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Abstract

Network line cards are experiencing ever increas-
ing line rates, random data bursts, and limited space.
Hence, they are more vulnerable than other processor-
memory environments, to create data transfer bottle-
necks and hot-spots. Solutions to the memory band-
width bottleneck are limited by the area available on
the line card and network processor I/O pins. As a
result, we propose to explore more suitable off-chip in-
terconnect and communication mechanisms that will
replace the existing systems and that will provide ex-
traordinary high throughput. We utilize our custom-
designed, event-driven, interconnect simulator to eval-
uate the performance of wormhole routed packet-based
off-chip k-ary n-cube interconnect architectures for line
cards. Our performance results show that wormhole
routed k-ary n-cube based interconnect topologies signif-
icantly outperform the existing line card interconnects
and they are able to sustain higher traffic loads.

1 Introduction

Routers and switches are the fundamental equip-
ments of most network infrastructures. These devices
provide the functionality to receive, decode, repack,
and switch packets of data within the network. The
basic hardware building block for a mid-end to high-
end router or switch is the line card. Currently, two
major trends are impacting the architecture and de-
sign of line cards. First, line cards are required to
handle more functions to support new services such
as quality of service (QoS) and policy management,
which increases the traffic overhead to incoming line
rates by 40%-100%. This, in turn, raises memory, chip

interconnect and back plane bandwidth requirements.
Second, ever increasing memory capacity requirements
which are due to higher link rates and unstoppable ex-
pansion in lookup tables. The heavily stressed mem-
ory is used by network processors for two main tasks:
packet storage (buffering) and lookup table searches.
Packet buffer memory is accessed at least four times
per packet. Therefore, in order to sustain wire-speed
performance the buffer memory should be able to pro-
vide at least four times the bandwidth of the network
link.

In this paper, our primary goal is to explore dif-
ferent types of interconnect architectures to increase
the off-chip memory bandwidth on line cards. There
are many candidates in the area of interconnects that
can be used to provide a communication link between
processors and memories. Networks such as k-ary n-
cubes, which include hypercubes, mesh and torus net-
works. But the uniqueness of the interconnect archi-
tecture we seek is contained by the physical constraints
characterizing the line card board. Area and I/O pins
are limited on the line card. Hence, the number of
optional designs that can physically and functionally
fit, given those constraints, is limited. Each embedded
chip has fixed and limited number of I/O pins. There-
fore, a low-dimension, packet-switched network may be
a good solution.

Shared-bus is commonly used as a communication
link between network processors and multiple memo-
ries. A shared-bus cannot scale well as the number of
modules (processing elements or memories) connected
to it increases. In addition, it requires an arbitra-
tion mechanism that becomes distributed (rather than
centralized) as the number of modules connected to
the bus grows. Another commonly used communica-
tion alternative is the crossbar. A crossbar can sup-
port multiple simultaneous connections as long as no
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contentions occur. Once contention occurs, its perfor-
mance degrades. Other disadvantages include higher
cost (function of its switching and wiring complexity)
and scalability (cannot scale once embedded into the
line card).

There is a plethora of works in k-ary n-cube net-
works [1, 2, 4, 5, 6, 7]. In this paper, we are not propos-
ing yet another one. We propose to explore them in
the context of line card designs. To the best of our
knowledge, this will be the first time, the k-ary n-cube
networks will be used on a board.

There are two well-known architectures that concep-
tually and structurally resemble somewhat the work
we propose here: Cosmic Cube [9] and Cray 3TE [8].
However, there are a couple of major differences. First,
the scope of the interconnect architectures is different.
Nodes in our case are at the chip-level (i.e., processors
and memory devices), not boards or cases (i.e., com-
puters). The physical dimensions of our interconnect
must be smaller since area on the line card is limited.
Second, the application workload shows very different
behaviour. Unlike data traffic generated in supercom-
puters, the network traffic is proven to be self-similar
and exhibits burstiness. Third, the cost of implement-
ing the interconnect architecture is lower, since its per-
formance superiority and reliability are primarily de-
pend on its routing algorithm and message flow-control
not its hardware. This allows us to use simple logic and
bus lines between chips making it an inexpensive inter-
connect to fabricate.

