
Multidimensional Dataflow-based Parallelization for
Multimedia Instruction Set Extensions

Lewis B. Baumstark, Jr.
Department of Computer Science

University of West Georgia
lewisb@westga.edu

Linda M. Wills
Dept. of Electrical and Computer Engineering

Georgia Institute of Technology
linda.wills@ece.gatech.edu

Abstract

In retargeting loop-based code for multimedia
instruction set extensions, a critical issue is that vector
data types of mixed precision within a loop body
complicate the parallelization process since
corresponding array elements are misaligned in the
packed vectors. This paper presents a reverse-
engineering approach to parallelization which extracts
from the source code a multidimensional dataflow
graph representation with explicit parallel semantics.
The multidimensional annotations facilitate generating
vector data type conversion code during code
synthesis. This representation is independent of
sequential artifacts, allowing code synthesis to proceed
based on an abstract data-parallel model of the
program and the constraints imposed by the
architecture, such as vector length and available data
types. Our results show that this representation
facilitates parallelization of a wider range of loops
than traditional vectorization. The results of this
parallelization indicate loop speedups of 2 to 27 times
over sequential execution.

1. Introduction

Multimedia software applications, such as video
playback, image processing, and 3D video games,
typically have a high degree of inherent data-level
parallelism (DLP), since they often perform the same
operation(s) over all the elements of a large data set.
To harness this data parallelism, the instruction sets of
general purpose and embedded processors have been
extended with multimedia instructions that incorporate
single-instruction, multiple-data (SIMD) functionality.
Examples are Intel’s SSE2 [1] and AMD’s 3DNow!
[2]. These subword parallel instructions
simultaneously operate on multiple data elements
packed into a single register, resulting in execution
speedup. For example, the PADDW (“Packed Add
Word”) instruction included with Intel’s SSE2 [1]
extensions adds the corresponding elements of two

vectors of eight 16-bit data elements, providing an
ideal speedup of 8 over a sequential execution.

However, developing and porting applications for
these instruction sets has proven challenging.
Typically, loop kernels employing multimedia
instructions must be hand-optimized using in-lined
assembly code or intrinsic functions. Traditional loop
vectorization has been employed to generate SIMD
code automatically, but is, in general, a transliteration
technique that can only specify (to a back-end code
generator) which loop statements can be executed in
parallel. A deeper program understanding is required
to deal with issues beyond loop-carried dependencies,
such as architectural constraints. One such issue is that
of misaligned data accesses resulting from mixed-
precision data types; vectorization has no knowledge of
how these data types interact. In this paper, we
provide a program representation that explicitly
encodes the array regions operated upon by the loop,
allowing a code generator to recognize these
misaligned data accesses and generate appropriate
alignment code.

The main architectural constraint that must be
considered when parallelizing loops for multimedia
instruction sets is that all accesses to the elements of an
array must be consecutive, i.e., having a stride of one.
This follows from the parallel load and store operations
common to these instruction sets where an entire
vector of consecutive data is read from or written to
memory in a single instruction (e.g., 16 consecutive
bytes in SSE2 [1]).

A loop kernel that is not carefully written can
easily violate this unit stride constraint. The simplest
case is a loop where the array indices are
monotonically increasing by a stride greater than one.
We have shown in earlier work [9] that some loops can
be restructured to have unit stride. However, a
common case where unit stride becomes an issue is the
presence of vector data types of different precisions
within a loop body. For example, a loop having both
16- and 32-bit types will not align corresponding
elements properly; in this case, the 16-bit vectors have

unit stride but the 32-bit vectors have a stride of two
with respect to the smaller type. The compiler must
deal with multiple parallel factors (e.g., 8-way and 4-
way parallelism for the above types, assuming a 128-
bit SIMD register size) in the same loop.

