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Abstract

Dynamic programming (DP) is a commonly used
technique for solving a wide variety of discrete opti-
mization problems, which have different variants of dy-
namic programming formulation. This paper inves-
tigated one important DP formulation, which called
nonserial polyadic dynamic programming formulation
and time complexity is O(n3). We exploit the prop-
erty of the algorithm to develop a high performance im-
plementation using the combination of cache-oblivious
and cache-conscious strategy. The efficiency in our im-
proved algorithm comes from two sources: reducing the
number of cache misses and TLB misses. Experiments
on three modern computing platforms show a perfor-
mance improvement of 2-10 times over a standard im-
plementation of DP formulation.

1 Introduction

The processor-memory gap has been extensively in-
vestigated for scientific computing such as linear al-
gebra [1] and FFT [2]. However, optimizing cache
performance to achieve better overall performance is
a difficult problem. Whaley and Dongarra discuss op-
timizing the widely used Basic Linear Algebra Subrou-
tines(BLAS) using cache conscious strategy [3]. Mod-
ern microprocessors are including deeper and deeper
memory hierarchies to hide the cost of cache misses.
Different miss penalties for each level of the memory
hierarchy as well as the TLB also play an important
role in the effectiveness of cache friendly optimizations.
These miss penalties vary from processor to proces-
sor and can cause large variations in experimental re-
sults. Another approach to improving the performance
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of the cache is to design cache oblivious algorithms,
which is explored by Frigo, et al. [4]in to discusses
the cache performance of cache oblivious algorithms
for matrix multiplication/transpose, FFT, and sort-
ing. Using cache oblivious approach, the algorithms
do not ignore the presence of a cache, but rather they
use recursion to improve performance regardless of the
size or organization of the cache. By doing this, they
can improve the performance of the algorithm without
tuning the application to specifics of the host machine.
Although much of the focus of cache optimization has
been on dense linear algebra problems, there has also
been some work that focuses on irregular computa-
tion problem such as graph algorithm and optimization
problems [5] [6][7].

Dynamic programming (DP) is a commonly use
technique for solving a wide variety of discrete opti-
mization problems such as scheduling, string-editing,
packaging and inventory management. More recently,
it has found applications in bioinformatics in the
Smith-Waterman algorithm [8] for matching sequences
of amino-acids and necleotides and Zuker [9] algorithm
for predicting RNA secondary structures. Grama, et
al. model the dependencies in DP formulation as a di-
rected graph and classify them into four classes of DP
formulation [10]: serial monadic (single source shortest-
path problem, 0/1 knapsack problem), serial polyadic
(Floyd all pairs shortest paths algorithm), nonse-
rial monadic (longest common subsequence problem,
Smith-Waterman algorithm) and nonserial polyadic
(Optimal matrix parenthesization problem and Zuker
algorithm). Venkataraman et al. [6] present a blocked
implementation of the Floyed-Warshall algorithm to
improve the cache performance. Park et, al. [7] pro-
posed another recursive implementation and consider
data layouts to avoid conflict misses in the cache. The
improved DP implementations in their works belong to
serial polyadic. Our work focus on nonserial polyadic
problem. In this paper, we develop a high perfor-
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mance implementation of nonserial polyadic dynamic
programming algorithm through the combination of
cache conscious and oblivious approaches.

The remainder of this paper is organized as follows:
In section 2, based on the optimal matrix parenthesiza-
tion problem, we abstract a general DP formulation
that is simplified and keep the same computational
characteristics with the original formulation. In sec-
tion 3, we discuss our optimizations of the nonserial
polyadic DP formulation. In section 4, we present our
experimental results and , finally, in Section 5, we draw
conclusions.

2 The Optimal Matrix Parenthesiza-
tion Problem

Consider the problem of multiplying n matrices,
{A1, A2, ..., An}, where each Ai is a matrix with ri−1

rows and ri columns. The order in which the matri-
ces are multiplied has a significant impact on the total
number of operations required to evaluate the product.
The objective of the parenthesization problem is to de-
termine a parenthesization that minimizes the number
of operations. Enumerating all possible parenthesiza-
tions is not feasible since there are exponentially many
of them.

