
Support for Adaptivity in ARMCI Using Migratable Objects

Chao Huang, Chee Wai Lee, Laxmikant V. Kalé

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

{chuang10, cheelee, kale}@cs.uiuc.edu

Abstract

Many new paradigms of parallel programming have
emerged that compete with and complement the standard
and well-established MPI model. Most notable, and suc-
cessful, among these are models that support some form of
global address space. At the same time, approaches based
on migratable objects (also called virtualized processes)
have shown that resource management concerns can be sep-
arated effectively from the overall parallel programming ef-
fort. For example, Charm++ supports dynamic load bal-
ancing via an intelligent adaptive run-time system. It is
also becoming clear that a multi-paradigm approach that
allows modules written in one or more paradigms to coexist
and co-operate will be necessary to tame the parallel pro-
gramming challenge.

ARMCI is a remote memory copy library that serves as
a foundation of many global address space languages and
libraries. This paper presents our preliminary work on inte-
grating and supporting ARMCI with the adaptive run-time
system of Charm++ as a part of our overall effort in the
multi-paradigm approach.

1 Introduction

Parallel programming is certainly more difficult than se-

quential programming. The message passing paradigm, and

MPI, a standard interface for it, is widely used. On cer-

tain shared memory machines, OpenMP is also used. How-

ever, it is believed that one needs to raise the level of ab-

straction in parallel programming to conquer its complexity,

and to make it accessible for the large software community,

whether in science and engineering applications or beyond.

“Raising the level of abstraction” connotes automating

more of the functions a parallel programmer has to carry

This work was supported in part by DOE Grant B341494 and B505214, and

by the National Science Foundation through TeraGrid resources at NCSA.

out. One direction that we are pursuing to this end is that

of adaptive run-time systems empowered by a “migratable

objects” (also called process virtualization) programming

paradigm. The basic idea (as explained in section 2 below)

is simple: require the programmer to express the decompo-

sition (of data and work), and automate the mapping of data

and work to processors and adaptive resouce management.

In this approach, the programmer decomposes the computa-

tion into a large number of “objects” according to their log-

ical meanings, regardless of the number of processors. The

objects may be C++ objects, as in Charm++, or migratable

user-level threads, as in Adaptive MPI. The number of ob-

jects is typically much larger than the number of processors;

this creates a degree of freedom for the run-time system to

assign the objects to processors, and to change this assign-

ment as needed. Because the run-time system schedules

the objects and mediates communication between them, it

can automatically instrument their execution, and measure

the computation and communication patterns. Since these

patterns tend to persist in science and engineering applica-

tions, accurate measurement-based load balancing becomes

possible. Thus, this approach raises abstraction level by au-

tomatic run-time optimizations that the programmer would

otherwise have carried out explicitly.

Other ways of raising the abstraction level involve

co-ordination and information-sharing mechanisms among

processes. MPI-style message passing is a primitive method

of coordination. Charm++ provides asynchronous method

invocation as another, also primitive but distinct, coordina-

tion mechanism. In addition, paradigms based on global ad-

dress space such as Global Arrays[19], UPC[5], Co-array-

Fortran[20] provide a data-sharing mechanism that can sim-

plify programming for at least some classes of applications

and algorithms. Multi-phase shared arrays[3] is a model we

developed that attempts to derive the expressiveness bene-

fits of shared address space, while limits the kind of shar-

ing that can be done so that it can be efficiently supported

without race conditions. Other languages, libraries and

programming paradigms such as HPF (High Performance

1-4244-0054-6/06/$20.00 ©2006 IEEE

Fortran)[15], ZPL[17], BSP[25] and even Linda[7], provide

a wide variety of programming abstractions.

Each of these models are useful and expressive in spe-

cific contexts. Often one can find example applications or

application kernels where one of the paradigms is a perfect

fit. Ideally, we would like to support multiple parallel pro-

gramming paradigms in a single application. For example,

each module may be programmed in a paradigm most suited

to it, or one that its programmer is most proficient in. Alter-

natively, some modules may be programmed using multiple

programming paradigms.

