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Abstract

MPI middleware glues together the components neces-
sary for execution. Almost all implementations have a com-
munication component also called a message progression
layer that progresses outstanding messages and maintains
their state. The goal of this work is to thin or eliminate
this communication component by pushing the functionality
down onto the standard IP stack in order to take advantage
of potential advances in commodity networking. We intro-
duce a TCP-based design that successfully eliminates the
communication component. We discuss how this eliminated
TCP-based design doesn’t scale and show a more scalable
design based on the Stream Control Transmission Protocol
(SCTP) that has a thinned communication component. We
compare the designs showing why SCTP one-to-many sock-
ets in their current form can only thin the communication
component. We show what additional features would be re-
quired of SCTP to enable a practical design with a fully
eliminated communication component.

1 Introduction

Middleware is an essential part of any MPI system. MPI
was designed from the onset to be independent from the
execution environment and its communication primitives
were designed to take advantage of specialized intercon-
nects. As a result, MPI has needed middleware for starting
the execution, runtime support for managing processes, and
a communication middleware component to support inter-
operability across different interconnects. The communica-
tion middleware component typically has a module associ-
ated with each different interconnect that is specific to the
characteristics of that particular interconnect. In addition
to specialized interconnects, the public domain versions of
MPI (MPICH [15] and LAM [2]), have always supported
TCP/IP, to allow MPI to operate in local area networks.

In this paper we focus on the alternative network archi-
tecture for MPI shown in Figure 1. Rather than including
extensive support for different interconnects in the middle-
ware, we investigated middleware designs that could take
advantage of standard transport protocols that use IP for in-
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Figure 1. IP based middleware

teroperability. One advantage to the network architecture
shown in Figure 1 is that it simplifies the middleware, which
could lead to a more standardized MPI library that could
improve the interoperability between different MPI imple-
mentations. MPI middleware has never been standardized
and each implementation uses its own design. For exam-
ple, MPICH’s ADI [14] and LAM’s RPI [11] describe their
layering of the middleware. OpenMPI [4] is a more re-
cent project with the goal of modularizing the middleware
to support mixing and matching modules according to the
underlying system and interconnect. The use of IP substan-
tially reduces the complexity of designing MPI middleware
in comparison to designs that try to exploit the particular
features of an interconnect, which is one source of incom-
patibilities between implementations.

The advantage of the usual implementation of the com-
munication middleware component is that it can fully ex-
ploit the performance of specialized interconnects. How-
ever, these interconnects all have implementations over IP
and the affordability and performance of Ethernet make
TCP/IP widely used for MPI. With the increased use of
more commodity processors and commodity OSes, an in-
teresting research topic becomes how much the use of com-
modity networking can be exploited if this commoditization
trend is to continue. One initial concern is performance.
If one compares microbenchmarks, TCP/IP achieves less
bandwidth and significantly higher latency than customized
stacks and interconnects. But microbenchmarks can be mis-
leading so they should be carefully interpreted; improved
bandwidth and latency do not always produce the same
gains at the application level. For example, the perfor-
mance of TCP/IP over Ethernet was measured to be within
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5% of the performance of Myrinet on the NAS bench-
marks and even closer with more efficient TCP implemen-
tations [9]. The advantage of using commodity networking
(i.e., TCP/IP) is that it can continue to leverage the advances
in mainstream uses of networking that share many of the
same performance demands as MPI programs.

Given the network architecture shown in Figure 1, then
it is interesting to investigate re-designs of the middleware
that can leverage standardized transport protocols over IP
with a view to simplifying and eliminating the communi-
cation middleware. This approach differs from the design
of current public domain implementations of MPI in that it
attempts to push functionality down into the transport layer
rather than pull it up into the middleware. For example,
OpenMPI sequences all its data within the middleware and
stripes it across all available interconnects, managing mes-
sage assembly and connection failures within the commu-
nication component. If one were to limit the interconnects
to those only atop IP, it could be possible to prevent doing
such management in the middleware if networking research
such as Concurrent Multipath Transfer [7] were exploited,
where the data is sequenced and striped within the transport
layer instead.