This research addresses the mixed data-type issue
(and, as shown in [9], the non-unit stride issue),
increasing the range of loops that can be optimized
using multimedia instruction sets. Specifically, we
take a reverse-engineering approach in which data-
parallel access patterns are recognized in the program.
These are abstracted to an explicitly-parallel,
multidimensional dataflow (MDDF) graph-based
representation of the program. The MDDF
representation explicitly encodes array region
annotations that facilitate resolving differing vector
data types along graph edges. We developed a
system, called PARRET (for PARallel RETargeter),
for extracting MDDF from sequential source code and,
from that representation, synthesizing data-parallel
code. The MDDF representation abstracts out the
sequential details used to implement the algorithm as
well as architectural details specific to particular
hardware. After extracting the MDDF specification,
PARRET generates the appropriate subword parallel
code for multimedia ISAs, using knowledge of array
regions formed by each vector data type to generate
type-conversion code to properly align mixed-precision
vector types. The back-end code generator attempts to
find best-case parallelism at a platform-independent
level, for example, using knowledge of loop nesting to
normalize loops with non-unit stride into unit stride
when possible.

The MDDF representation also facilitates multi-
target code generation. We have previously
demonstrated PARRET’s ability to generate code for
SIMD processor arrays where parallelism is achieved
via independent processing units [9]. This paper
demonstrates its applicability to multimedia instruction
set extensions that must instead deal with packed data
issues such as data alignment and mixed data types.

We show that this method is capable of
parallelizing a range of loop kernels beyond that of
traditional vectorization. We identified a set of
production programs that exhibit parallelization
challenges, particularly in misaligned mixed-precision
data types. These are nine programs from the Texas
Instruments (TI) IMGLIB [13] suite for the TI
TMS320C62xx line of DSPs; all nine were
successfully parallelized by PARRET while only two
were parallelized by a vectorizing compiler.
Retargeting produces an average speedup of 2 over
sequential across our test suite, with a maximum of 27.

The remainder of this section presents related
work on vectorization to parallelize program loops for

multimedia ISA extensions. Section 2 gives an
overview of MDDF, PARRET’s recognition process,
and the synthesis of code for multimedia ISAs from
MDDF. Section 3 validates the correctness of
programs retargeted to Intel’s SSE2 [1] by PARRET,
compares their speedup over sequential, and compares
the ability of PARRET to parallelize loops with that of
ICL, Intel’s commercial vectorizing compiler. The last
section presents conclusions and discussion.

1.1. Related Work

The traditional method for parallelization of loops
is vectorization, i.e., partitioning the iteration space and
data set of a loop such that each partition can be
executed on parallel hardware. The main constraint for
vectorization is that loops not have any loop-carried
dependencies [5]. Once a vectorizing compiler is
satisfied that dependence constraints have been met, it
can schedule concurrent iterations for parallel
execution based on the hardware resources available.

1.1.1. Vectorization for Multimedia ISAs. Several
projects have implemented vectorization for generating
code using multimedia ISAs, including the Intel C/C++
compiler [4], the MOM project [6], and work such as
that by Sreraman et al. [7]. In general, these projects
attempt to vectorize the inner loop of a loop nest. First,
loop dependency analysis is performed. Then any
applicable loop transforms are applied, such as loop
distribution to isolate dependent statements into
separate loops and scalar expansion (distributing the
value of a scalar to an array that replaces the scalar) to
break unnecessary loop-carried dependencies. Finally,
if the loop is determined to be vectorizable, it is strip-
mined to vector length, i.e., the loop step is changed
from one to the vector length, such that each iteration
operates on a single vector [8]. Code generation
usually produces inlined assembly instructions from
the multimedia ISA extension (or function calls that
execute those instructions). Some, like the Intel
compiler, perform low-level pattern recognition to
identify code fragments, such as reduction operations
(e.g., summation, minimum/maximum, etc.), that
contain true dependencies, but that can still be
parallelized when understood as the higher-level
operation.

The Matrix-Oriented Multimedia (MOM) project
[6] takes a unique approach to both multimedia ISAs
and their compiler support. The MOM ISA provides
two-dimensional, i.e., matrix, packed data types.
These matrix types are modeled as a vector (the matrix
rows) of packed words (the elements in each row).
The MOM compiler builds these matrices by extending
vectorization into two-dimensions. First, the inner

loop (of a doubly-nested loop) is vectorized in the
usual manner. Then the outer loop is itself vectorized,
using the results of the first step, to produce the
matrices as vectors of vectors.