Such multiparadigm programming must be supported by

concurrent composibility: the ability to automatically inter-

leave the execution of modules such that idle time in one

can be overlapped by useful computation in another. With-

out this, one either loses performance or (more likely) en-

courages programmers to break abstraction boundaries for

the sake of performance. For this reason, as well for the

mere ability to allow co-existence of multiple paradigms in

a single application, the paradigms (languages and libraries)

must share a common run-time. A common run-time can

also provide common functions that are needed across mul-

tiple paradigms, such as checkpointing support.

As a result, we are pursuing an approach where a com-

mon run-time based on migratable objects and user-level

threads is used to support multiple parallel programming

paradigms simultaneously. This combines the benefits of

our adaptive run-time system, the concurrent composibil-

ity induced by message-driven execution in the run-time

system, and benefits of multi-paradigm programming (i.e.

the ability to choose the best paradigm for each module

separately, for example). We have already implemented

Charm++ and Adaptive MPI in this framework, along with

some other mini-languages such as MSA[3] and structured-

dagger.

This paper outlines our preliminary work on integrat-

ing global-address-space programming models within this

framework. We select ARMCI, which is a foundation

of some other global-address-space approaches such as

GA[19], Co-Array Fortran Compiler[4] and Adlib[2], for

our first implementation. We will show how we “virtu-

alized” (i.e. supported via our virtual-process approach)

ARMCI, and what benefits derive from such an implemen-

tation. We begin with a description of benefits of virtualiza-

tion and a review of ARMCI and the programming model it

engenders.

2 Adaptive Run-Time System

In the programming paradigm supported by the Adaptive

Run-Time System (ARTS)[11], the programmer divides the

parallel program into a large number of partitions, indepen-

dent of the number of physical processors. The partitions

of work, which can be viewed as virtual processes (VPs),

are then implemented using migratable objects and mapped

onto the processors by the system. The programmer, not be-

ing constrained by physical processors, is able to focus on

the interaction between the work partitions and better ex-

pression of the parallel algorithm. On the other hand, the

ARTS can perform efficient resource management with the

large number of migratable objects (VPs). In this section

we highlight several of the many benefits that accrue from

this programming paradigm with ARTS (See Figure 1).

User View

System Implementation

Figure 1. Adaptive Run Time System with Mi-
gratable Objects

2.1 Adaptive Overlap

Consider the scenario illustrated in Figure 2 (This exam-

ple is taken from [11]). There are three parallel modules A,

B and C spread across all processors. A must call B and

C, but there is no dependence between B and C. In tradi-

tional MPI style programming model, the programmer has

to choose one module between B and C to call from A first

on all processors. Only when the first chosen module re-

turns can A call the remaining one on all processors. This

model can be inefficient because when one module idles

the CPU, for example, when waiting for communication to

complete, other modules are not allowed to take over and

do useful computations, even though there is absolutely no

dependence between the modules.

Figure 2. Adaptive Overlapping

With ARTS support, A can invoke B on all the VPs, ini-

tiating computation and sending out messages, and since

there is no dependence between B and C, A can also start

off C in a similar fashion, and thereby modules B and C

can interleave their execution. When one module blocks

due to communication or load imbalance, the other module

can automatically overlap the idle time with computation,

based on the availability of data, as illustrated in Figure 2.

With non-blocking calls and careful programming, the pro-

grammer could achieve the same effects with MPI, but the

price is additional programming complexity and a breach of

modularity.

2.2 Automatic Load Balancing

One of the most prominent benefits of ARTS with mi-

gratable objects is the capability of dynamic load balancing

by migrating objects across processors. The challenge is for

the ARTS to intelligently determine an effective remapping

of objects for the future. Before describing our load balanc-

ing scheme, we introduce an important observation called

the principle of persistence. Like the principle of locality,

the principle of persistence is an empirical heuristic about

parallel program behaviors. We observe that for most par-

allel programs expressed in terms of VPs, the computation

loads and communication patterns tend to persist over time.

