sheet and user guide. Available
on: http://www.xilinx.com/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