The main limitation of these types of compilers is
their dependence on the syntactic details of the
program. Compiler intermediate representations (IRs,
e.g., abstract syntax trees, data-dependence graphs,
triples/quads, register-transfer language, control-flow
graphs, static single-assignment, etc.) are tightly
coupled to the sequential details of the program (use of
variables, loops, assignment statements, etc.) and as
such still follow an inherently sequential computational
model. They use explicit array accesses to determine
loop-carried dependencies (or lack thereof) with the
intention of strip-mining the loop to a specific vector
length (i.e., changing the original loop stride to be the
vector length). Here, the strip-mining process provides
some basic understanding of the array regions, but only
for a single vector length. However, in the presence of
mixed-precision data types, this single-vector-length
creates vectors of varying bit-width, violating the
fixed-width constraint for multimedia registers, and the
vectorization-and-strip-mining combination falls short.
Our program representation encodes all region
annotations separately and represents compositions of
the region operations with dataflow arcs. This exposes
the interaction between the operations on mixed-
precision types and facilitates the generation of code
that properly aligns elements between mixed-precision
arrays.

Fig. 1. Retargeting process.

1.1.2. Data alignment optimizations. An issue
related to mixed-precision data alignment is the
alignment of memory addresses for vector load and
store operations for efficient access. For example, in
SSE2, 128-bit vector data aligned to 16-byte
boundaries can be accessed with the MOVDQA
memory instruction much faster than with the
unaligned MOVDQU [1]; it is desirable that a compiler
use the aligned instructions as often as possible.

Larsen et al. [3] have addressed this via memory
congruence analysis. Bik et al. [4] address this by loop
peeling, i.e., running sequential iterations of the loop
until an aligned address is found, at which point
execution of an aligned and vectorized version of the
loop commences. These techniques are complementary
to our work: our analysis of mixed-precision data
types would generate load and store code to resolve the
precision issues, after which that code could be further
optimized using the above techniques in order to align
those accesses at (e.g., in SSE2) 16-byte boundaries.

2. Approach

Fig. 1 illustrates the retargeting process. Our
recent work [9] has investigated using recognition-
based reverse engineering techniques to identify data-
parallel memory access and computation patterns in
sequential source code. Once identified, these patterns
are used to create a high-level program representation
with explicitly data-parallel semantics, from which
data-parallel source code can be synthesized. The
remainder of this section will give a brief overview.

2.1. Extracting an Explicitly-Parallel
Program Representation

2.1.1. Target Representation. The goal in
recognizing data-parallel patterns in source code is to
create a high-level, explicitly parallel program
representation. We chose a representation based on the
multidimensional synchronous dataflow (MDSDF)
[10] model of computation (MOC). MDSDF specifies
a task-concurrency model where tasks, represented as
nodes in a flow graph, communicate by sending tokens
along the graph edges. These tokens are
multidimensional entities where each dimension has a
known integer size, e.g., a particular token may have
three rows and two columns. Additionally, the
producer for an edge may produce a token with
different sizes and dimensions than the consumer of a
node, resulting in differing rates of execution for each
task. For example, if task T1 produces a 4×2 token
onto edge E1,2 and task T2 consumes a 2×1 token from
E1,2, then T2 must execute four times for every
execution of T1. These execution rates can be used by
a task scheduler to create a static execution schedule
for all tasks in the system.

Even though our domain is data-parallel program
representation and not task-concurrency, the MDSDF
model comes very close to providing the required data-
parallel interpretation. If the multidimensional tokens
are viewed as regions of array data, they become a
natural way to express the data structures common to
multimedia applications, such as images and audio

for (i=1;i<rows-1;i) {
a = in+(i*cols+1);
b = in+(i*cols+1);
for (j=1;j<cols-1;j++) {

nw = *(b-cols-1); n = *(b-cols);
ne = *(b-cols+1); w = *(b-1);
h = *(b); e = *(b+1);
sw = *(b+cols-1); s = *(b+cols);
se = *(b+cols+1);
*a++ = (m1*nw + m2*n + m3*ne

+ m4*w + m5*h + m6*e
+ m7*sw + m8*s + m9*se) / 16; }

b++; }

Sequential Source Code

for (i=1;i<rows-1;i) {
a = in+(i*cols+1);
b = in+(i*cols+1);
for (j=1;j<cols-1;j++) {

nw = *(b-cols-1); n = *(b-cols);
ne = *(b-cols+1); w = *(b-1);
h = *(b); e = *(b+1);
sw = *(b+cols-1); s = *(b+cols);
se = *(b+cols+1);
*a++ = (m1*nw + m2*n + m3*ne