This heuristic applies to many programs with dynamic be-

havior, including those using adaptive mesh refinement with

abrupt but infrequent changes, and those simulating molec-

ular dynamics with slow and gradual changes over time.

Based on the principle of persistence, our ARTS uses a

measurement based load balancing scheme. The load bal-

ancer automatically collects statistics on each object’s com-

putation loads and communication patterns, and using the

collected load database, the ARTS decides on when and

where to migrate the objects following a load balancing

strategy. A variety of such strategies have been developed

for applications with different dynamic behaviors. Some

strategies are centralized, others fully distributed. Some use

only computation load when making a decision, and others

take into account communication patterns and even topol-

ogy of the platform. Our previous work on NAMD[14]

demonstrates the significant benefits of automatic load bal-

ancing in real-life applications.

2.3 Automatic Checkpointing

Checkpointing for an application run on an ARTS is as

simple as migrating the objects (VPs) onto the target media:

either hard disk drive[9] or memory on peer nodes[27]. It

is important to note that the checkpoint/restart mechanism

in the ARTS has benefits beyond fault tolerance. Imagine

if we lose 1 node out of a 1024-node partition in the mid-

dle of a long execution. We can immediately work around

this failure and restart the checkpointed program, with the

same number of VPs, but on 1023 physical processors. This

concept can be extended to a shrink/expand feature, which

allows an adaptive application to shrink or expand the set of

physical nodes on which it runs at run time.

2.4 Communication Optimizations

The Charm++ ARTS is capable of observing the commu-

nication patterns, and consequently able to optimize com-

munication performance by switching different communi-

cation algorithms automatically. For instance, if we keep

track of information like the number of physical proces-

sors and VPs involved in collective communications and the

amount of data transferred through the links, we are able to

choose the best suited collective communication strategy.

Research work is being done to make the ARTS “smarter”,

able to dynamically learn and shift to the most suitable strat-

egy.

2.5 Software Engineering Benefits

An ARTS with migratable objects helps programmers to

practice good software engineering disciplines, such as high

cohesion and low coupling. High cohesion means any mod-

ule in a program should be understandable as a meaningful

unit and components of a module should be closely related

to one another. Low coupling requires that different mod-

ules be understandable separately and have low interaction

with one another. With a traditional processor-centric pro-

gramming model like MPI, it is often almost inevitable that

programmers will violate these principles; whereas with

virtualized processes, programmers are given the freedom

to partition and structure the parallel application in accor-

dance with good software engineering principles. For ex-

ample, a physical simulation is performed on a structured

cube-shaped grid. Programming traditional MPI typically

involves multi-blocking part of the grid onto one processor,

sacrificing the cohesion of the program. In the ARTS, pro-

grammers can partition the work on a cubed number of vir-

tual processes that can naturally express the algorithm, and

lets the ARTS efficiently manage resources such as physical

processors and interconnect.

3 Virtualized Multi-Paradigm Parallel Pro-
gramming

As suggested in the introduction, message-driven exe-

cution creates an opportunity for effective multi-paradigm

programming. The common scheduler on each processor,

which is needed anyway to handle multiple work units (ob-

jects in Charm++) assigned to the processor, allows it to

to automatically interleave execution of modules written

in different paradigms. Of course, this requires that each

paradigm be implemented the common run-time system.

Interoperability of multiple paradigms itself compels such

a common run-time system.

To this end, we have broadened the run-time system in

Charm++. In fact, the common components needed in the

run-time system were separated early on into a layer called

Converse[12]. Converse provides a machine independent

interface to the capabilities offered by a parallel machine

and the local operating system. In addition to communi-

cation, this includes an implementation of non-preemptive

user-level threads.

Typical thread packages combine functionality of cre-

ation of threads, scheduling of threads, and synchronization

between them. Converse’s threads factor out this function-

ality into separate components, to allow the run-time system

direct control over scheduling. The core thread layer only

provides the capability to encapsulate a stack and current set

of registers, including the program counter, and the ability

to switch contexts from one thread to the other. The Con-

verse (and therefore Charm++) scheduler manages threads.