We introduce a new TCP socket per message stream de-
sign, and later we consider an SCTP-based design. SCTP
([13]) is a newly standardized transport protocol for IP that
has a number of new features that make it an interesting tar-
get for MPI middleware. In previous work [8], we designed
and implemented our own SCTP-based version of the mid-
dleware with LAM; here we review its design but more from
a networking point of view since we are focusing on the
overall goal of communication component elimination.

The contribution of this work is that it identifies the ex-
tent to which we can take advantage of standardized trans-
port protocols and commodity networking by simplifying
and eliminating MPI middleware functionality. We discuss
the requirements of MPI messaging in terms of demulti-
plexing, flow control, and the communication management
properties of the underlying transport protocol. The socket
per message stream design leads to a simple implementa-
tion of MPI that completely eliminates the communication
middleware layer, however, it does not scale. We show how
using SCTP thins the middleware and avoids the scalability
problems, however SCTP one-to-many sockets in their cur-
rent form present limitations that make it difficult to com-
pletely eliminate the communication middleware compo-
nent. We discuss what would be required of SCTP one-
to-many sockets for full elimination.

2 MPI middleware

Middleware is an essential piece of MPI. As with any
parallel programming model, an MPI application requires a
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Figure 2. Communication Middleware

variety of services in order to properly run. These services
are each glued together by the middleware [3]; they can be
conveniently split into three interacting components: (a) a
job scheduler to determine which resources will be used to
run the MPI job, (b) a process manager is needed during
runtime for process initialization/shutdown, signal delivery,
error detection as well as process stdin/stdout/stderr redirec-
tion, and finally (c) a parallel library such as MPI to provide
a mechanism for parallel processes to effectively exchange
messages. In this paper, we focus on the MPI library.

2.1 MPI library

The MPI library offers a variety of routines to help appli-
cation programmers effectively develop parallel programs.
The middleware exports the API as defined by the MPI stan-
dard and the application links to this library. The MPI API
routines are typically implemented with the help of other
functions which in turn call the appropriate lower layer sys-
tem and device routines. Often MPI implementations fur-
ther modularize these other functions into components to
allow for maximum flexibility of hardware and algorithm
choice. For example, amongst other things, OpenMPI lets
you select at runtime which hardware to run on, which
datatype implementation to use, and which reduction op-
eration algorithm to perform.

As shown in Figure 2, one obtains a layered system
where the MPI library code calls into lower level modules
for job scheduling, process management and communica-
tion (represented by the dashed line). The communication
middleware consists of one more modules that call the op-
erating system in the case of TCP and possibly lower level
network layer functions in the case of specialized intercon-
nects like Infiniband. Our intent is to remove the direct ac-
cess to the network layer and remove the communication
middleware by dividing its functionality between the MPI
library and an IP transport protocol.

The existence of non-blocking communication, in addi-
tion to other types of messaging, and the need to match
sends and receives makes it difficult to completely exe-
cute the MPI communication routine as a simple library
function. Typically message progression state has to be



maintained in-between MPI calls. The message progression
layer ensures that all messages sent are eventually received.

2.2 Message Progression Layer

The communication component, also called the mes-
sage progression layer, copies the message, allocates and
frees memory when necessary, enforces the MPI semantics
for the different message types, performs message match-
ing, executes the lower level communication protocol, con-
structs the appropriate message header, and finally sends
and receives data from the underlying transport layer. The
various public domain versions of MPI define their inter-
faces for message progression in a variety of ways. In LAM,
there is one layer for this purpose called the request progres-
sion interface (RPI), while in MPICH it is a combination
of two layers, an abstract device handling MPI semantics
and a lower level channel that acts as a byte mover. Sim-
ilarly, OpenMPI splits the MPI semantics off into its own
layer called the PML (point-to-point management layer).
However, underneath this layer it has two other layers for
message progression, a simple byte transfer layer (BTL) as
well as a BTL management layer that attempts to stripe data
across all underlying interconnects([16]).