2 Processor-Memory Interconnect Ar-

chitectures

The interconnect resides in the middle of the line
card and provides a multipath off-chip linkage between
processing elements (PEs) and memory modules. The
interconnect allows packets to be shared and trans-
ferred by different processor and memory modules on
the network line card simultaneously. Fig. 1 portrays
a generic line card architecture in which processing,
communication and memory components can commu-
nicate via the interconnect. Besides the NPUs several
processing components are shown in the figure, such
as co-processor (Co-P), traffic manager (TM), hard-
ware accelerator (HWA), and quality of service (QoS)
co-processor. The memory banks, which differ in size,
are distributed over the interconnect structure to al-
low data sharing among modules and direct processor
memory storage. The fabric and physical interfaces
handle incoming/outgoing traffic.

Figure 1. Generic network line card architec-

ture

Each component, which requires memory access,
sends its data encapsulated in packets in the shortest
path possible. If there is a congested area (hot spot),
packets in transit will take a different route, using pre-
determined and prioritized set of directions using the
traffic controller (TC) located in each node. A node
connects multiple channels together and it includes a
TC. Messages propagate from one node to another ad-
jacent node, where in each node routing decisions are
made, until they reach destination. A faulty link will
not discontinue the transmission of a message to its
destination since packets will be rerouted through al-
ternative paths using other available nodes. Routing
ensures that a faulty link will be limited only locally
and other links from the intermediate nodes should en-
sure that connectivity continues.

There are two additional features required to en-
hance message flow and avoid deadlocks: virtual chan-
nels and sub-channelling. Each node will contain two
bidirectional virtual channels (VC). VCs are used to
avoid transmission failure. Transmission failure can
occur when a packet (fraction of message) cannot take
any of the output ports. A propagating message oc-
cupies two ports (out of four ports available in one
node) simultaneously, when moving from input to out-
put port. Only two VCs are required per node, since
only two messages can arrive on the other two ports
which compete over the same output port. Channel
width partitioning allows a unidirectional channel to
become bidirectional so that more than one message
can share each channel. There can be multiple ways
to partition the channel into smaller bidirectional sub-
channels. If three sub-channelling configurations are
set, then, the first configuration will support unidi-



Figure 2. a) 8-ary 2-cube network b) 4-ary 3-cube network c) 3D-mesh

rectional channels (one message occupies the complete
channel width), the second bidirectional channels (two
messages can share the same channel and can move
in either direction), and the third will support quad-
directional channels, which partition channels into four
(each channel can contain four simultaneous messages
in either direction). As a result of channel partitioning,
the packet size of each message will decrease. Channel
partitions are predetermined before messages enter the
interconnect and affect all the channels in the intercon-
nect. Each message can only occupy one sub-channel
at a time. The main advantage of channel partitioning
is the additional freedom and flexibility in paths that
can be selected by propagating messages.

2.1 Example k-ary n-cube based intercon-
nect architectures

In this paper, we consider k-ary n-cube based direct
network topologies. A k-ary n-cube network consists of
N = kn nodes, where n represents the dimension of the
network and k represents the number of nodes in each
dimension of the structure. Fig. 2a and 2b present
an 8-ary 2-cube and 4-ary 3-cube networks, in which
processors and memories are evenly distributed. Each
node in k-ary n-cube interconnect is uniquely labelled
and elements of the same plane are connected to each
other.

Besides the standard k-ary n-cube structures, we
also consider variations of them. Fig. 2c shows a
3D-mesh architecture, which is a 2-ary 3-cube inter-
connect architecture, extended in the x -direction to
provide both the dimensionality required to improve
routing as well as space constraints on the line card.
PEs and memories are distributed throughout the in-
terconnect in different configurations and allow each
PE to use multiple memories as storage as well as data
sharing with other processing elements.

2.2 Traffic Controller Architecture

Each node employs a traffic controller (TC) to for-
ward messages. The TC includes five components: the
routing algorithm, multi-port switch, channel sampler,
channel partitioning mechanism and virtual channels
(Fig. 3).