In other words, the scheduler’s queue includes a general

form of “messages” each with its own handler, and the ready

threads simply are a special case of such messages. This

design has proved to be extremely flexible to support many

different paradigms and libraries.

Charm++’s abstraction of “object-arrays”, which is a

collection of objects indexed by any general index struc-

ture (including strings, bit-vectors and multi-dimensional

sparse index sets), turn out to provide a basic functional-

ity needed by most programming paradigms. For example,

MPI processes are indexed by their rank; so implementing

them using chare-arrays allows us to reuse the code for lo-

cating objects, redirecting messages to them after migration

(if necessary) and maintaining tables of known-locations.

As a result, Charm++, rather than Converse, is used as a

common layer on which to implement other languages and

libraries. This also simplifies implementation of load bal-

ancing and other run-time functionalities.

The resultant architecture we use (and plan to use fur-

ther) for multi-paradigm programming is shown in Figure

3. The Charm++ run-time system is directly used to imple-

ment language and library run-times. For example, in our

MPI implementation, each MPI “process” is implemented

as a user-level thread embedded inside a Charm++ object.

When it sends a message to “process x”, the call goes to

Charm++ run-time, which sends the message to Chare x of

the appropriate object array, where it is delivered to the MPI

run-time.

In this architecture, common services are implemented

via callbacks to the RTS’s of specific paradigms (and to

the application). For example, when the common adap-

tive RTS decides to migrate an entity, it uses a callback into

the paradigm’s RTS to ask it to pack-up the entity and then

installs it on the remote processor chosen by the common

RTS. Check-point and restart are also implemented by sim-

ilar callbacks. As a result, with a small effort while porting

the RTS of a paradigm to the framework, one can easily

provide such adaptive functionalities to the new paradigm.

Thus, for example, extending an MPI implementation (in

isolation) to have the ability to shrink and expand the sets

of processors used by an MPI application may require much

effort, but this becomes quite easy if one leverages the ca-

pabilities of the common Adaptive RTS.

Figure 3. Architecture of Adaptive Run-Time
System Supporting Multi-Paradigm Program-
ming

3.1 Charm++ and TCharm

Charm++[13] is our implementation of an ARTS. It is a

portable C++-based programming language. In Charm++,

migratable objects are known as chares and are imple-

mented as C++ objects with special entry methods that

are invoked asynchronously from other chares. Charm++

makes use of run-time schedulers to determine which chare

gains control on a processor via message-driven execution.

In employing the technique of message-driven execution,

the key feature of adaptive overlap in ARTS is achieved as

no chare can hold a processor idle while it is waiting for a

message. Charm++ has also been developed with many fea-

tures of a full-fledged ARTS in mind, in particular a power-

ful automatic load balancing framework [26], adaptive com-

munication optimization framework [16], and support for

multiple fault-tolerance and recovery schemes[9, 27, 23].

A number of major real-world scientific applications

are implemented using Charm++. NAMD[21], a paral-

lel classical molecular dynamics application was awarded

the Gorden Bell Award, having achieved 1.08 TFlops scal-

ing to 3000 processors[22] on Pittsburgh Supercomputing

Center’s Lemieux machine. LeanCP[24] is an application

that employs the Car-Parrinello ab initio molecular dynam-

ics method and is the result of a close collaborative ef-

fort. ParallelGravity[8] is a scalable cosmological simula-

tion used for the study of formation of galaxies and plane-

tary systems.

Threaded Charm++ or TCharm is a framework built on

top of Charm++ that provides common run-time support for

migratable and light-weight threads. When another frame-

work needs thread support, the programmer simply “binds”

the VPs from that framework onto a set of TCharm threads.