The three main tasks we will focus on in the message
progression layer are the message matching, managing of
expected/unexpected messages, and the long/short message
protocols that are typically used.
Message Matching: Message matching in MPI is based on
three values specified in the send and receive call: (i) con-
text, (ii) source/destination rank, and (iii) tag. The context
identifies a group of processes that can communicate with
each other. Within a context, each process has a unique
identification called rank that is used to specify the source
and destination process for the message. Finally there is
a user defined tag value that can be used to further distin-
guish messages. A receive call matches a message when
the tag, source rank and context (TRC) specified by the call
matches the corresponding values. MPI semantics dictate
that messages belonging to the same TRC must be received
(i.e. completed) in the order in which the sends were posted.

Message matching is a form of demultiplexing that iden-
tifies the particular receive call that is the target of the sent
message. It is also possible that wildcards are used in a re-
ceive call to match messages from any source and/or any
tag. Wildcards provide a form of non-deterministic choice
where a process can receive from some collection of mes-
sages sent to the process.
Expected/Unexpected Messages: Most implementations of
MPI perform message matching by managing two struc-
tures: one for expected messages (local receive requests)
and one for unexpected messages (remote send requests).
When the message progression layer processes a receive re-
quest, it can search the unexpected queue for a matching

send request and, if not found, add itself to the expected
message structure. In the case of a send request, the mes-
sage progression layer sends the request to the remote pro-
cess where the message progression layer on the remote
process checks its expected message structure for a match
and, if not found, adds the request to the unexpected mes-
sage structure.

The management of the expected and unexpected mes-
sage structures is simple in principle but there are several
subtle issues that complicate it. First, in order to avoid
potential deadlock, the message progression layer must be
able to accept incoming send requests. The MPI standard
defines a “safe program” as a program that correctly finishes
when every communication is replaced by a synchronous
communication, which effectively implies that the progres-
sion layer needs to be able to accept only a single send re-
quest. The guaranteed envelope resource protocol [1] ex-
tends this guarantee to a bounded number of requests. Sec-
ond, because of weak message progression1, each MPI call
needs to progress messages by updating the state of the ex-
pected and unexpected message structures and sending and
receiving data to and from the transport layer below. The
message progression layer needs to maintain state between
the MPI calls since it will need to progress messages for
other calls; for example, it needs to keep checking the trans-
port layer for remote send requests from other processes to
be matched or added to the unexpected message structure.
Short/Long Messages: In terms of network level functions,
long and short messages in MPI introduce problems associ-
ated with message framing and flow control. The previous
discussion only considers requests and assumes that once
requests have been matched the transfer can now be com-
pleted. In MPI this is complicated by the fact that messages
can in principle be arbitrarily long. Since the system does
not have an unlimited amount of buffers, at some point in
the transfer, parts of the message must use the user level
buffer space given as a parameter to the receive call. As a
result, for a sufficiently large message, the communication
becomes synchronous where the send call cannot complete
before the receive has been posted. Furthermore, depend-
ing on the transport layer used, large messages may need to
be fragmented and reassembled on the receive side. Frag-
mentation may also be necessary for fair message delivery
to ensure that the message progression layer doesn’t block
for long periods of time while engaged in the transfer of one
large message.

Given that the message progression layer must accept
send requests and also manage the transfer of large mes-
sages, then a natural solution is to handle short and long
messages differently. Short messages are bundled with the
request and thus can be immediately copied into the user’s

1We focus on implementations that assume a weak message progres-
sion rule where messages are progressed only during MPI calls.



memory when matched. Long messages use a rendezvous
protocol that first matches the two requests and then ar-
ranges a transfer of the message from the user’s send buffer
on the remote side to the user’s receive buffer. There is
an additional benefit to this approach for performance. As
Gropp describes for MPICH [14], if one considers memory
copying and the cost of the rendezvous, then when message
copying costs exceed rendezvous costs it is more efficient
to use rendezvous, assuming it can avoid the extra copying,
rather than using eager send.