+ m4*w + m5*h + m6*e
+ m7*sw + m8*s + m9*se) / 16; }

b++; }

Sequential Source Code

array a[rows][cols];
array b[rows][cols];
a =

(m1*b@(-1,-1)
+ m2*b@(-1,0)
+ m3*b@(-1,1)
+ m4*b@(0,-1)
+ m5*b
+ m6*b@(0,1)
+ m7*b@(1,-1)
+ m8*b@(1,0)
+ m9*b@(1,1)
) / 16;

SIMD Source Code

array a[rows][cols];
array b[rows][cols];
a =

(m1*b@(-1,-1)
+ m2*b@(-1,0)
+ m3*b@(-1,1)
+ m4*b@(0,-1)
+ m5*b
+ m6*b@(0,1)
+ m7*b@(1,-1)
+ m8*b@(1,0)
+ m9*b@(1,1)
) / 16;

SIMD Source Code

Graph Representation & Pattern Matching

Graph
Grammar

re
ad

-a
rr

ay

w
rit

e-
ar

ra
y

F(
)

Data-Parallel Program Representation

streams, as well as the partitions of these data
structures that are often operated upon in isolation,
e.g., columns and rows of images, sub-blocks of
images and data-streams, etc. For example, consider
the abstract algorithm representation in Fig. 2. This
algorithm reads in a 512×512-pixel image and a
1×128-element coefficient array, partitions the image
into 1×128-pixel sub-blocks, multiplies the sub-blocks
element-wise with the elements of the coefficient
array, and then re-assembles the resulting blocks into
the 512×512-pixel output array. With the program in
this representation, data-parallel code can be generated
such that the multiplication operation is performed in
parallel on SIMD hardware.

Fig. 2. Sample image-processing algorithm

with a MDSDF-like representation.

We refer to our representation as multidimensional
dataflow (MDDF) since we do not use it for
synchronous task scheduling. We refer to the edge
annotations describing the tokens as regions, similar to
the notion of array regions described in [11], and
notate our regions as (starty:rangey:stepy,
startx:rangex:stepx), where starti, rangei, and stepi refer
to the first index of the region, the number of elements
in the region, and the stride between elements,
respectively, in each dimension i. For one-dimensional
regions, the y-fields are removed for convenience, e.g.,
(startx:rangex:stepx).

2.1.2. Pattern Recognition. The recognition begins
by performing control- and data-flow analyses on the
source code, producing a dataflow graph-based
intermediate form. For example, the loop of Fig. 3, a
Sobel edge-detection algorithm from the TI IMGLIB
suite [13], is converted into the intermediate dataflow
graph (DFG) of Fig. 4. For brevity, portions of the
code are elided. Note this example points out the
mixed vector data type problem discussed in the
introduction (see annotations in Fig. 4). Our previous
work [9] presents an example where the loop stride is
not one, but where PARRET is able to recognize from
the loop nesting structure that the program is operating
on contiguous data with a stride of one.

Fig. 3. Sobel example source code.

 Fig. 4. Intermediate DFG representation.

Once the intermediate representation has been
built, pattern matching can begin. The recognizer,
using a graph-matching technique (see [9]), searches
for instances of data-parallel patterns. Example
patterns are shown in Fig. 5; a full description of the
pattern library is given in [12]. Fig. 6 shows the
recognition of a count pattern (a function that
generates a linear sequence of values) from the cyclic
structure created by the induction variable i. This
corresponds to the shaded region in Fig. 4. Fig. 7 then

in:in

LOAD_ptr

i:in
1

i:out

STORE_ptr

LOAD_ptr LOAD_ptr

1 2

out:out

additional
arithmetic operations

(lines 19-23)

additional load
operations (lines

13-17)

2

SELECT

255

un
si

gn
ed

 8
-b

it
in

te
ge

rs
si

gn
ed

 1
6-

bi
t i

nt
eg

er
s

unsigned 8-bit
integers

Edge 1

Edge 2

array-readarray-read array-readarray-read

array-writearray-write

(1,128)(512,512)

(1,128)(1,128)

(1,128)