Figure 3. Traffic controller structure

Each cycle, the channel sampler samples each port
to determine its status (total of 4 ports). If a port is
currently busy transferring a message, the channel sam-
pler will not allow any new messages to be routed to
it. The channel partitioning module can divide a uni-
directional channel into two or four bidirectional sub-
channels, as shown in Fig. 4. For example, a channel of
32 bits can be partitioned into 4 sub-channels of 8 bits
each, and transfer 4 different messages simultaneously.
It receives channel configuration information from the
user interface and sets the TC’s internal parameters
accordingly.

Virtual channels (VC) are used when an incoming
message cannot be routed to any output port since all
output ports are busy transferring other messages. Fig.



Figure 4. Channel partitioning to 4 sub-

channels

5 depicts a situation where two messages compete over
the same output port (West port). Since message 1
is granted permission to continue in its path, message
2 will have to be queued in one of the available VCs.
There are only two VCs per node since each message
deploys two ports simultaneously, if two ports are used
by a massage then in the worst case only two messages
can arrive to a node and require to use these ports.
The VC module, within the TC, sets virtual channels to
enabled/disabled status and if enabled, it also allocates
its buffer size (in KB).

Figure 5. Virtual channels

2.3 Routing Mechanism

The routing algorithm dynamically collects both
configurational and real-time changes of all channels to
fully utilize routing capabilities. The routing algorithm
routes a packet from a source device s = {s1, s2, ..., sm}
to a destination module d = {d1, d2, ..., dn}, by choos-
ing a direction to travel in each of the three dimensions
(x, y, or z) to balance the channel load. The default
route is in the x-axis quadrant and each message will
always attempt to be routed using the shortest path
as long as the packets are admissible (accepted by idle
nodes). If a node is oversubscribed (i.e., all ports are

occupied), the routing algorithm can determine if pack-
ets will take an alternative route (by choosing the y-axis
or z-axis quadrants), or store them in the local virtual
channel until conditions improve. If a message cannot
use any of the resources available to it in order to con-
tinue in its path to destination (i.e., all ports are busy
and virtual channels are disabled or fully occupied) the
message will be retransmitted from the same source.

In order to improve performance metrics, such as
latency and throughput, wormhole message passing
mechanism is selected to send messages between source
and destination modules. Each message (also called
worm) is segmented into smaller size packets, known as
flow control digits (flits). The size of each packet is de-
termined by the channel width. In wormhole message
passing mechanism, the header flit is sent first, while
all other packets follow it in a pipeline manner (re-
sembles a worm movement). As the header propagates
through the interconnect, it sets the node switches (if
idle) in a certain position corresponding to its short-
est path and traffic conditions on the node’s channels.
The key to achieve high performance using an inter-
connect architecture combined with wormhole message
passing is hidden in the message transfer mechanism.
Latency of each worm is composed of the sum of la-
tencies of each propagating packet belongs to the same
worm. The dominant part of latency is obtained by
the transfer of the header, since it sets the switching
element within each TC it passes. Switching latency is
the leading delay in the system. The rest of the pack-
ets incur only propagation and routing delays, which
are smaller in magnitude. Therefore, as the message
size becomes larger, the ratio of consecutive latencies
decreases while throughput increases.

The three latencies involve in transferring a message
through the interconnects are: Ts, Tr and Tw. Ts
represents the switching delay (accounts for the header
packet and packet generating/receiving modules at the
source/destination nodes), Tw denotes the propaga-
tion delay of one bit in a unit length (it is equal to 62.5
ps per 1 cm using the current manufacturing technol-
ogy [11]) and Tr signifies the routing delay. The ideal
packet transmission rate from source to destination can
be achieved in Tw + Tr units. This becomes a great
advantage in attaining high throughput, compared to
the shared bus, which can only send those packets like
a store and forward type architecture.