3 TCP socket per Message Stream

In this section we describe a TCP-based implementation
of the MPI library that eliminates the message progression
layer altogether, following Figure 2. By elimination, we
mean that such a layer is no longer necessary to maintain the
hidden state required to progress messages. Since messages
still need to be advanced, we eliminate the message pro-
gression layer by moving some functionality into the MPI
library routines and the remainder down into TCP as illus-
trated in Figure 2. Although this design is not very scalable,
for reasons to be discussed, it serves to illustrate the features
that are needed in the library and transport layer when hav-
ing an MPI implementation where the message progression
layer is eliminated. After sketching the design, we discuss
the problems.

3.1 Implementation

The standard socket library provides routines that can
be used to implement the MPI communication primitives.
There are several differences between the standard MPI
send and receive and the corresponding socket library calls.
Some of the differences can be easily accommodated. For
example, message length is expressed in terms of MPI
types, which can be converted within the MPI library to
its actual byte length using information contained in the
MPI Datatype. The other part of the message is the com-
municator, source/destination, and tag fields. The design
attempts to map these into a socket descriptor. As a result,
every TRC will have its own socket and TCP connection,
which is consistent with the message ordering semantics of
MPI.

The MPI Init() routine can be used to exchange the
information necessary to initiate the system. In particular,
at a minimum, at runtime we need the IP addresses of all
machines running MPI processes. We assume there is a pre-
assigned control port for each MPI process. This is used for
the accept() socket call when creating new connections
initiated by a connect() call to that port from another
MPI process. When a new connection is created on this con-
trol port using accept(), a new socket using its own port
is returned and the control port can continue to be reused

as a control port to initiate other connections. The control
IP and port are made available for each rank by way of the
LAM out-of-band daemons. TheMPI Init() routine cre-
ates the MPI COMM WORLD communicator, an opaque data
structure, which for each process, contains the table of the
machines in MPI COMM WORLD. More specifically, the ta-
ble gives a mapping from MPI ranks to IP addresses and
control port. Since the communicator object is an argument
to all communication calls, every call has access to this ta-
ble.

As well as the rank-IP table, communicators also main-
tain a separate “connections” table that is a mapping from a
TRC to a socket descriptor. Each MPI send or receive uses
the TRC value as a key to find the corresponding socket for
the send and receive socket call. If there is no entry for
that key, then it uses the rank to determine the IP address
and port. The control port is then used to connect to the re-
mote machine and create a new connection for that TRC. To
create a new connection, one end must execute accept()
whereas the other end must execute connect(). Because
of wildcards, the receive side executes the accept() and
the send side executes a correspondingconnect(). Note,
this is only done for the first connection. Having sketched
out the basic scheme, we will now consider the message
progression layer functionality with respect to the require-
ments described in Section 2.2.
Message Matching: The basic scheme works for the stan-
dard send and receive, however, matching is complicated
by the existence of wildcards. Wildcards are only used
in MPI receive calls (MPI ANY SOURCE, MPI ANY TAG).
The select() socket call allows us to create a set of
socket descriptors that can be used to block while waiting
for data on one of the connections. The MPI library code
scans the connections table to create a set of sockets that
can match the receive and can then be used in a select()
call.

It is possible that there is a matching TRC for which
a connection does not yet exist so a new connection will
need to be established. New connections can be handled
by adding the socket associated with the control port to the
select() call. However, there may be connect requests
from one or more processes not associated with the receive
call. As a result, once a new connection is accepted, the
TRC information from the remote send side needs to be
sent to the receive side in order for it to process the con-
nection request and update the connections table associated
with the communicator. This was the rationale for having
receive do accept(), since these calls can receive from
multiple processes and need to use select(), whereas
the sends do not use wildcards and they either already have
a pre-assigned socket or the send needs to create a new con-
nection using connect().

