Scalable Core-Based Methodology and Synthesizable Core for Systematic Design
Environment in Multicore SoC (MCSoC)

Ben A. Abderazek, Tsutomu Yoshinaga and Masahiro Sowa
The University of Electro-communications
Graduate School of Information Systems
1-5-1 Chofu-gaoka, Chofu-shi, Tokyo 1828585
E-mail: [ben,yosinaga,sowa]@is.uec.ac.jp

Abstract

The strong demand for complex and high performance

embedded system-on-chip requires quick turn around de-
sign methodology and high performance cores. Thus, there
is a clear need for new methodologies supporting efficient
and fast design of these systems on complex platforms im-
plementing both hardware and software modules.
In this paper, we describe a novel scalable core-based
methodology for systematic design environment of applica-
tion specific heterogeneous multicore systems-on-chip (MC-
SoC). We also developed a high performance 32-bit Syn-
thesizable QueueCore (QC-2) with single precision floating
point support. The core is targeted for special purpose ap-
plications within our target MCSoC system. We present the
architecture description and design results in a fair amount
of details.

1. Introduction

System on chips designs have evolved from fairly sim-
ple uni-core, single memory designs to complex multicore
systems on-chip consisting of a large number of IP blocks
on the same silicon. As more and more cores (macros)
are integrated into these designs to share the ever increas-
ing processing load, the main challenge lies in efficiently
and quickly integrating them into a single system capable
of leveraging their individual flexibility. Moreover, to con-
nect the heterogeneous cores, the multi-core architecture
requires high performance complex communication archi-
tectures and efficient communication protocols architecture,
such as hierarchical bus [1, 2], point-to-point connection
[15], or Time Division Multiplexed Access based bus [3].
Current design methods tend toward mixed HD/SW co-
designs targeting multicore system-on-chip for specific ap-

plications [16, 18, 21]. To decide on the lowest cost mix
of cores, designers must iteratively map the device’s func-
tionality to a particular HW/SW partition and target archi-
tecture. Every time the designers explore a different system
architecture, the interfaces must be redesigned.
Unfortunately, the specific target applications generally lead
to a narrow application domain and also managing all of
these details is so time consuming that designers typically
cannot afford to evaluate several different implementations.
Automating the interface generation is an alternative solu-
tion and a critical part of the development of embedded sys-
tem synthesis tools. Currently most automation algorithms
implement the system based on a standard bus protocol
(input/output interface) or based on a standard component
(processing) protocol. Recent work has used a more gener-
alize model consisting of heterogeneous multicore with ar-
bitrary communication links. The SOS algorithm [19] uses
an integer linear programming approach. The co-synthesis
algorithm, developed in [20], can handle multiple objec-
tives such as costs, performance, power and fault tolerance.
Unfortunately, such design practices allow only limited au-
tomation and designers resort to manual architecture design,
which is time consuming and error-prone especially in such
complex SoCs.

Our design automation algorithm generates generic-
architecture-template (GAT), where both processing and in-
put/output interface may be customized to fit the specific
needs of the application. Therefore, the utilization of the
GAT enables a designer to make a basic architecture design
without detailed knowledge of the architecture.

High performance processor cores are also needed for high
performance heterogeneous multicore SoCs. Thus, we
also describe a high performance synthesizable soft-core
architecture, which will be used as a task-distributor-core
(TDC) in the MCSoC system. The system may consist,
then, of multiple processing cores of various types (i.e.,
QueueCore(s), general purpose processor(s), domain spe-

cific DSPs, and custom hardware), and communication
links. The ultimate goal of our systematic design automa-
tion and architecture generation is the to improve perfor-
mance and the design efficiency of large scale heteroge-
neous multicore SoC. The rest of the this work is organized
as follow: Section 2 give conventional SoC design method-
ology. Section three gives our multicore architecutre plat-
form description. Section four gives our core-based method
for a systematic environment in a heterogeneous MCSoC.
Section five gives the synthesizable QC-2 core architecture.
Section six describes the QC-2 core evaluation. In the last
section we give the conclusion.