(512,512)

array-readarray-read array-readarray-read

array-writearray-write

(1,128)(512,512)

(1,128)(1,128)

(1,128)

(512,512)

01: unsigned char * in;
02: unsigned char * out;
03: short cols, rows;
04: int H, O, V, i, j;
05: int i00=0, i01=0, i02=0;
06: int i10=0, i12=0;
07: int i20=0, i21=0, i22=0;
08: int w = cols;
09: for(i=0;i<cols*(rows-2)-2;i++){
10: i00=in[i];
11: i01=in[i +1];
12: i02=in[i +2];
13: i10=in[i+ w];
14: i12=in[i+ w+2];
15: i20=in[i+2*w];
16: i21=in[i+2*w+1];
17: i22=in[i+2*w+2];
18: H= -i00-2*i01-i02+
19: +i20+2*i21+i22;
20: V= -i00+i02
21: -2*i10+2*i12
22: -i20+i22;
23: A = abs(H) + abs(V);
24: if (A > 255) A = 255;
25: out[i + 1] = A;
26: }

shows the recognition of parallel input and output
primitives (array-read and array-write,
respectively) from the memory access subgraphs (the
LOAD_ptr and STORE_ptr blocks with their
address calculation inputs) and the count pattern (see
shaded regions in Fig. 6), producing the final MDDF
specification for this loop.

Fig. 5. Pattern examples: (a) Count pattern, (b)
array-read pattern based on a count pattern
and LOAD operation.

In this example, the SELECT node (and every
other computational node, i.e, those not involved in
memory address calculations) persists from the original
DFG intermediate representation. Its semantics are
that if the first input is a “true” value (non-zero value
in C) the second input is quoted to the output,
otherwise the third input is quoted to the output. This
operator extends to a data-parallel domain by making
arrays of all inputs and its output, applying the basic
SELECT operation to corresponding elements of its
inputs. This operation is equivalent to the bit-masking
transformations used in mainstream vectorizing
compilers [4][7].

This example illustrates PARRET’s knowledge of
mixed vector data types and how they can be resolved.
Consider the edge labeled Edge 1 on Fig. 4 and Fig. 7.
We chose the data type of the loop body calculations to
be 16-bits (twice that of the input data, to provide
adequate precision for the multiplication operations)
and signed (because of the subtractions and negation).
This means that the head of Edge 1 is 8-bit unsigned
(the input type) and its tail is 16-bit signed. In a
multimedia ISA (assuming 128-bit vector registers),
the head type would have 16 elements and the tail type
would have 8 elements. The semantics of the
representation dictate that two instances of the node
supplying data to Edge 1 (the array-read node)
would have to execute for each instance of the node

that receives data from Edge 1 (the negation node). A
back-end code generator uses these relative execution
ratios to generate the appropriate number of instances
of data-parallel instructions for each operation.

2.1. Code Synthesis

Intel’s Streaming SIMD Extensions 2 (SSE2) [1]
was chosen for analysis as a representative ISA with
SIMD extensions. SSE2 is implemented in the
Pentium 4 generation of x86 processors, facilitating
analysis on commodity desktop workstations. It is
supported at the assembly level by Microsoft’s Visual
Studio, and at the source level, via vectorization, by
Intel’s C/C++ Compiler.

Fig. 6. Recognition of a count pattern.

Our approach to code generation for SSE2,
particularly in the presence of mixed data types, is to
generate code based on the highest-precision type.
This could mean, for instance, that we load in 8-bit
unsigned data, promote to 16-bit unsigned to perform
higher-precision calculations such as multiplication,
and then demote back to 8-bit unsigned for write-back,
as must happen for the example of Fig. 3 through Fig.
7. The main constraint imposed by the architecture is
that the parallel loads and stores must have the data
packed consecutively, e.g., if all internal calculations
are performed at 16-bit precision and the original
program specifies output to an array of 32-bit integers,
datatype promotion must occur before write-back.

in:in

LOAD_ptr

STORE_ptr

LOAD_ptr LOAD_ptr

1 2

out:out

additional
arithmetic operations

(lines 19-23)

additional load
operations (lines

13-17)

2

SELECT

255

count

(0:cols*(rows-2)–2:1)

T

LOAD_ptr

+

Ptr:in

(S:C:T)
Ptr::(S:C:T)

T

array-read I:count

(b)

(a)

+
T

T

I:in

I:out

(I0:R:1)

Where:
R := global range expression
I0 := initial value of I

I:count 1

Fig. 7. Recognition of array-read and array-
write patterns for finalized MDDF
representation.