The virtual processes then use the bound thread as needed,

and the ARTS always migrates the bound VP and thread to-

gether. TCharm also provides language-neutral facilities for

combining multiple application frameworks within a single

program. This is achieved by allowing VPs from multiple

frameworks to be attached onto the same set of TCharm

threads. For example, one can use TCharm to create a Fi-

nite Element Framework application that also uses Adaptive

MPI to communicate between Finite Element chunks.

3.2 Example: Adaptive MPI

Adaptive MPI (AMPI) [10] is our effort to integrate and

support MPI with the ARTS. AMPI implements migratable

virtual processes, several of which can be assigned to one

physical processor. This efficient virtualization provides a

number of benefits described in Section 2, and is widely

portable. AMPI started as a proof-of-principle project to

demonstrate that message passing models can be effectively

supported in an ARTS such as Charm++; by now AMPI

is already a mature system that can be and has been used

in applications, especially those with dynamic nature, and

thus can benefit from its adaptive features. Our goal is to

achieve the same benefits for the adaptive implementation

of ARMCI, and thereupon support some of the important

global address space languages and libraries with Charm++

ARTS.

4 Implementation of ARMCI

ARMCI[18] is a multi-platform library for high-

performance remote memory copy. It provides an interface

for operations in the following three categories:

• data transfer operations including put, get and accumu-

late, in both blocking and nonblocking modes

• synchronization operations - local and global fence

and atomic read-modify-write, mutex operations

• utility operations for allocation and deallocation of

memory and error handing

ARMCI has been used in several global address space lan-

guages and parallel distributed-array libraries and compiler

run-time systems including Global Array[19] and Co-Array

Fortran Compiler[4]. Compared with traditional message

passing paradigm, ARMCI has a few advantages in pro-

gramming models that deal with distributed arrays.

Firstly, ARMCI’s one-sided communication paradigm

separates data transfer from synchronization between the

process that needs the data and the process that owns the

data. MPI-2[6] does provide one-sided communication in-

terface, but its active target synchronization “requires the

user to provide complete information on the communica-

tion pattern, at each end of a communication link.” This

means the users are expected to provide more information

than needed by the underlying RDMA calls. One-sided op-

erations in ARMCI, however, do not require explicit coop-

eration on the remote process, and hence significantly sim-

plify implementation of parallel algorithms accessing dis-

tributed and irregular data structures remotely.

Secondly, ARMCI provides a well designed interface for

non-contiguous data accessing that generalizes data transfer

patterns of typical distributed array operations found in sci-

entific applications. The vector interface expresses gather

and scatter patterns well, and the strided interface naturally

specifies copying a section of multi-dimensional arrays.

The following subsections describe our implementation

of ARMCI.

4.1 Virtualizing ARMCI Processes

Virtual ARMCI processes are implemented with user-

level TCharm threads embedded in migratable objects.

Each VP encapsulates the state of an ARMCI process re-

quired for operations, such as the memory pointers main-

tained remote copy. As described in Section 3.1, each VP

is bound to a user-level thread so that they always migrate

together during load balancing.

4.2 Memory Allocation via Isomalloc

ARMCI provides a collective memory allocation scheme

for use with copy operations. The collective call returns

to every ARMCI VP an array of pointers to the newly al-

located memory on each ARMCI VP. The user then uses

these pointers to determine the memory locations for copy

operations. In general, to support adaptivity and migration

under this scheme for memory allocation, the system would

have to broadcast the new pointer locations for each allo-

cated memory block of each migrated ARMCI VP to every

other ARMCI VP.

We have chosen to implement this memory allocation

scheme using isomalloc [1]. Isomalloc is a technique for

allocating heap memory that resides in the same virtual ad-

dress location on each processor. Each VP is effectively

given a band of the virtual address space from which heap

memory can be allocated. In such a scenario, when a VP

is migrated to a new processor, the collectively allocated

memory is copied into the same virtual memory address

space and their respective pointers need not change.