Let m[i][j] be the optimal cost of multiplying the
matrices {Ai, ..., Aj}. This chain of matrics can be ex-
pressed as a product of two smaller chains, {Ai, ..., Ak}
and {Ak+1, ..., Aj}. The cost of multiplying these two
matrices is f(i, j, k) = ri−1rkrj . Hence, the cost of the
parenthesization {Ai, ..., Ak}{Ak+1, ..., Aj} is given by
m[i][k] + m[k + 1][j] + ri−1rkrj . This gives rise to the
following recurrence relation for the parenthesization
problem:

m[i, j] =

⎧⎨
⎩

mini≤k<j{m[i, j],m[i, k]+
m[k + 1, j] + f(i, j, k)} 0 ≤ i < j < n
0 j = i, 0 ≤ i < n

(1)
Equation 1 can be solved if we use a bottom-up ap-
proach for constructing the table m that stores the
values m[i][j]. The algorithm fills table m in an order
corresponding to solving the parentesization problem
on matrix chains of increasing length and m[0][n−1] is
the minimum cost. Visualize this by thinking of filling
the table shown as in Figure 1. The value of m[i][j]
(red point) depends on the previous computed value
in the same row and column. In general, f(i, j, k) is
a O(1) computation. So for simplicity, we rewrite DP

formulation (1) as:

m[i, j] =

⎧⎪⎪⎨
⎪⎪⎩

mini≤k<j{m[i][j],m[i, k] + m[k + 1, j]}
0 ≤ i < j < n

0
j = i, 0 ≤ i < n

(2)
f(i, j, k) is independent of the entry m[i][j] in DP table.
The simplified DP dynamic programming formulation
(2) doesn’t change the data dependency in filling the
DP table and can be easily implemented using iterative
nested three loops:

dp standard(matrices m, int n)
for (j = 1; j ≤ n; j + +)

for (i = j; i ≥ 1; i −−) {
t = m[i][j]
for (k = i; k < j; k + +)

t=min2(t, m[i][k]+m[k+1][j])
m[i][j] = t

}

Although equation (2) has similar nested three loops
with Floyd algorithm and matrix multiply and the
same time complexity Θ(n3), it is a quit different algo-
rithm.

• The matrix multiply can use any of the six possible
permutations for the order of the three loops with-
out affecting the computed results; In Floyd algo-
rithm, only the order of the innermost two loops
may be changed, the outermost loop must remain
outermost; In dp standard, only the order of the
outermost two loops may be changed, the inner-
most loop must remain outermost;

• Any entry m[i][j] in Floyd algorithm only de-
pend the const number of previous values; In
dp standard, the number of previous entries for
computing m[i][j] varies with i and j.

In next section, we proposed a recursive algorithm for
implementing the simple nested three loops to improve
its cache performance.

3 A Recursive Implementation

Before presenting the recursive implementation, we
need a coordinates transformation for equation (2). As-
sume (i, j) is in the original coordinates and n is prob-
lem size. Setting i′ = i, j′ = j + 1, in the new coor-
dinates, the new problem size is n′ = n + 1. We can



rewrite (2) as:

m[i′, j′] =

⎧⎪⎪⎨
⎪⎪⎩

mini′+1≤k′<j′{m[i′][j′],m[i′, k′] + m[k′, j′]}
0 ≤ i′ < j′ < n′

0
j′ = i′, 0 ≤ i′ < n′

(3)
In fact, this transformation adds a new diagonal to
the original DP table. However, the entries in this
new diagonal are unused and don’t contribute to the
computations (See the gray points at the diagonal in
Figure 1). Accordingly, the minimum cost is the value
of m[0][n] or m[0][n′ − 1]

Figure 1. The blocked DP table. The size
is n′ × n′,X11, X22, X33, X44 are three trian-
gular matrices, which size are n′

4 × n′
4 .

X12, X13, X14, X23X24, X34 are six rectangular
matrices, which size are n′

4 × n′
4

Assume that n′ is a power of two. If n′ is not a
power of two, some additional unused entries are added
to the original DP table and the new size is a power of
two. When implementing the algorithm, several branch
instructions can avoid the unused computations. As
experiment shown, the overhead of branch can be ig-
nored. So in this section, only that n′ = 2k is a power
of two is considered. The DP matrices is partitioned
into ten sub-matrices, which consist of three triangular
matrices and six rectangular matrices (See Figure 1).
X is the original DP matrices with 2k size, then it is
partitioned as follows:

X =

⎛
⎜⎜⎝

X11 X12 X13 X14

X22 X23 X24

X33 X34

X44

⎞
⎟⎟⎠

According to equation 3, the sub-matrices along di-
agonal X11, X22, X33, X44 are self-contained, that is,
any entries only depend on other entries in the same
sub-matrices. Furthermore, X12 only depends on X11

and X22, X34 only depends on X33 and X44. If com-
bining X11, X12, X22 and X33, X34, X44 into two larger
sub-matrices, respectively, we get two independent DP
matrices with 2k−1 size and can be divided recursively.
Thus, recursive function G is defined:(

A C
B

)
= G

(
A C

B

)

where A and B is triangular matrices, C is a rectan-
gular matrices. All entries in three matrices are un-
known. Thus, the two DP sub-matrices are computed
recursively using G(

X11 X12

X22

)
= G

(
X11 X12

X22

)

(
X33 X34

X44

)
= G

(
X33 X34

X44

)