2. Problem identification and background

The gate densities achieved in current ASIC and FPGA
devices give the designers enough logic elements to im-
plement all the different functionalities on the same chip
(SoC) by mixing self-design modules with third party one
[3, 8, 18]. This possibility opens new horizons especially
for embedded systems where space constraints are as im-
portant as performance. The most fundamental character-
istic of an SoC is complexity. The SoC is generally tai-
lored to the application rather than general-purpose chip,
and may contain memory, one or several specialized cores,
buses, and several other digital functions. Therefore, em-
bedded applications cannot use general-purpose computers
(GPPs) either because a GPP machine is not cost effective
or because it cannot provides the necessary requirements
and performance. In addition, a GPP machine can’t provide
reliable real-time performance.

In Fig. 1, a typical multicore architecture is shown. The typ-

ARM/QC-2 DMA E:CL ‘C"er | MEM2 | UARTI | ITC |
AHB/
system AHB bus APB peripheral APB bus

Bridge

MEMI USB SDRAM MEM3 Timer
controller

| UART2 |

Figure 1. SoC typical architecture

ical model is made of a set of cores communicating through
an AMBA communication architecture [1]. The communi-
cation architecture constitutes the hardware links that sup-
port the communication between cores. It also provides
the system with the required support for the general data
transfer with external devices common to most applications.
Inter-component link is often in the critical path of such a
system and is a very common source of performance bottle-
necks [23]. It thus becomes imperative for system designers
to focus on exploring the communication design space.

Conventional SoC architectures are classified into tow
types: single-processor and multiprocessor architectures. A
single-processor architecture consists of a single CPU and
one or several ASICs. A master-slave synchronization pat-
tern is adopted in this type. The single-processor SoC type
can only offer a restricted performance capability in many
applications because of the lack of true parallelism. A mul-
tiprocessor SoC architecture is a system that contains multi-
ple instruction set processors (CPUs) and also one or several
ASICs. In term of performance, multiprocessor SoCs per-
form better for several embedded applications. However,
they (multiprocessor SoCs) introduce new challenges: first,
the inter-processor communication may require more So-
phisticated networks than a simple shared bus; and second,
the architecture may include more than one master proces-
sor. In either type, high processing performance is required
because most of the applications for which SoCs are used
have precise performance requirements deadlines. This is
different from conventional computing, where care is gen-
erally about processing speed. We will discuss the perfor-
mance issue in the following section when we introduce the
QC-2 core.

In general, the architectures used in conventional methods
of multiprocessor SoC design and custom multiprocessor
architectures are not flexible enough to meet the require-
ments of different application domains (e.g. only point-to-
point or shared bus communication is supported.) and not
scalable enough to meet different computation needs and
different complexity of various applications. A promising
approach was proposed in [20]. This method is a core-
based solution, which enables integration of heterogeneous
processors and communications protocols by using abstract
interconnections. Behaviour and communication must be
separated in the system specification. Hence, system com-
munication can be described at a higher-level and refined
independently of the behaviour of the system. There are
two component-based design approaches: usage of a stan-
dard bus (i.e., IBM CoreConnect) protocol and usage of a
standard component (i.e., VSIA) protocol [16, 18, 21].

For the first approach, a wrapper is designed to adapt the
protocol of each component to CoreConnect protocols. For
the second case, the designer can choose a bus protocol and
then design wrappers to interconnect using this protocol.
This paper presents a new concepts, called virtual architec-
ture, to cover both methods listed above. The virtual sys-
tem represents an architecture as an abstract netlist of vir-
tual cores, which should use wrappers to get adapt accesses
from the internal component to the external port.