For brevity, the full details of code synthesis are
not shown in this paper. A more thorough discussion
can be found in [12]. The C code generated by
PARRET for the sobel example can be obtained from
http://www.westga.edu/~lewisb/sobel_parret.c.

3. Results

This section presents our experiments retargeting
loops with inherent DLP to SSE2, a representative
multimedia instruction set with SIMD functionality.
We show PARRET is capable of synthesizing
optimized code for SSE2 from the architecture-
independent MDDF program representation.
Additionally, we compare PARRET with a commercial
vectorizing compiler and show that PARRET is
capable of parallelizing programs the compiler cannot.

As a baseline for comparison, we chose Intel’s
C/C++ Compiler (ICL), version 8.0. It employs
traditional loop vectorization to generate data-parallel
code as well as providing a set of intrinsic functions for
inlining SIMD operations in C/C++ source code. Our
analysis will make use of ICL’s vectorizing capabilities
in characterizing whether or not applications can be

parallelized using traditional methods. The intrinsic
functions provide a convenient set of primitives for
PARRET to use when generating its own data-parallel
code.

Table I lists the loop-based applications in our test
suite. These are taken from the TI IMGLIB [13]
library, a suite of image processing applications
originally written for the Texas Instruments
TMS320C62xx line of DSPs.

Table I. IMGLIB test programs.
Program Description: Application(s)
conv_3x3 Convolution: Noise removal, image smoothing
corr_3x3 Correlation: Motion estimation
perimeter Comput object perimeter: Object

detection/recognition
pix_sat Saturate pixels: Compression (i.e., clip values to a

certain bit precision)
quantize Quantize pixels: Compression (e.g., used in JPEG)

sobel Edge detection: Object detection/recognition
threshold Threshold pixels: Image dilation/erosion, perimeter

detection
fdct_8x8 Discrete cosine transform: Image compression

(e.g., used in JPEG)
mad_16x16 Min. absolute difference: Video compression (e.g.,

MPEG)

3.1. Retargeting of Image Processing
Programs to SSE2

Table II reports on the ability of PARRET and
ICL to parallelize the test programs. For each of the
programs, ICL was executed using the “/QxW /O3
/Qvec_report3” flags. These flags specify,
respectively, Pentium 4 code generation (including
vectorization for SSE2), speed optimizations, and
detailed reporting on vectorization attempts.

Table II. Suite coverage test.
Benchmark PARRET ICL

conv_3x3 Yes No
corr_3x3 Yes No
perimeter Yes No
pix_sat Yes No
quantize Yes No

sobel Yes No
threshold Yes Yes
fdct_8x8 Yes No

mad_16x16 Yes Yes

3.2. Correctness Validation

To validate correctness, each of the programs in
the test suite retargeted by PARRET was executed for
a 256-by-256 pixel input image and the results
compared with those of a baseline execution of the
original program as compiled by ICL (without
vectorizing). Average distance (Equation 1) was used
to compare the matrix results of each trial (except for

in:in

additional
arithmetic operations

(lines 19-23)

additional recognized
array-read patterns

2

SELECT

255

array-write

(1:cols*(rows-2)–2:1)

out:in

array-read

(0:cols*(rows-2)–2:1)

array-read

array-read

(1:cols*(rows-2)–2:1)

(2:cols*(rows-2)–2:1)

Edge 1

Edge 2

mad_16x16, which has a scalar result); these results are
listed in Table III. Here, lower values are better, i.e,
the matrix results closely match.

∑∑
= =

−=
N

n

M

m
nmnm ba

MN
distavg

1 1

1_ (1)

The two non-zero values listed in Table III
(perimeter and sobel) result from precision differences
caused by the saturation arithmetic used in SSE2.

3.3. Performance Evaluation

The performance gains of using parallelized code
generated by PARRET are shown in Fig. 8. These
were calculated as the time taken to execute the
sequential version (as compiled by ICL) one hundred
times divided by the time taken to execute the
PARRET version one hundred times. Execution time
was measured using the _ftime() function available
from the Microsoft C/C++ runtime library (required for
the Microsoft Windows version of ICL). All execution
time tests were performed on a Pentium 4 1.80 GHz
with 512 MB of RAM running Windows 2000.