The receive call that executes the select() may be



Figure 3. Motivation for expected queues
notified of data on an existing connection or notification for
a new connection, which must be added to the connection
table. Depending on the implementation, it is possible that
the request is for a different communicator, which implies
that the tables for MPI COMM WORLD and all communica-
tors derived from it must be accessible. An alternative ap-
proach, since creating a communicator is a global operation
over the ranks in the new communicator, is to negotiate a
new control port to be stored with each new communicator.
This eliminates the possibility of receiving a connection re-
quest for a communicator different from the one specified in
the receive call since every communicator will have its own
control port and communicators can never be wildcarded.
Expected/Unexpected Messages: The global expected and
unexpected message structures are no longer needed under
this design. Because each MPI message stream (TRC) now
has its own connection, for the unexpected queue the imple-
mentation relies instead on the socket buffers and the TCP
flow control mechanism to manage the flow of messages on
a connection once it has been created.

Non-blocking is possible with sockets by setting the non-
blocking option on the socket (O NONBLOCK). For most
socket libraries, it is possible to set the option on a per
call basis, which corresponds to MPI, rather than having
it as part of the connection [12]. Non-blocking commu-
nication in MPI returns an opaque message request object
(MPI Request) that is then passed to all calls that check
for completion. The request objects can be used to main-
tain the information about what is needed to complete the
MPI call. For example, in the case of a synchronous com-
munication, the request object stores whether the message
corresponding to the send or receive has been posted.

The presence of blocking and non-blocking calls in MPI
creates potential scenarios where the state of a particular
message’s progress will be dependent on the progress of
other previously posted messages. As a result, a local form
of the expected message queues must be kept. Suppose we
did not have an expected queue and consider the scenario
shown in Figure 3. If messages A and B were success-
fully put on the network from process rank 0 to process
rank 1 on tag 45 using blocking sends. Process rank 1 has
a non-blocking receive for message A and a blocking call
for message B. When process rank 1 pre-posts a request for
message A, if that messages isn’t in the socket buffer, an

EAGAIN would be returned and the application would pro-
ceed. Next, during the blocking receive call for message B,
process rank 1 must be aware of the request for message A
since it is going to arrive to the socket first due to TCP’s full
sequencing of a connection. The library must know which
buffer to put it in since in this design, no global expected
queue exists.

In order to process requests correctly, another table is
maintained within the opaque communicator object. This
table maps a TRC value to the head of a linked list of request
objects. Effectively the table contains more local expected
message queues. A linked list itself is outstanding requests
on a given TRC; due to MPI semantics, these requests must
be completed in order. For receive requests, access to this
linked list is required so that data obtained from the socket
buffer can be placed in the correct user-space buffer as spec-
ified in the posted MPI receive call. For send requests, mes-
sages need to be sent in the order in which they were posted
so this linked list is also required to be available. This ta-
ble is essentially an expected queue within the opaque ob-
ject, the only difference being that instead of a linked list
of requests for all TRCs as in standard message progression
layers, it is a table hashed by the TRC returning a smaller,
more local linked list.
Short/Long Messages: In this design, a connection corre-
sponds to a particular TRC. TCP’s in-order semantics en-
sure that messages are completed in the order they are sent.
As well, TCP’s flow control mechanism ensures that the
eager sending of messages will not over-run the receiver’s
buffer and exhaust memory resources. This eliminates one
of the motivations for short and long messages and the use
of a separate protocol for each kind. The important point
is that we can take advantage of TCP’s flow control mecha-
nisms.

This design simplifies the middleware since it is no
longer necessary to have a short and long protocol that re-
stricts the eager sending of larger messages. In the message
progression layer within typical implementations, flow con-
trol is handled by complicating the protocol, restricting the
eager sending of large messages.

3.2 Critique of the Implementation

There are several issues that arise in using a socket for
each TRC. These issues generally arise in any TCP imple-
mentation of the middleware, including the standard TCP
implementation used in public domain implementations of
MPI([10, 8]). The issues are discussed in the following sec-
tions.
Number of Sockets: The number of allowed file descriptors
is determined by FD MAX (typically 1024 on Linux). On
larger systems, even the standard TCP implementation can
exhaust the supply of file descriptors, when it opens one
socket for each MPI process in the system. For this reason,



both MPICH and OpenMPI open connections as they are
needed rather than opening all connections during a call to
MPI Init(), as is the case for LAM. The socket per TRC
design makes this problem even worse. The design may be
acceptable for small clusters, but has difficulty scaling to a
large number of processes or with programs that may use a
large number of tags and contexts.