3. ESPOIR multicore architecture platform

The target model of our architecture consists of CPUs
(i.e., QueueCore (QC-2), GPPs), hardware blocks, memo-

ries, and communication interfaces. The addition of new
CPUs will not change the main principle of the proposed
methodology. The processors are connected to the shared
communication architecture via communication network,
which maybe of whatever complexity from a single bus
to a network with complex protocols. However, to ensure
modularity, standard and specific interfaces to link cores to
the communication architecture should be used. This gives
the possibility to design separately each part of the applica-
tion. For this purpose, we proposed in [22] a modular de-
sign methodology. One important feature of the proposed
method is that the generic assembling scheme largely in-
creases the architecture modularity. Figure 2 show a typi-

--. p_in

memory QC-2 memory SH

comm. interface

| communication network |

SH memory

comm. interface

comm. interface

QC-2 memory

Figure 2. MCSoC system platform. This is a
typical instance of the architecture. In this
system, the addition of a new core will not
change the principle of the methodology.

cal instance of the platform made of 4 processors (2*QC-2
cores and 2*SH cores -Hitachi SuperH core). The QC-2
core is a special purpose synthesizable core (described in
details in section 5).

The designer can configure: the number of CPUs, I/O ports
for each processor and interconnections between proces-
sors, the communication protocols and the external connec-
tions (peripherals). The communication interface depends
on the processor attributes and on the application-specific
parameters. The communication interface that we intend
to use to connect a given processor to the communication
architecture, consists of two parts: one part specific to the
processor’s bus; the second part is generic and depends on
communication protocols and on the number of communi-
cation channels used. This structure allows the “isolation”
of the CPU core from the communication network.

Each interface module acts as a co-processor for the cor-
responding CPU. The application dependent part may in-

clude several communication channels. The arbitration is
done by the CPU-dependent part and the overhead induced
by this communication co-processor depends on the design
of the basic components and may be very low. The use of
this architecture for interfaces, provides huge flexibility and
allows for modularity and scalability.

4. Application specific MCSoC design method

In our design methodology, the application-specific pa-
rameters should be used to configure the architecture plat-
form and an application-specific architecture is produced.
These parameters result from an analysis of the application
to be designed. The design flow graph (DFG) is divided into
14 7linked — tasks” as shown in Fig. 3 (a)-(b) and sum-
marized in Table 1. The first task (node T1) defines the

(a) (b)

Figure 3. Linked-task design flow graph
(DFG).(a) Hardware related tasks,(b) Applica-
tion related tasks.

architecture platform using all fixed architectural parame-
ters: (1) Network type, (2) Memory architecture, (3) CPU
types, and (4) other HW modules. Using the application
system level description (second task) and the architectural
fixed parameters, the selection of the actual design param-
eters (number of CPUs, the memory sizes for each core,
I/0O ports for each core and interconnections, between cores,
the communication protocols and the external peripherals)
is performed in task 3 (node T3). The outputs of task 3 are:
an abstract architecture description (node T7) and a map-

Table 1. Linked-task description.
Task | Description \

Tl Define architecture platform

T2 Describe application system level
T3 select design parameters

T4 Instantiate Pr. att.

TS Instantiate communication

T6 mapping table

T7 Describe abstract architecture
T8 Design architecture

T9 Inst.IP cores (Pr.and Mem)
T10 | H-SoC synthesis

T11 | Software adaptation

T12 | Binary code

T13 | Pr. and Mem. emulators

T14 | H-SoC validation

ping table (node T6). Node T7 is the internal structure of
the target system architecture. It contains all the application
specific parameters. The mapping table (T7) contains the
addresses allocation and memory map for each core. The
complete architecture design task (T8) is linked to the ab-
stract architecture and the mapping table nodes (tasks). Fi-
nally, binary programs that will run on the target processors
are produced in task 11 (node T11). For validation, cycle
accurate simulation for CPUs and HDL (Verilog or VHDL)
modeling for other cores/modules can be used for the whole
architecture.

5. QC-2 core architecture

We proposed in [5, 6] a produced order parallel Queue
processor (QueueCore) architecture. The key ideas of the
produced order queue computation model of our architec-
ture are the operands and results manipulation schemes.
The Queue computing scheme stores intermediate results
into a circular queue-register (QREG). A given instruc-
tion implicitly reads its first operand from the head of the
QREQG, its second operand from a location explicitly ad-
dressed with an offset from the first operand location. The
computed result is finally written into the QREG at a po-
sition pointed by a queue-tail pointer (QT). An important
feature of this scheme is that, write after read false data de-
pendency does not occur [5]. Furthermore, since there is
no explicit referencing to the QREG, it is easy to add ex-
tra storage locations to the QREG when needed. The other
feature of the POC computing model is its important affect
on the instruction issue hardware. The QC-1 core [6] ex-
ploits instruction-level parallelism without considerable ef-
fort and need for heavy run time data dependence analysis,