2.3.1 Packet Forwarding

Routing decisions are based on the worm’s header in-
formation and the TC status. The worm’s header con-
tains data fields such as worm ID, source node and



destination node. Each worm has a unique ID to dif-
ferentiate itself from other entering worms. The worm
tries to take the shortest path to its destination, if pos-
sible. The shortest path is calculated by taking the
difference of each direction (x, y, and z) derived from
its source-destination addresses. When a worm enters
a node, the TC switches the worm to an output port,
giving priority to the port pointing in its shortest path
to destination. If the highest priority port is used by
other worms, the TC will route the worm to an alterna-
tive port to bypass nodes which experience hot-spots.
Even when an alternative route is taken, the worm con-
tinuously calculates its position to follow as close as
possible to its original shortest path. If a worm cannot
be switched to any of the node ports, it will occupy a
virtual channel, assuming virtual channels are enabled.

Figure 6. Routing directions

The routing algorithms is derived and based on [3,
6, 10]. The following rules must be satisfied:

• Ensure the shortest path first, by comparing
source and destination vectors (in terms of x , y,
and z coordinates) and move forward by evaluat-
ing the variance in each dimension.

• If one of the chosen output ports is occupied (busy
transferring another message), it samples the sta-
tus of other ports in the following order (Fig. 6):
EW (East-West) a movement from one face to an-
other, NS (North-South also up-down) resembles
a clockwise vs. counter-clockwise movement on
individual face.

• Avoid certain consecutive turns. This rule seeks
to avoid deadlocks. A worm following an EN, ES
will not take west movement as the third direction.
Similarly, if WN, WS movements are taken then,
it will not take an east movement as the third di-
rection.

• Since worms are generated either from PEs to
memories and vice versa then the worm’s relative
direction is always towards its destination and will

never move backward (towards its source). This
step attempts to avoid livelocks.

3 Performance Evaluation

We developed an event-driven simulator to explore
different types of interconnect architectures to increase
the off-chip memory bandwidth on line cards. The sim-
ulator block diagram, given in Fig. 7, contains both
the off-chip interconnect architectures to be evaluated
and the control modules to adjust, collect and modify
interconnect settings, dataflow, and performance met-
rics. The interconnects configuration manager sets the
interconnect type properties such as channel width, VC
on/off, bidirectional channel.

Figure 7. Simulation control modules

The interconnect properties are collected from the
user interface and transferred to the configuration man-
ager via the worm manager. The worm manager must
get this configuration information to configure, accord-
ingly, other modules in the system that participate in
simulation. The traffic sampler collects performance
data such as throughput, routing accuracy and inter-
connect link utilization parameters. Those parameters
are sent back to the worm manager to adjust worm gen-
eration rate and load balance the traffic. The routing
algorithm is attached to the worm manager and re-
ceives data of each individual worm and its current po-
sition. The routing algorithm assists the worms which
cannot continue in the shortest path due to traffic
hotspots. Worms are constantly generated and stored
in a worm jar. The scheduler is responsible to inject



worms into the interconnect taking into account the to-
tal network capacity and traffic load. Since the worm
manager knows the total number of worms that are
modelled throughout the simulation, it must inform the
scheduler the end of the simulation (no more worms to
model). The user interface allows the user to change
interconnect architecture, parameters, the number of
worms to model, and the simulation length. The sim-
ulator takes into account all practical parameters such
as switching delays (Ts), routing delays (Tr) and propa-
gation delays (Tw) as well as the complete functionality
of each system components (nodes, links, PE/memory,
interfaces, virtual channels, and channel partitioning).
Simulation time is based on a unit cycle which is equal
to one clock cycle (Tw + Tr ). All other delays are cal-
culated as multiples of it. This provides the advantage
of having single uniform simulation clock. Message size
in bytes and message generation time are obtained us-
ing pseudo-random number generator, which is utilized
to resemble the randomness of packet transmission by
both processors and memories. Each worm is linked to
performance-bookkeeping function, which records its
latency, throughput, simulation cycles, failures, and
route-taken from the moment the worm enters the in-
terconnect until it completely reaches its destination.
Performance results are provided at the end of each
simulation where the software provides the average of
each parameter separately.