The number of file descriptors can be reconfigured in the
kernel, however, there is also a significant memory cost as-
sociated with each TCP connection, which again prohibits
having large number of connections. Recent work by Gil-
feather and Maccabe [6] address the problem of the scalabil-
ity of connection management in TCP and introduce some
techniques for alleviating these problems in clusters. The
origin of their work was from similar problems that arise
in web servers, which also has to manage a large number
of connections and where techniques have been developed
to efficiently handle these connections. This work is a good
example of an advantage of using commodity transport pro-
tocols like TCP for MPI since one can take advantage of
state-of-the-art research on web servers.
Number of System Calls: The second issue is a performance
issue that arises because of the way in which the middle-
ware must poll the sockets that results in a large number of
system calls. As described in [10], the message progression
layer usually needs to execute a select() call to deter-
mine the next socket with available data and then needs one
or more read() calls to obtain the message. This results
in several system calls for each MPI call, which not only
requires a context switch, but also extra processing because
it is a kernel call [12]. In [10], they address this problem by
managing the expected and unexpected message structures
inside the kernel.
select System Call: A third issue is the performance of the
select() call, which is known to scale linearly with the
number of sockets. For example, as shown in [10] on a
3.06GHz dual Xeon machine, the cost of select() in-
creases linearly from under 100 microseconds for less than
200 sockets to 900 microseconds for 1000 sockets. Newer
system calls such as epoll() for Linux, and similar calls
in other operating systems, have tried to improve the event
handling performance of web-servers [5]. The socket per
TRC design still requires frequent select() calls partic-
ularly with MPI calls having wildcards.
TCP Flow Control: TCP flow control is a concern in any
TCP-based implementation. Since buffering is being done
by the transport layer, it is possible that when MPI receive
calls are delayed, the socket buffers fill and as a result trig-
ger TCP flow control to close the receive window. Closing
and opening the advertised receive window in TCP restricts
bandwidth because of TCP built-in timers and slow-start
mechanisms. This is particularly serious for high bandwidth
connections.

There is a mismatch between the event driven operation
of the transport layer and the sequential control operation
of the MPI program. Flow control at the transport layer at-
tempts to match the sender’s data rate to that of the receiver.
Messages in MPI are burstier and can easily trigger TCP’s
flow control mechanism. Flow control is an end-to-end
mechanism and thus not only reduces bandwidth but also
significantly adds to message latency. The standard TCP
implementation of the progression layer constantly empties
the socket buffers to reduce the chances of it filling. Also,
since all traffic between two processes is aggregated on a
single connection it tends to smooth out some of the bursti-
ness. The socket per TRC does not aggregate traffic and is
far more likely to trigger TCP flow control.

On the other hand, our socket per TRC design does make
it possible for the MPI program to take advantage of TCP’s
flow control mechanism since it possible to push back on
an individual flow by delaying receiving data on a particular
socket. At the user level, flow control allows the user to con-
figure and throttle the data rates on a particular TRC. How-
ever, the end-to-end nature of TCP’s flow control mecha-
nism makes such fine-grain flow control expensive in high
latency network environments.

In LAM there are flow control mechanisms within the
message progression layer itself rather than only using the
flow control of the underlying transport protocol [1]. By
pushing this functionality down into TCP, the socket per
TRC design prevents the MPI implementor to have to de-
sign a user level flow control mechanism and instead lets
them leverage the transport layer’s flow control mechanism,
including potential advances that may occur here by re-
search in the networking community.