resulting in a simple hardware organization when compared
with conventional Superscalar processors. This also allows
the inclusion of a large number of functional units into a
single chip, increasing parallelism exploitation. Since the
operands and result addresses of a given static-instruction
(compiler generated) are implicitly computed during run-
time, an efficient and fast hardware mechanism is needed
for parallel execution of instructions. The queue processor
implements a so named queue computation mechanism that
calculates operands and result addresses for each instruction
(discussed later). The QC-2 core, presented in this work,
implements all hardware features found in QC-1 core and
also supports single precision floating point accelerator.

In this section we describe the QC-2 (extended and opti-
mised version of the QueueCore processor) architecture and
prototyping results. As we explained in earlier section, the
QC-2 core will be integrated into our H-SoC system.

5.1 Hardware pipeline structure

The QC-2 supports a subset of the produced order queue
processor instruction set architecture [6]. All instructions
are 16-bit wide, allowing simple instructions fetch and
decode stages and facilitate instructions pipelining. The
pipeline’s regular structure allows instructions fetching,
data memory references, and instruction execution to pro-
ceed in parallel. Data dependencies between instructions
are automatically handled by hardware interlocks. Bellow
we describe the salient characteristics of the QueueCore ar-
chitecture.

(1) Fetch (FU): The instruction pipeline begins with the
fetch stage, which delivers four instructions to the de-
code unit each cycle. This is the same bandwidth as the
maximum execution rate of the functional units. At the
beginning of each cycle, assuming no pipeline stalls or
memory wait states occur, the address pointer hardware
of the fetched instructions issues a new address to the
Data/Instruction memory system. This address is either the
previous address plus 8 bytes or the target address of the
currently executing flow-control instruction.

(2) Decode (DU): The QC-2 decodes four instructions in
parallel during the second phase and writes them into the
decode buffer. This stage also calculates the number of
consumed (CNBR) and produced (PNBR) data for each in-
struction [5]. The CNBR and PNBR are used by the next
pipeline stage to calculate source and destination locations
for each instruction. Decoding stops if a queue becomes
full.

(3) Queue computation (QCU): The QCU calculates the
first operand (sourcel) and destination addresses for each
instruction. The mechanism used for calculating the
sourcel address in given in Fig. 4. The QCU unit keeps
track on the current value of the queue-head and queue-tail

pointers. Four instructions arrive to the QCU unit each cy-
cle.

(4) Barrier: The major goal of this unit/stage is to insert
barrier flags for all barrier type instructions.

(5) Issue: Four instructions are issued for execution each
cycle. In this stage, the second operand (source2) of a
given instruction is first calculated by adding the address
sourcel to the displacement that comes with the instruc-
tion. The second operand’s address calculation could be
earlier calculated in the QCU stage. However, for a bal-
anced pipeline consideration, the source?2 is calculated in
this stage. The hardware mechanism used for calculating
the second operand (source2) address is shown in the left
part of Fig. 4 (discussed later).

An instruction is ready to be issued if its data operands and
its corresponding functional unit are available. The proces-
sor reads the operands from the QREG in the second half of
stage 5 and execution begins in stage 6.

6) Execution (EXE): The macrodataflow execution core
consists of 1 integer ALU unit, 1 floating-point accelera-
tor unit, 1 branch unit, 1 multiply unit, 4 set-units, and 2
load/store units.

The load and store units share a 16-entry address window
(AW), while the integer unit and the branch unit share a 16-
entry integer window (IW). The FPA has its own 16-entries
floating point window (FW). The load/store units have their
own address generation logic. Stores are executed to mem-
ory in-order.