Isomalloc makes this collective memory allocation easy

to maintain even in the presence of migration; there is no

need to update the pointer values stored on all other ARMCI

VPs when one VP migrates to a new processor. Of course,

a major limitation of this technique is the amount of virtual

memory space available to the heap of each VP. We expect,

however, that the general move to 64-bit addressing in most

modern machines would allow this technique to work effec-

tively, even for supporting a very large number of VPs.

4.3 Remote Memory Copy through
Threaded Message-Driven Execution

Remote memory copy is implemented as Charm++ mes-

sages to other VPs. The message-driven execution model

allows for a natural implementation of non-blocking calls.

Blocking calls are implemented by suspending the calling

TCharm thread until a response is received from the target

thread.

The underlying Charm++ run-time is also now in a posi-

tion to intelligently manage messages to optimize the result-

ing communication between VPs. For example, if a piece

of data is intended for another VP that also resides on the

same processor, that data can merely be copied rather than

pushed through the Charm++ message scheduler.

5 Performance Evaluation

In this section we show some preliminary results from

our benchmarks. Our main benchmarks are the ones in-

cluded in the ARMCI distribution: perf.c for contigu-

ous and strided copy performance, and lu.c that imple-

ments LU algorithm and lu-block.c for LU block dis-

tribution. All of our experiments are performed on NCSA’s

IA-64 TeraGrid Cluster with 888 dual Intel Itanium 2 nodes

and Myrinet network.

5.1 Virtualization Overhead

In this section we show the overhead incurred by virtu-

alization. Because our adaptive implementation of ARMCI

uses messages to implement memory copy, and our current

implementation does not make full use of the native RDMA

mechanism available, we do not expect to have better per-

formance than the native implementation now. The short

message latency of the adaptive implementation is 28µs for

get and 27µs for put, about 12µs slower than the native

implementation. This is due to an extra 70 byte ARMCI

message header and a 2-4 microsecond increase in thread

context switch overhead as well as scheduling overhead.

For long messages, data in Figures 4 and 5 show that we

pay the overhead of extra message copying in order to sup-

port migratable objects. Ongoing work is aimed at reducing

the overhead for both scenarios, and it is more important to

note that adaptive implementation is expected to outperform

native implementation when its features such as automatic

adaptive overlap and dynamic load balancing are utilized in

real applications.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Byte

Contiguous Get

Adaptive
Native

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Byte

Contiguous Put

Adaptive
Native

Figure 4. Contiguous Copy Performance of
Adaptive and Native Implementations

5.2 On-Disk Checkpoint/Restart

Charm++ run-time system includes a checkpoint/restart

mechanism[9] as an effort toward fault tolerance. It pro-

vides the user with the capability to take snapshots of an

ARMCI program, either periodically or on command. The

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Byte

Strided Get

Adaptive
Native

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Byte

Strided Put

Adaptive
Native

Figure 5. Strided Copy Performance of Adap-
tive and Native Implementations

checkpoint mechanism is able to intelligently, sometimes

with guidance from the user, save only the data essential to

resurrection of the program on occurrence of system failure.

P Total Data Time Bandwidth

(MB) (ms) (MB/s)

2 20.05 221 90.8

4 22.29 249 89.7

8 26.50 303 87.6

16 35.43 366 96.9

32 53.27 533 100.0

Table 1. Checkpoint Overhead

Data in Table 1 shows the on-disk checkpoint overhead

of the LU application written in ARMCI, on 2 to 32 phys-

ical processors. The total amount of data varies, but we

observe that the total bandwidth for disk I/O does not scale.

This implies that in this experiment setting, the bottleneck

is in accessing the network file system. If the machine al-

lows the program to checkpoint to local disk, the checkpoint

overhead should decrease almost linearly with the number

of processors increasing, as shown in previous work[9].

To avoid disk I/O bottleneck, the programmer can choose

the in-memory checkpoint mechanism[27], which logs the

checkpointed data in memory on peer processors. This al-

ternative is advantageous on platforms where NFS disk I/O

is limiting factor, especially for applications with a mod-

erate memory footprint. Performance evaluation of the in-

memory checkpoint approach for ARMCI applications will

be carried out in the future.