4 SCTP-based MPI Middleware

We have implemented a version of the MPI middleware,
as a new RPI for LAM, that takes advantage of these new
features. The features of SCTP that had the most influence
on the design are the following: (a) SCTP introduces as-
sociations and streams, which generalizes the notion of a
connection. (b) SCTP can operate in a one-to-one manner
where, like TCP, there is an association between two ma-
chines, or it can operate in a one-to-many manner where
a single socket can receive messages from multiple clients
and where there are multiple associations, one for each
client. (c) SCTP, like UDP, is message-based and each
socket call returns a complete message. In the following
section we present the implementation of an SCTP-based
message progression layer.

4.1 Implementation

In SCTP, each association between endpoints can have
multiple streams. Messages within a stream are delivered



in order, but messages between streams can be delivered
independently of one another. As a result, unlike a TCP
connection, segment loss or out-of-order delivery on one
stream does not block the delivery of messages on other
streams (i.e., no head of line blocking). We take advantage
of streams in our SCTP-based implementation of MPI by
mapping different MPI context and tag combinations onto
different streams The use of an association for each rank
and a stream for each context and tag combination results
in a mapping of each TRC to its own SCTP stream. This
uses only a single one-to-many socket. The mapping of
each TRC to its own stream is semantically equivalent to
the mapping of TRCs to sockets in Section 3. Both satisfy
the MPI semantics of in-order message delivery, however,
SCTP avoids many of the disadvantages discussed in Sec-
tion 3.2.

In the remainder of this section, we discuss the thinned
SCTP-based message progression layer with respect to
message matching, expected/unexpected messages, and the
short/long message protocol. We describe what features are
required of SCTP for full message progression layer elimi-
nation.
Message Matching: In SCTP, we used a one-to-many socket
that is similar to a UDP socket. Using socket calls, it is pos-
sible to specify the association (destination machine) and
stream on which to send messages. Again, just as in the
case of one socket per TRC, we can store this information
in the communicator that is a parameter to each send call.
Ideally, on the receive side we would like to receive the next
message on a given association and stream; this is because
TRCs are mapped to streams which maintain the order that
messages were sent, adhering to MPI messaging seman-
tics. However, SCTP does not support this functionality for
streams or associations in the one-to-many style and simply
returns the next available message on any association and
any stream.

Semantically, the provided sctp recvmsg() socket
call is equivalent to an MPI Recv with MPI ANY RANK
and MPI ANY TAG. As a result, for MPI receive calls that
do not use the wildcards, it is necessary to do message
matching. It is thus not possible to eliminate message
matching from the design without maintaining global ex-
pected and unexpected message queues.

SCTP one-to-many style does simplify the socket calls
needed to receive messages since no select() call is re-
quired because only one socket is used; implementing it us-
ing a single one-to-many socket makes the message pro-
gression layer thinner. Each sctp recvmsg() socket
call returns a full message that has either to be delivered
or added to the unexpected message structure. In compari-
son to the socket per TRC design in Section 3, it avoids the
costly select() call.
Expected/Unexpected Messages: Since we need to do mes-

sage matching, our message progression layer still needs
to maintain expected and unexpected message structures.
Each of these queues needs to be global across all TRCs be-
cause the SCTP API does not let one specify the stream and
association on the sctp recvmsg() call. In the socket
per TRC design, these queues were eliminated from within
the progression layer; their functionalities were effectively
split. For the expected message queue, a more local form
of the queue was pulled up into the MPI library, having
a hash of queues keyed by the TRC. The ability to fully
specify the TRC within the recv() call was a trait of the
transport protocol so expected message queues were split
between the MPI library and the transport protocol. For
unexpected message queues in the socket per TRC design,
they were pushed fully down onto the transport protocol.
Traditional designs such as LAM place the queues in the
message progression layer. In any design, while possible to
maintain these queues in the MPI library and attach them to
a communicator, their mere existence and necessity shows
that progression layer elimination with SCTP using a one-
to-many socket can not push as much functionality down
onto the transport as is possible in the socket per TRC de-
sign unless the SCTP API provided additional capabilities.
These capabilities include the ability to receive messages
on a particular association and stream as well as the abil-
ity to ask the socket which streams currently have data that
can be read without blocking (i.e., something similar to the
functionality of select()).