> SRC1(n-1)

| SRS2(n-1)

e M P | »-DEST(n-1)

SRCIn
>

>
> >

| Srs2n
OFFSET(h)
-

—— e e s |p»-DESTR
QTn

OFFSET: positive/negative integer value that indiactes
the location of SRC2(n-1) from the QH(n-1)

QTn :queue tail value of instruction n

DESTn : destination location of instruction n

SRCI(n-1): source data 1 of instruction (n-1)
SRC2(n-1): source data 2 of instruction (n-1)

alue
QTn+1: next queue tail value

Figure 4. QC-2’s operands addresses calcu-
lation hardware.

5.2 Dynamic operands calculation

To execute instructions in parallel, the QC-2 core must
calculate the operands addresses (sourcel, source2 and
destination) for each instruction. Fig. 4 illustrates QC-
2’s dynamic operands computation hardware. To calculate

the sourcel address, the consumed operands (CNBR) field
(port field) is added to the current QH value (QHO). To find
the address of the first operand and the number of produced
results (PNBR- 8-bit filed) is added to the current QT value
(QTO) to calculate the result address (QT1) of the first in-
struction. Similar mechanism is used for the other three
instructions. Because the next QH and QT values are de-
pendent on the current QH and QT values, the calculation
is performed sequentially. Each QREG entry is written ex-
actly once and it is busy until it is written. If a subsequent
instruction needs its value, that instructions must wait until
it is written. After QREG entry is written, it is ready.

5.3 Floating point organization

The QC-2 floating-point accelerator (FPA) is a pipelined
structure and implements a subset of the IEEE-754 single
precision floating-point standard [13, 14]. The FPA con-
sists of a floating-point ALU (FALU), floating-point mul-
tiplier (FMUL), and floating point divider (FDIV). The
FALU, FMUL, FDIV and the floating-point queue-register
(FQREG) employ 32-wide data paths. Most FPA operations
are completed within three execution cycles. The FPA’s exe-
cution pipelines are simple in design for high speeds that the
QC-2 core requires. All frequently used operations are di-
rectly implemented in the hardware. The FPA unit supports
the four rounding modes specified in the IEEE 754 floating
point standard: round toward-to-nearest-even, round toward
positive infinity, round toward negative infinity, and round
toward zero.

Exponent Exponent Mantissa Mantissa Sign Sig Sign Sign Exponent Exponent Mantissa Mantissa
A(8-bit) B(8-bit) A(23-bit) B(23-bit) A(1-bit) B(1-bity | | A(I-bit) B(I-bit) A(8-bit) B(8-bit) A (23-bit) B (23-bit)
— E— e EoED B3 e

exponent
difference

stage 3

/i 7| normalizer/

rounding

Result Result
mantissa exponent

Result Result
exponent mantissa

Figure 5. QC-2’s FPA hardware.

5.3.1 Floating point ALU implementation

The FALU does floating-point addition, subtraction, com-
pare and conversion operations. Its first stage subtracts
the operands exponents (for comparison), selects the larger
operand, and aligns the smaller mantissa. The second stage
adds or subtracts the mantissas depending on the operation
and the signs of the operands. The result of this operation

may overflow by a maximum of 1-bit position. Logic em-
bedded in the mantissa adder is used to detect this case,
allowing 1-bit normalization of the result on the fly. The
exponent data path computes (E+1). If the 1-bit overflow
occurred, (E+1) is chosen as the exponent of stage 3; other-
wise, E is chosen. The third stage performs either rounding
or normalization because these operations are not required
at the same time. This may also result in a 1-bit overflow.
Mantissa and exponent corrections, if needed, are imple-
mented exactly in this stage, using instantiations of the man-
tissa adder and exponent blocks.