Table III. Comparison of computational
results, retargeted vs. sequential.

Program Average Distance
perimeter 0.11
corr_3x3 0
quantize 0
sobel 0.01
pix_sat 0
thr_le2thr 0
conv_3x3 0
fdct_8x8 0
mad_16x16 Scalar result, exact match

Of interest is the large speedup seen with the
quantize and mad_16x16 benchmarks. The quantize
benchmark was originally written as an inner loop over
sub-blocks of an array, and an outer loop over the
elements of each sub-block, resulting in an inner loop
stride greater than one. This caused an increase in
cache miss overhead in the sequential version due to
lower spatial locality. PARRET, however, was able to
recognize the loop nest as a sequence of operations on
stride-1 data and generate the appropriate optimized
code. The high performance gains seen in the
mad_16x16 benchmark were a result of the loop
structure that PARRET produced: it generated four
copies each of 4-way parallel versions of the
instructions needed to complete the calculations,
effectively unrolling the loop entirely (the loop was
written as a 16-iteration loop). This eliminated the
loop overhead and several expressions based on the
loop index (now a constant) would have been
calculated at compile-time instead of run-time. The
trade-off is a larger code size.

Fig. 8. Performance increase from retargeting.

Of the nine benchmarks that PARRET
parallelized, there were only two that ICL was able to
vectorize: threshold and mad_16x16. PARRET
produced the same performance gain for threshold as
the ICL vectorized version. However, the vectorized
version of mad_16x16 produced by ICL had a 6.5
times greater performance gain than PARRET’s
parallelized version. An examination of the generated
assembly code revealed that ICL was able to recognize
a sum of absolute differences operation in the original
C loop and replace that code with the special-purpose
instruction PSADBW (“packed sum of absolute
differences”), saving several instructions that PARRET
had to generate explicitly. In the future, such
recognition could be incorporated into PARRET by
expanding its recognition pattern library. In addition,
the intrinsic functions PARRET uses for optimized C
code generation can result in as many as seven
assembly instructions for a single operation instead of
one or two that might result if code generation were
performed at the assembly level. We used these
intrinsic functions for convenience only; future
versions of PARRET could generate assembly code
directly, producing a smaller, faster executable.

3.4. Code Size Evaluation

The code-generation method presented here was
expected to increase code size due to the overhead of
using pseudo-instructions, vector data type promotion
and demotion, multiple instances of the same operation
(to operate on separate parts of a vector), and the use of
intrinsic functions. Table IV reports the increase in
code size of each retargeted loop (not the overall
application) caused by PARRET. The average
increase of 4.3 times could be reduced by generating
code at the assembly level and not by using the
intrinsic functions.

As an illustration of code increase on a full
application, we replaced the DCT in the cjpeg

0

1

2

3

4

5

6

7

8

9

10

pe
rim

et
er

co
rr

_3
x3

qu
an

tiz
e

so
be

l

pi
x_

sa
t

th
r_

le
2t

hr

co
nv

_3
x3

fd
ct

_8
x8

m
ad

_1
6x

16

Test program

Se
qu

en
tia

l e
xe

c
(s

ec
on

ds
) /

 S
SE

2
ex

ec

(s
ec

on
ds

)

26.7

implementation of JPEG encoding (available from
http://www.ijg.org/) with the fdct_8x8 kernel from the
IMGLIB library. Using the original fdct_8x8 code, it
compiled to 135,168 bytes. Using the PARRET-
retargeted code, it compiled to 139,264 bytes, an
increase of 3.03%.