After X11, X12, X22, X33, X34, X44 are computed, we
can solve the remainder four rectangular sub-matrices.
Because of the data dependencies, X23 should be com-
puted firstly and can only depends on X22 and X33.
At this time, X22 and X33 have been computed, so
X23 can be computed immediately. We define another
recursive function F :(

A C
B

)
= G

(
A C

B

)

where A and B is triangular matrices, C is a rectangu-
lar matrices. A and B have been computed and C is
an unknown matrices only depend on A and B. X23 is
computed using recursive F :(

X22 X23

X33

)
= F

(
X22 X23

X33

)

Now, we define two tensor operations ⊗ and ⊕. Let
matrices A = (aij)s×s,B = (bij)s×s,C = (cij)s×s. ⊗ is
defined:

C = A ⊗ B, where cij = minn
k=1{ci,j , ai,k + bk,j}

⊕ is defined:

C = A ⊕ B, where cij = min{ai,j , bi,j}
After X23 has been computed, both X13 and X24 can
be computed. Assume that we first compute X13.
Because X12 and X23 are known rectangular sub-
matrices, we can compute the partial results of sub-
matrices X23 using equation (4)

X13 = X13 ⊕ (X12 ⊗ X23) (4)



then, we complete the computation of X13 by recursive
function F :(

X11 X13

X33

)
= F

(
X11 X13

X33

)

Through the same method, X24, X14 also can be com-
puted:

X24 = X24 ⊕ (X23 ⊗ X34) (5)(
X22 X24

X44

)
= F

(
X22 X24

X44

)

X14 = X14 ⊕ (X12 ⊗ X24) (6)

X14 = X14 ⊕ (X13 ⊗ X34) (7)(
X11 X14

X44

)
= F

(
X11 X14

X44

)

Dividing the DP matrices recursively into smaller sub-
matrices, when the size of sub-matrices is small enough
to be contained in cache totally, the recursive can stop.
For this small sub-matrices, dp standard is called
to finish computing in recursive function G, where
all entries in the sub-matrices are unknown. For the
small sub-matrices in recursive function F , only one
of the three sub-matrices need to be computed. So
dp return is defined to be called in this case.

dp return(matrices m, int n)
for (j = n/2; j < n; j + +)

for (i = n/2 − 1; i ≥ 0; i −−) {
t = m[i][j]
for (k = i + 1; k < j; k + +)

t=min2(t, m[i][k]+m[k][j])
m[i][j] = t

}

Equations (4)(5)(6)(7) are four elementary operations
in the recursive implementation and have an uniform
formal: C = C ⊕ (A ⊗ B), which is implemented as:

dp base(matrices A, matrices B, matrices C, int
n)
for (i = 0; i < n; i + +)

for (j = 0; j < n; j + +) {
t = C[i][j]
for (k = 0; k < n; k + +)

t=min2(t, A[i][k]+B[k][j])
C[i][j] = t

}
It is obvious that dp base is analogous to dense matrix
multiply, thus most of optimization in dense matrix
multiply also can be applied to dp base.

Table 1. Machine configuration for the
various platform used for experiments.
The cache are of the form Capacity/Block
size(C/B).

Parameter Opteron Xeon PowerPC
clock rate 1.6Ghz 2.4GHz 400Mhz
L1 data cahce 64KB/32B 8KB/64B 32KB/128B
L2 cache 1MB/64B 512KB/64B 1MB/128B
RAM 3.5GB 1GB 1GB
L1 data TLB entries 32 64 128
L1 TLB associativity direct direct 2
L2 TLB entries 512 512 512
L2 TLB associativity 8 8 16
VM page size 4KB 4KB 64KB
Compiler pgcc icc xlc
Option -O3 -O3 -O3
Operating system SuSE Redhat AIX

4 Experimental Results

In this section we compare the performance of the
standard and recursive implementation with experi-
mental results on a number of machines. We exper-
imented on five commonly used modern computing
platforms:Opteron, Xeon(P4) and PowerPC 604e un-
der different compiler environments. Table 1 lists the
configurations for the machines. We are primarily in-
terested in execution times of the algorithms and use
L1 cache misses, L2 cache misses, and TLB misses to
explain the trends in execution time.
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Figure 2. Running times comparison on
Opteron
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Figure 3. Running times comparison on Xeon

4.1 Running Time

First, we evaluate the pure recursive algorithm with-
out blocking, that is, the recursive return until the size
of matrices is 1. Figure 2,3,4 shows the execution time
plots comparing the standard DP implementation with
recursive algorithm on three different platforms, re-
spectively. The plots clearly demonstrate the recursive
algorithm outperform the standard algorithm. The re-
cursive algorithm achieve average 50% faster than the
standard algorithm. The speedups increase on three
platform with the problem size. The greater speedup
in the case of 4000 problem size is about 2 times.
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Figure 4. Running times comparison on Pow-
erPC 604
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Figure 5. The copy overhead