The area efficient FALU hardware is shown in Fig. 5 (left

block). The exponents of the two inputs (Exponent A and
Exponent B) are fed into the exponent comparator, which
is implemented with a subtracter and a multiplexer. In the
pre-shifter, a new mantissa in created by right shifting the
mantissa corresponding to the smaller exponent by the dif-
ference of the exponents so that the resulting two mantissas
are aligned and can be added. The size of the preshifter
is about m * log(m) LUT's, where m is the bit-width of the
mantissa. If the mantissa adder generates a carry output, the
resulting mantissa is shifted one bit to the right and the ex-
ponent is increased by one. The normalizer transforms the
mantissa and exponent into normalized format. It first uses
a leading-one detector (LD) circuit to locate the position of
the most significant one in the mantissa. Based on the po-
sition of the LD, the resulting mantissa is left shifted by an
amount subsequently deducted from the exponent. If there
is an exponent overflow (during normalization), the result is
saturated in the direction of overflow and the overflow flag
is set. Underflows are handled by setting the result to zero
and setting an underflow flag.
We have to notice that the LD anticipator can be also pre-
dicted directly from the input to the adder. This determi-
nation of the leading digit position is performed in parallel
with the addition step so as to enable the normalization shift
to start as soon as the addition completes. This scheme re-
quires more area than a standard adder, but exhibits reduced
latency. For hardware simplicity and logic limitation, our
FPA hardware does not support earlier LD prediction.

5.3.2 Floating point multiplier implementation

The right part of Fig. 5 shows the data path of the FMUL
unit. As with other conventional architectures, QC-2’s
FMUL operation is much like integer multiplication. Be-
cause floating point numbers are stored in sign-magnitude
form, the multiplier needs only to deal with unsigned inte-
ger numbers and normalization. Similar to the FALU, the
FMUL unit is a three stages pipeline that produces a result
on every clock cycle. The bottleneck of this unit was the
24 x 24 integer multiplications.

The first stage of the floating-point multiplier is the same

denormalization module used in addition to insert the im-
plied 1 to the mantissa of the operands. In the second stage,
the mantissas are multiplied and the exponents are added.
The output of the module are registered. In the third stage,
the result is normalized or rounded.

The multiplication hardware implements the radix-8 modi-
fied Booth [17] algorithm. Recoding in a higher radix was
necessary to speed up the standard Booth multiplications
algorithm since greater numbers of bits are inspected and
eliminated during each cycle, effectively reduces the to-
tal number of cycles necessary to obtain the product. In
addition, the radix-8 version was implemented instead of
the radix-4 version because it reduces the multiply array in
stage 2.

6. QC-2 synthesis and evaluation results

6.1 Methodology

In order to estimate the impact of the description style on
the target FPGAs efficiency, we have explored logic synthe-
sis for FPGAs. The idea of this experiment was to optimise
critical design parts for speed or resource optimisations.
Optimising the HDL description to exploit the strengths of
the target technology is of paramount importance to achieve
an efficient implementation. This is particularly true for FP-
GAs targets, where a fixed amount of each resource is avail-
able and choosing the appropriate description style can have
a high impact on the final resources efficiently [4, 7]. For
typical FPGAs features, choosing the right implementation
style can cause a difference in resource utilization of more
than an order of magnitude [9, 10]. Synthesis efficiency is
influenced significantly by the match of resource implied
by the HDL and resources present in a particular FPGAs
architecture. When an HDL description implies resources
not found in a given FPGAs architecture, those elements
have to be emulated using other resources at significant cost.
Such emulation can be performed automatically by EDA
tools in some cases, but may require changes in the HDL
description in the worst case, counteracting aim of a com-
mon HDL source code base. In this work, our experiments
and the results described are based on the Altera Stratix ar-
chitecture [12]. We selected Stratix FPGAs device because
it has a good tradeoffs between routability and logic capac-
ity. In addition it has an internal embedded memory that
eliminates the need for external memory module and offers
up to 10 Mbits of embedded memory through the TriMa-
trix TM memory feature. We also used Altera Quartus II
professional edition for simulation, placement and routing.
Simulations were also performed with Cadence Verilog-XL
tool [11].

Table 2. QC-2 processor design results: mod-
ules complexity as LE (logic elements) and
TCF (total combinational functions) when
synthesised for FPGA (with Stratix device)
and Structured ASIC (HardCopy Il) families.