4. Conclusions and Discussion

PARRET is able to optimize loop-based code for
multimedia ISAs beyond the capabilities of traditional
vectorization, particularly in cases where mixed-
precision vector data types must be aligned for vector
operations in the loop. Those properties which make
PARRET effective are:
• an abstract multidimensional dataflow

representation of recognized algorithms,
• the ability to recognize more complex iteration

spaces (e.g., the quantize benchmark) and
normalize them into vectorizable form, and

• an explicit representation of how mixed data types
compose.
Future work in retargeting data-parallel programs

to multimedia ISAs includes improving code-
generation. Greater performance of the parallelized
code can be gained by avoiding the use of intrinsic
functions that create extraneous instructions. In
addition, some multimedia ISA extensions contain
instructions for optimizing cache accesses, such as
prefetch instructions; with its base of memory layout
and access patterns, PARRET can leverage these
instructions in the retargeted code. Finally, it would be
interesting to apply PARRET to additional two-
dimensional multimedia ISA targets, such as MOM [6]
and CSI [14]. These would be good retargeting
candidates for PARRET given its ability to recognize
data parallelism in multiple dimensions.

Table IV. Code Increase for PARRET-
retargeted programs.

Benchmark PARRET
size (bytes)

ICL size
(bytes) Ratio

conv_3x3 6291 1136 5.54

corr_3x3 6194 1379 4.49

perimeter 4352 995 4.37

pix_sat 4695 1230 3.82

quantize 4731 1202 3.94

sobel 5595 1376 4.07

threshold 4518 1701 2.66

fdct_8x8 6915 1414 4.89

mad_16x16 5668 1155 4.91

Average 4.30

ICL options: -c -Drestrict= -QxW -O3

This work was supported in part by NSF Grant CCR-
0092552.

References

[1] Intel IA-32 Architecture Software Developer’s Manual,
Intel Order Numbers 253666 and 2253667, 2004.
[2] Stuart Oberman, Greg Favor, and Fred Weber, “AMD
3DNow! Technology: Architecture and Implementations,”
IEEE Micro, Vol. 19, No. 2, pp. 37-48, March/April 1999.
[3] Samuel Larsen et al, “Increasing and Detecting Memory
Address Congruence,” In Proc. of the 2002 Int’l Conf. on
Parallel Architectures and Compilation Techniques
(PACT’02), Charlottesville, VA, pp. 18-29, September 2002.
[4] Aart Bik et al, “Automatic Intra-Register Vectorization
for the Intel Architecture,” Int’l Journal of Parallel
Programming, Vol. 30, No. 2, pp. 65-98, April 2002.
[5] Utpal Banerjee et al, “Automatic Program
Parallelization,” Proc. of the IEEE, vol. 81, no. 2, pp. 211-
243, 1993.
[6] J. Corbal, M. Valero, and R. Espasa, “Exploiting a New
Level of DLP in Multimedia Applications,” In Proc. of the
32nd Annual Int. Symposium on Microarchitecture (MICRO
32), Haifa, Israel, pp. 72-79, November 1999.
[7] N. Sreraman, R. Govindarajan, “A Vectorizing Compiler
for Multimedia Extensions,” Int. Journal of Parallel
Programming, Vol. 28, No. 4, pp. 363-400, August.
[8] Kathryn S. McKinley, “Automatic and Interactive
Parallelization”, Rice University, Houston, TX, Technical
Report CRPC-TR92214, April 1992.
[9] L. Baumstark and L. Wills, “Retargeting Sequential
Image-Processing Programs for Data-Parallel Execution,”
IEEE Trans. on Software Engineering, Vol. 31, No. 2, pp.
116-136, February 2005.
[10] Praveen K. Murthy and Edward A. Lee,
“Multidimensional Synchronous Dataflow,” IEEE Trans. on
Signal Processing, Vol. 50, No. 8, pp. 2064-2079, August
2002.
[11] Bradford L. Chamberlain et al, “ZPL: A Machine
Independent Programming Language for Parallel
Computers,” IEEE Trans. on Software Engineering, Vol. 26,
No. 3, pp. 197-211, March 2000.
[12] Lewis Baumstark, “Extracting data-level parallelism
from sequential programs for SIMD execution,” doctoral
dissertation, Georgia Institute of Technology, 2004, UMI
Catalog No. AAT 3154911.
[13] TMS320C62x Image/Video Processing Library
Programmer’s Reference, Texas Instruments Literature
Number SPRU400, March 2000.
[14] Ben Juurlink et al, “Implementation and Evaluation of
the Complex Streamed Instruction Set,” In Proc. of the Int.
Conf. on Parallel Architectures and Compilation Techniques
(PACT ’01), Barcelona, Spain, pp. 73-82, September 2001.