The performance of blocking is largely sensitive to
the block size and cache size, in our current work, we
only select an appropriate by experimental statistical
method instead of analytical model. We measured the
running time with various block sizes on three plat-
forms and choose the block size combinations (16, 8),
(16 32), (32,32) for Opteron, Xeon and PowerPC, re-
spectively. Figure 2 shows the execution time plots
on the Opteron. The blocked recursive algorithm runs
about 2-5 times faster than the standard algorithm.
Figure 3 shows the execution time plots on the Xeon.
The blocked recursive algorithm runs about 1-3 times
faster than the standard algorithm.Figure 4 shows the
execution time plots on the PowerPC. The blocked re-
cursive algorithm runs about 10 times faster than the
standard algorithm. The greater speedups on the Pow-
erPC is because then latency of cache misses is more
than the other two machines. For example, the L1
cache miss latency on the Xeon is 13.19ns, however,
PowerPC need 80.05ns for L1 cache miss latency. In
the implementation of blocked recursive algorithm, the
sub-matrices are copied and constructed a new matri-
ces. However, the copy overhead is much smaller than
the total running time (See Figure 5).

4.2 Memory Behavior

The running time of the recursive algorithm on the
different machines above varies a function of problem
size. This variation arises from the way the code exer-
cises different components of the memory system. We
now only explore these effects using Oprofile, which is
performance monitor tool on Opteron.



4.2.1 Memory References

Figure 6 compares the memory references of the stan-
dard DP implementation and the recursive implemen-
tation with and without blocking. The recursive with-
out blocking doesn’t reduce the number of memory ref-
erences. When computing equations (4)(5)(6)(7), The
recursive with blocking copies sub-matrices to new ma-
trices, then computes the blocked new matrices. Al-
though resulting in copy overhead, this method reduces
the number of memory references greatly.
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Figure 6. Memory References comparison on
Opteron
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Figure 7. L1 Cache misses comparison on
Opteron

4.2.2 L1 Data Cache

Figure 7 shows that L1 data cache misses for three
implementations on the Opteron. The recursive algo-
rithm without blocking reduces the number of L1 data
cache misses 40% than the standard implementation.
In the recursive implementation, the number of L1 data
cache misses decreases 1 times than the standard imple-
mentation. We note that the recursive without block-
ing is more sensitive to the problem size than the re-
cursive with blocking. In the experiment, the problem
size varies with 500. The number of L1 data cache
misses in recursive without blocking increases with the
increasing problem size by 500. However, when the
problem size is increased by 500, the number of L1 data
cache misses in recursive with blocking almost doesn’t
increase. Only when the problem size is increased by
1000, we notice the notable increase in cache misses.

4.2.3 L2 Data Cache

Figure 8 shows the L2 cache misses for three imple-
mentations on the Opteron. The recursive algorithm
without blocking reduces the number of L2 data cache
misses 1-2 times than the standard implementation.
But the L2 cache misses have a notable increase when
the problem size is larger than 3000. The recursive
algorithm without blocking reduces the number of L2
data cache misses about 5 times than the standard im-
plementation. Although the number of L2 cache misses
is much smaller than that of L1 data cache misses, the
miss latency of L2 cache misses is 2-3 times than that of
L1 cache misses. So the decreasing of L2 cache misses
is also important.
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Figure 8. L2 Cache misses comparison on
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Figure 9. TLB misses comparison on Opteron

4.2.4 TLB

Another important reason for decreasing in running
time for recursive algorithm is explained by TLB
misses. Figure 9 shows the L2 cache misses for three
implementations on the Opteron. In the recursive im-
plementation, TLB thrashing is avoided by blocking
the sub-matrices, so the number of TLB misses is re-
duced greatly. Comparing above running time plots
with cache and TLB performance plots, we note that
trend in running time almost follows with the trend
in TLB misses. Although we don’t measure the TLB
misses on the PowerPC, the larger 10 times reductions
in running time can be explained by the larger page size
64KB. The DP formulation only needs computing a tri-
angular matrices, the data is layed out by column/row
index by an additional index array. So in the standard
and recursive without blocking implementation cause
irregular memory accesses. In this case, larger page
size results in more TLB thrashing. The blocking re-
cursive implementation rearrange the data accesses at
the cost of sub-matrices copy operations, however, it
improves the TLB performance greatly.

5 Conclusions

We have demonstrated decreased running times for
nonserial polyadic dynamic programming algorithm by
improving locality using combination of algorithmic
ideas and architectural capabilities. We have related
these performance gains to improved memory system
behavior of the new programs. The DP table is tri-
angular matrices and the data is accessed through an
indirect index array. The recursive algorithm can not

improve the number of memory references because of
row-major or column-major data layout. A new data
layout is necessary to improve the performance fur-
ther.
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