’ Descriptions \ Modules \ LE \ TCF ‘
instruction fetch unit IF 633 414
instruction decode unit | ID 2573 1564

queue compute unit QCU 1949 1304
barrier queue unit BQU 9450 | 4348

issue unit IS 15476 | 7065
execution unit EXE 7868 3241
queue-registers unit QREG 35541 | 21190
memory access MEM 4158 3436
control unit CTR 171 152

’ Queue processor core \ QC-2

77819 | 42714 |

6.2 Design results

Figure 6 compares two different target implantations for
256x33 QREG for various optimisations. Depending on the
target implementations device, either logic elements (LEs)
or total combinational functions (TCF) are generated as
storage elements. Implementations based on HardCopy de-
vice, which generates TCF functions give almost similar
complexity for the three used optimisations — area (ARA),
speed (SPD) and balanced (BLD). For FPGA implementa-
tion, the complexity for SPD optimisation is about 17% and
18% higher than that for ARA and BLD optimisations re-
spectively. Table 2 summarizes the synthesis results of

g
LE-BLD 7 : 1 |
TCF-SPD :|
LE-SPD | !
TCF-ARA :|

LE-ARA]

L L 1

implementation optimizations

0 7550 15100 22650 30200 37750 45300 52850
complexily

Figure 6. Resource usage and timing for
256*33 bit QREG unit for different coding and
optimization strategies.

the QC-2 for the Stratix FPGA and HardCopy targets. The
complexity of each core module as well as the whole QC-
2 core are given as the number of logic elements (LEs) for

the Stratix FPGA device and as the TCF cell count for the
HardCopy device (Structured ASIC). The design was op-
timised for BLD optimisation guided by a properly imple-
mented constraint table. We also found that the processor
consumes about 80.4% of the total logical elements of the
target device.

The achievable throughput of the 32-bit QC-2 core on dif-
ferent execution platforms is shown in Fig. 7. For the hard-
ware platforms, we show the processor frequency. For com-
parison purposes, the Verilog HDL simulator performance
has been converted to an artificial frequency rating by di-
viding the simulator throughput by a cycle count of 1 CPL.
This chart shows the benefits which can be derived from di-
rect hardware execution using a prototype when compared
to processor simulation. The data used for this simulation
are based on event-driven functional Verilog HDL simula-
tion [5].

CFPGA Prototype O STRUCT-ASIC O Verilog Si

Verilog Simulator

STRUCT-ASIC] i i

FPGA Prototype]

1.0E+00 10E+01 1.0E+02

log. processor frequency (Hz)

Figure 7. Achievable frequency is the in-
struction throughput for hardware implemen-
tations of the QC-2 processor. Simulation
speeds have been converted to a nominal fre-
quency rating to facilitate comparison.

7. Conclusion

In this research work we described two main contribu-
tions: (1) a scalable core based methodology for generic ar-
chitecture model and (2) a Synthesizable 32-bit QC-2 core
with floating point support targeted for high performance
heterogeneous multicore SoC (MCSoC). The proposed de-
sign methodology, although it was not tested, is expected
to have a big effect of system scalability, modularity and
design time. The method also should permit a systematic
generation of multicore architecture for multicore embed-
ded system-on-chip MCSoCs.

The second contribution is the implementation and optimi-
sation of a QC-2 core - an improved version of our earlier
designed QC-1 core. The 32-bit synthesizable QC-2 core

supports single precision floating point support. It was cor-
rectly synthesesized and tested with several Testbenches.
The QC-2 core was, then, optimised for speed guided by
a properly implemented constraint table. We found that the
processor consumes about 80.4% of the total logical ele-
ments of the target FPGA device. It achieves about 22.5
and 25.5 MHz for 16 and 264 QREG entries respectively.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

D. Flynn, ”AMBA: enabling reusable on-chip de-
signs”, IEEE Micro, vol.17, n.4,July 1997, pp.20-27.

IBM CoreConnect Bus Architecture,
www-03.ibm.com/chips/products/coreconnect/

D. Wingard and A. Kurosawa, Integration Architec-
ture for System-on-a-Chip Design, Proceedings of
IEEE 1998 Custom integrated Circuits Conference,
May 1998, pp. 85-88.

G. De Micheli, R. Ernst and W. Wolf, "Readings
in Hardware/Software co-design”, Morka Kaufmann
Publishers, ISBN 1-55860-702-1.