5.3 LU Performance

Figure 6 visualizes some preliminary results from per-

formance scaling runs of the LU and LU-Block application

included in the ARMCI distribution. The Adaptive runs are

done with the number of VPs chosen to give the best per-

formance (in this particular case, typically with 32 or 64

VPs). From the figure we observe that the adaptive imple-

mentation, although starting off slower than the native im-

plementation, continues to scale well until the point where

the native implementation cannot. While the exact reason

for the performance of the native implementation to dete-

riorate exceptionally at larger numbers of processors is yet

to be investigated, this benchmark shows that the adaptive

implementation is able to perform comparably, if not better,

without even taking advantage of other features like auto-

matic load balancing and communication optimization.

6 Discussion and Conclusion

We have presented an adaptive implementation of

ARMCI on top of Charm++. We implement virtual ARMCI

processes on migratable objects bound with light-weight

user-level threads. Several of these virtual processes can

be mapped to one physical processor. This efficient virtual-

ization provides a number of benefits, including the ability

to automatically overlap computation and communication,

automatically load balance arbitrary computations, emulate

large machines on small ones, tolerate faults at the system

level, and respond to a changing physical machine.

Adaptive implementation of ARMCI is an active re-

search project. As planned future work, we will further

optimize the point-to-point performance by shrinking mes-

sage header and using RDMA operations where available.

We will also help port global address space languages and

libraries, such as Co-Array Fortran Compiler onto our im-

plementation. We then plan to explore applications that use

ARMCI that can benefit from automatic dynamic load bal-

ancing.

 1000

 10000

 100000

 1 2 4 8 16 32 64

T
im

e
(m

s)

P

LU Scaling

Native
Adaptive

 1000

 10000

 100000

 1 2 4 8 16 32 64

T
im

e
(m

s)

P

LU-Block Scaling

Native
Adaptive

Figure 6. Performance Scaling of Adaptive
and Native Implementations

References

[1] G. Antoniu, L. Bouge, and R. Namyst. An efficient and

transparent thread migration scheme in the PM2
runtime

system. In Proc. 3rd Workshop on Runtime Systems for Par-

allel Programming (RTSPP) San Juan, Puerto Rico. Lecture

Notes in Computer Science 1586, pages 496–510. Springer-

Verlag, April 1999.

[2] B. Carpenter, G. Zhang, and Y. Wen. NPAC PCRC runtime

kernel definition. Technical Report CRPC-TR97726, Center

for Research on Parallel Computation, 1997.

[3] J. DeSouza and L. V. Kalé. MSA: Multiphase specifically

shared arrays. In Proceedings of the 17th International

Workshop on Languages and Compilers for Parallel Com-

puting, West Lafayette, Indiana, USA, September 2004.

[4] Y. Dotsenko, C. Coarfa, and J. Mellor-Crummey. A multi-

platform co-array fortran compiler. In Proceedings of the

13th International Conference of Parallel Architectures and

Compilation Techniques (PACT 2004), Antibes Juan-les-

Pins, France, October 2004.

[5] T. El-Ghazawi and F. Cantonnet. Upc performance and po-

tential: a npb experimental study. In Supercomputing ’02:

Proceedings of the 2002 ACM/IEEE conference on Super-

computing, pages 1–26, Los Alamitos, CA, USA, 2002.

IEEE Computer Society Press.

[6] M. P. I. Forum. MPI-2: Extensions to the message-passing

interface, 1997. http://www.mpi-forum.org/docs/mpi-20-

html/mpi2-report.html.

[7] D. Gelernter, N. Carriero, S. Chandran, and S. Chang. Par-

allel programming in Linda. In International Conference on

Parallel Processing, pages 255–263, Aug 1985.

[8] F. Gioachin, A. Sharma, S. Chackravorty, C. Mendes, L. V.

Kale, and T. R. Quinn. Scalable cosmology simulations on

parallel machines. In 7th International Meeting on High Per-

formance Computing for Computational Science, July 2006.