3.1 Simulation Results

3.1.1 Latency

Latency represents the time it takes for a worm to reach
its destination. Depending on the worm movement, la-
tency sums wire transfer, switching and routing delays
at each cycle. The resulting latency is an average of la-
tencies collected from all worms generated, at the end
of the simulation. We chose three representative k-ary
n-cube interconnects for our simulations: 8-ary 2-cube,
4-ary 3-cube and 3D-mesh (all three interconnects have
64 nodes).
Fig. 8 shows a comparison among all three intercon-
nects with VCs and channel partitioning enabled. The
results shown are an average of 10 different simula-
tions with both short (128B-1KB) and long (1KB-8KB)
worms and identical interconnect settings. The lowest
latency was recorded for the 3D-mesh, while the 4-ary
3-cube network has slightly higher latency than the 3D-
mesh. The 8-ary 2-cube interconnect has the highest
average latency.

Fig. 9 portrays the latency of each interconnect with
respect to the offered load. Offered load determines the

Figure 8. Latency comparison

probability that each node, comprising the intercon-
nect, will generate a message within each simulation
cycle. For example, if the offered load is set to 0.1
there is a probability that 10% of the total nodes in
the interconnect will generate a message at each sim-
ulation cycle. Fig. 9 shows that as offered load in-
creases the latency increases exponentially for all inter-
connects. Further, 3D-mesh interconnect can sustain
the highest offered load out of the three interconnects.
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3.1.2 Throughput

Throughput is measured by taking samples of the total
bits processed within the interconnect at each cycle.
Throughput significantly increases when VCs are en-
abled since VCs allow more worms to occupy the inter-
connect without transmission failures. Fig. 10 shows
that the highest throughput was reached by the 3D-
mesh interconnect for both short and long messages.

Figure 10. Throughput comparison

3.1.3 Interconnect resources utilization

Interconnect resource utilization counts the number of
busy ports within each traffic controller per simulation
cycle. At the end of simulation it provides the average
of ports that were set to busy status out of the total
number of ports available in the interconnect through-
out simulation. The results of interconnect utilization
is shown in Fig. 11 reveal that 4-ary 3-cube ports are
set to busy status more often than the 3D-mesh or 8-
ary 2-cube.

3.2 Performance comparison with com-
mercial interconnects

Finally, we evaluate our 3D-mesh, 8-ary 2-cube, and
4-ary 3-cube interconnects with other currently used
high-performance interconnect technologies such as
Hypertransport [12], Infiniband [13] and PCI-Express
[14].

We used reported results provided by each individ-
ual vendor to compare with our results. In addition,
the performance properties of these technologies takes
into account a constant channel size of 32-bits and a

Figure 11. Interconnect utilization rate

single communication link. For the 3D-mesh intercon-
nect the settings are: channel width is 32 bits, inter-
connect size is 16 cubes, number of worms generated is
10, each worm is 1KB in size. Virtual channels as well
as channel partitions were enabled. The throughput
comparison results are shown in Fig. 12. The through-
put values of the 3D-mesh, 8-ary 2-cube and 4-ary 3-
cube interconnects represent the average throughput of
each interconnect for worm sizes 40B-32KB. 3D-mesh
shows superior results compared to all of its competi-
tors reaching a peak throughput of 452 Gbps. This is
more than twice the throughput of the best intercon-
nect available not including the other types of k-ary
n-cubes tested.

4 Conclusions and Future Work

In this paper, we proposed to use k-ary n-cube based
off-chip packet-switched networks as memory I/O in-
terconnect for high throughput network processors.
We developed an event-driven simulator to evaluate
the performance of the proposed interconnect arhcitec-
tures. Results show that k-ary n-cube based topolo-
gies significantly outperforms the current solutions on
network line cards. Future directions for this work in-
clude physical implementation of the interconnect on
a printed-circuit board and testing it. It will be also
interesting to see if this interconnect can be used in-
stead of bus mechanisms used in PC architectures and
on-chip communications mechanisms used within the
network processors.



Figure 12. Throughput comparison
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