Although, every sctp recvmsg() call returns a mes-
sage, we continue reading from the socket if there are out-
standing requests in order to obtain and deliver as many
messages as possible. Like TCP, SCTP has a socket option
that can be set so that I/O functions called on that socket re-
turn immediately when the socket call would block (return-
ing errno EWOULDBLOCK); for non-blocking MPI calls,
we can exit the message progression layer when this errno
is returned. In addition, the SCTP receive socket buffer size
can be set by the user, but all streams and associations share
the same buffer, congestion control settings, and flow con-
trol settings. To avoid triggering the flow control mecha-
nisms, it is better to empty the buffer as often as possible;
this is why we read as much as we can from the socket when
we enter the message progression layer. Given no other user
input, this design decision is likely the best choice since
it progresses all messages that are already reside at the re-
ceiver.
Short/Long Messages: The need to manage unexpected
messages implies that we will need a short and long mes-
sage protocol to avoid resource exhaustion.

The first issue that arises is handling messages which
exceed SCTP’s socket send buffer size. Messages that
exceed this size need to be fragmented and re-assembled
by the message progression layer. We use a rendezvous



mechanism where, once the rendezvous has occurred, the
sender fragments the MPI message into fragments and the
receiver assembles these fragments in the user’s receive
buffer as specified in the MPI receive call. The sender
could loop sending each fragment, however, this does not
allow other messages to advance. As a result, we used
round robin scheduling of all out-going SCTP messages and
recorded their progress in a structure pointed to from the
MPI Request. This allows MPI messages with different
TRCs to progress concurrently on an association between
two machines. Special care had to be taken to eliminate
race conditions that could occur when MPI messages had
the same TRC [8].

The second issue is flow control. As previously men-
tioned, it is not possible in SCTP to request the next mes-
sage on a particular stream and association. A reason for not
providing this functionality is that streams share the receive
socket buffer inside the transport layer. Providing a mecha-
nism for obtaining messages on a particular stream intro-
duces the possibility of messages not being selected and
eventually exhausting the socket buffer resulting in dead-
lock. The potential for deadlock would be difficult to de-
tect because it depends on the possible ordering of data seg-
ments received by the transport layer.

The socket per TRC design was able to eliminate the
short/long message protocol because it could rely on TCP’s
flow control mechanism. Although the consequences of
closing the advertised receive window makes the use TCP’s
flow control costly, a push back mechanism would give the
MPI program control over which message to advance. This
would allow users the ability to advance messages on its
critical path and potentially improve the overall execution
time of the program.

SCTP cannot provide the level of fine grain flow con-
trol that would be necessary to allow the user to push back
on a particular stream. SCTP streams and thus TRCs share
flow control values. As a result, one TRC can affect the
performance of another. To try to combat this, it is possi-
ble in the SCTP one-to-many socket style to allocate socket
buffer space on a per association basis, which would give
more control over flow control from a particular machine,
but there still is no call provided in the API to tell which
associations or streams have data ready to be read.

5 Conclusions

In this paper, we discussed and compared MPI designs
using TCP and SCTP. The goal of these designs is to thin
or eliminate the communication component from the MPI
middleware. This is done by pushing functionality com-
monly present in this component down onto a transport pro-
tocol. As a result, MPI implementations are simplified and
in addition, they can leverage advances in networking pro-

tocol research instead of having to implement certain func-
tionalities in the middleware. Our designs illustrate some
limitations of TCP in terms of scalability and of SCTP in
terms of missing features. For SCTP, because of the lack of
stream-level flow control and the ability to receive from a
particular stream, it is not possible to completely eliminate
the message progression layer with something more scal-
able than a socket per TRC. However, SCTP scales better
than TCP, it avoids the head of line blocking that can occur
in standard TCP implementations and it provides more op-
portunity for fairer concurrent message transfer in the case
of longer messages.

MPI designs that make extensive use of standard proto-
col stacks may provide a solution to interoperability among
interconnects and can take advantage of commodity net-
working as it continues to gain momentum.
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