[9] C. Huang. System support for checkpoint and restart of

charm++ and ampi applications. Master’s thesis, Dept. of

Computer Science, University of Illinois, 2004.

[10] C. Huang, G. Zheng, S. Kumar, and L. V. Kalé. Perfor-

mance evaluation of adaptive MPI. In Proceedings of ACM

SIGPLAN Symposium on Principles and Practice of Parallel

Programming 2006, March 2006.

[11] L. V. Kalé. The virtualization model of parallel program-

ming : Runtime optimizations and the state of art. In LACSI

2002, Albuquerque, October 2002.

[12] L. V. Kale, M. Bhandarkar, N. Jagathesan, S. Krishnan, and

J. Yelon. Converse: An Interoperable Framework for Paral-

lel Programming. In Proceedings of the 10th International

Parallel Processing Symposium, pages 212–217, April 1996.

[13] L. V. Kale and S. Krishnan. Charm++: Parallel Program-

ming with Message-Driven Objects. In G. V. Wilson and

P. Lu, editors, Parallel Programming using C++, pages

175–213. MIT Press, 1996.

[14] L. V. Kalé, S. Kumar, G. Zheng, and C. W. Lee. Scaling

molecular dynamics to 3000 processors with projections: A

performance analysis case study. In Terascale Performance

Analysis Workshop, International Conference on Computa-

tional Science(ICCS), Melbourne, Australia, June 2003.

[15] C. Koelbel, D. Loveman, R. Schreiber, G. Steele Jr., and

M. Zosel. The High Performance Fortran Handbook. MIT

Press, 1994.

[16] S. Kumar. Optimizing Communication for Massively Paral-

lel Processing. PhD thesis, University of Illinois at Urbana-

Champaign, May 2005.

[17] C. Lin and L. Snyder. ZPL: An Array Sublanguage. In

Languages and Compilers for Parallel Computing (Proceed-

ings of the Sixth International Workshop), pages 96–114.

Springer-Verlag, 1994.

[18] J. Nieplocha and B. Carpenter. Armci: A portable remote

memory copy library for distributed array libraries and com-

piler run-time systems. J. Rolim eat al. (eds.) Parallel and

Distributed Processing, Springer Verlag LNCS 1586, 1999.

[19] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global ar-

rays: A nonuniform memory access programming model for

high-performance computers. J. Supercomputing, (10):197–

220, 1996.

[20] Numrich and Reid. Co-Array Fortran for parallel program-

ming. ACM Fortran Forum, 17(2):1–31, 1998.

[21] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhor-

shid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schul-

ten. Scalable molecular dynamics with NAMD. Journal of

Computational Chemistry, 26(16):1781–1802, 2005.

[22] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé. NAMD:

Biomolecular simulation on thousands of processors. In

Proceedings of SC 2002, Baltimore, MD, September 2002.

[23] Sayantan Chakravorty, Celso Mendes and L. V. Kale. Proac-

tive fault tolerance in large systems. In HPCRI Workshop in

conjunction with HPCA 2005, 2005.

[24] R. V. Vadali, Y. Shi, S. Kumar, L. V. Kale, M. E. Tucker-

man, and G. J. Martyna. Scalable fine-grained paralleliza-

tion of plane-wave-based ab initio molecular dynamics for

large supercomputers. Journal of Comptational Chemistry,

25(16):2006–2022, Oct. 2004.

[25] L. Valiant. A Bridging Model for Parallel Computation.

Communications of the ACM, 33(8), August 1990.

[26] G. Zheng. Achieving High Performance on Extremely Large

Parallel Machines: Performance Prediction and Load Bal-

ancing. PhD thesis, Department of Computer Science, Uni-

versity of Illinois at Urbana-Champaign, 2005.

[27] G. Zheng, L. Shi, and L. V. Kalé. Ftc-charm++: An

in-memory checkpoint-based fault tolerant runtime for

charm++ and mpi. In 2004 IEEE International Conference

on Cluster Computing, San Dieago, CA, September 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