M. Sowa, B. A. Abderazek and T. Yoshinaga, ”Par-
allel Queue Processor Architecture Based on Pro-
duced Order Computation Model”, Int. Journal of
Supercomputing, Vol.32, No.3, June 2005, pp.217-
229.

B. A. Abderazek, M. Arsenji, S. Shigeta, T. Yoshi-
naga and M. Sowa, “Queue Processor for Novel
Queue Computing Paradigm Based on Produced Or-
der Scheme”, Proc. of HPC, IEEE CS, Jul. 2004, pp.
169-1717.

S. Aditya, B. R. Rau and V. Kathail, "Automatic
Architectural Synthesis of VLIW and EPIC Proces-
sors”, Proc. 12th Int. Symposium of System Syn-
thesis, IEEE CS Press, Los Alamitos, Calif., 1999,
pp-107-113.

M. Sheliga and E. H. Sha, "Hardware/Software Co-
design With the HMS Framework”, Journal of VLSI
Signal Processing Systems, Vol. 13, No.1, 1996, pp.
37-56.

S. Chaudhuiri, S. A. Btlythe and R. A. Walker, "A
solution methodology for exact design space explo-
ration in a three dimensional design space”, IEEE
Transactions on VLSI Systems, Vol. 5,1997, pp.69-
81.

D. Lewis, V. Betz, D. Jefferson, et al., ”The Stratix
Routing and Logic Architecture”, in Proc. IEEE FP-
GAs, Monterey, CA, 2003, pp. 1220.

[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Cadence Design Systems:http://www.cadence.com/.
Altera Design Software: http://www.altera.com/.

IEEE Standard for Binary Floating-point Arithmetic,
ANSI/IEEE Standard 754, 1985.

IEEE task P754, ”A proposed standard fr binary
floating-ponit arithmetic”, IEEE Computer, vol. 14,
no. 12, pp.51-62, March 1981.

Mirko Loghi, Federico Angiolini, Davide Bertozzi,
Luca Benini, Roberto Zafalon, “Analyzing On-
Chip Communication in a MPSoC Environ-
ment,Proceedings of the conference on Design”,
Design Automation and test in Europe, Vol.2,
Feb.16-20, 2004.

R. Ernst, J. Henkel, T. Benner, “Hardware-software
cosynthesis for microcontrollers”, IEEE Design and
Test,Dec. 1993, pp. 64-75.

A. D. Booth, A signed binary multiplication tech-
nique, Quart. J. Mech. Appl. Math., vol. 4, 1951,pp.
236240.

Multiprocessor System-on-Chip, Morgan Kaufman
Pblishers,ISBN:0-12385-251-X, 2005.

S. Prakash and A. Parker, ”SoS: Synthesis of
application-specific heterogeneous multiprocessor
systesm”, J. Parallel Distributed Computing, vol. 16,
1992, pp. 338-351.

B. Dave, G. Lakshminarayama, and N. Jha,
”COSFA: Hardware-software co-synthesis of hetero-
geneous distributed embedded system architecures
for low overhead fault tolereance”, In Proc. IEEE
fault-Tolerant computing symp., 1997.pp. 339-348.

C. K. Lennard, P. Schaumont, G. de Jong, A. Haver-
inen, and P. Hardee, ”Standards for System-Level
Design: Practical Reality or Solution in Search of
a Question?”, Proc. Design Automation and Test in
Europe, Mar. 2000, pp. 576-585.

B. A. Abderazek, Sotaro Kawata, Tsutomu Yoshi-
naga, and Masahiro Sowa, "Modular Design Struc-
ture and High-Level Prototyping for Novel Embed-
ded Processor Core”, Proceedings of the 2005 IFIP
International Conference on Embedded And Ubiqui-
tous Computing (EUC’2005), Nagasaki, Japan, Dec.
6 -9, 2005, pp. 340-349.

S. Pasricha, N. Dutt, M. Ben-Romdhane,
”Constraint-Driven Bus Matrix Synthesis for
MPSoC”, Asia and South Pacific Design Automa-
tion Conference (ASPDAC 2006), Yokohama, Japan,
January 2006,pp.30-35.

