Improving the Efficiency of Functional Parallelism by Means of
Hyper-scheduling

Udo Honig and Wolfram Schiffmann
Department of Mathematics and Computer Science
University of Hagen
{Udo.Hoenig, Wolfram.Schiffmann} @FernUni-Hagen.de

Abstract

By means of a comprehensive test bench of 36000 test
cases we evaluated the efficiency of functional parallel pro-
grams. For all the test cases schedules have been computed
by various well known heuristics. We assumed a homoge-
neous target system (e.g. a compute cluster of equally pow-
erful interconnected nodes) that can be part of a grid com-
puting environment which supports the execution of parallel
programs. Unfortunately, the efficiencies of the investigated
schedules were pretty low. For this reason, we propose a
new Hyper-scheduling approach that reduces the amount
of idle times by interweaving subsequent schedules from
the parallel job queue. First results confirm that Hyper-
scheduling significantly improves efficiency.

1 Introduction

In order to accelerate demanding computations one uses
parallel processing. Three different kinds of parallelism can
be distinguished: 1. Job Parallelism, 2. Data Parallelism,
and 3. Functional Parallelism.

In the case of job parallelism we concurrently execute
two or more independent but still sequential programs. This
kind of parallel processing is quite simple to accomplish.
Very often the same program is used with different input
data. Typical applications are parameter studies or render-
ing numerous image frames for artificial movies.

Data parallelism can be characterized by compute de-
manding operations that must be applied to a great number
of data items. Thus, one can run many copies of a program,
which process different parts of the input data in the same
manner. If there are no dependencies between the data, this
kind of parallelism is the same as that of job parallelism.
An example is the computation of the Mandelbrot set in a
specific rectangular area. This is an embarrassingly paral-
lel problem and can be easily parallelized. If some data

areas depend on each other (e.g. when solving differential
equations) the corresponding data between some processing
elements have to be exchanged by communication over the
network and the processing has to be synchronized as well.

If two or more different sequences of instructions can be
executed concurrently we talk about functional parallelism.
The instruction sequences of the parallel program define
(sub)tasks, whose dependencies among each other can be
described by means of a Directed Acyclic Graph (DAG),
also known as a task graph [1]. Weights on the nodes spec-
ify the workload of a specific task and weights on the edges
specify the communication overhead that must be taken into
account, if the two connected subtasks are not assigned to
the same processing element.

A special case of functional parallelism is the workflow
parallelism [2, 3, 4]. Instead of tasks, workflows consist
of a set of programs that depend on each other. Most cur-
rent grid environments provide means for the composition
and execution of those workflows. Before its execution, a
workflow has to be specified by an appropriate workflow
description language [3, 4, 5]. Data is usually exchanged
via files. Input files are processed by one or more programs
that produce intermediate files which are then forwarded to
succeeding programs which cannot be launched before all
required input files are available. In this way, workflow par-
allelism is very similar to functional parallelism and there-
fore it can be modeled by DAGs as well.

Within this paper, we assume a homogeneous target sys-
tem (e.g. a compute cluster of 32 equally powerful nodes)
that can be part of a grid computing environment which
supports the execution of parallel programs or workflows.
It is also assumed that each of the available computing
nodes, we will call them “target processing elements” (TPE)
throughout this paper, executes just one task at a time and
that we have accurate estimates for the computation and
communication times of the corresponding task graph prob-
lems. This scheduling model, which is widely used in liter-
ature (see [6], for further references), abstracts from many
architectural specifics like memory-subsystems or caches

and therefore allows a platform independent analysis of
the algorithms’ properties. Because the computed sched-
ules usually do not use all the available TPEs we will de-
note the schedules’ processing elements by the abbreviation
SPE. This distinction between different types of process-
ing elements is also very important for the proposed Hyper-
scheduling algorithm.

The primary contributions of this paper consist of an ef-
ficiency analysis of this DAG-modeled parallelism (paral-
lel programs and workflows) and a new approach to im-
prove the observed poor efficiency. The proposed Hyper-
scheduling algorithm is based on already scheduled task
graph problems and thus it can be used in combination with
any scheduling algorithm.

The paper is organized as follows. In section 2 we de-
scribe the task scheduling problem in more detail and give
an overview of algorithms for solving this problem. In sec-
tion 3 we present an efficiency analysis of those algorithms
with respect to a comprehensive test bench that comprises
36000 task graph problems with up to 250 task nodes. In
section 4 we propose a Hyper-scheduling approach that can
improve the observed poor utilization of the compute nodes.
Finally, section 5 concludes the paper and gives a brief sur-
vey of the authors’ future work on scheduling efficiency.

2 Minimizing the schedule length

The main objective of task graph scheduling is the min-
imization of the schedule length, which is the time period
between the start of the first task and the completion of the
last task. Since the scheduling problem is known to be NP-
complete [7] in its general form, many researchers felt moti-
vated to devise various heuristic algorithms. Unfortunately,
only few attempts were made to find real optimal schedules
even for small problem sizes [1, 8, 9]. The lack of optimal
schedules forced researchers to analyze their newly devel-
oped algorithms in relation to several already established
approaches. As such relative comparisons always depend
on the selected set of algorithms, their results will probably
change with every new combination.

In the past, another problem of scheduling heuristics
analysis was the absence of a publicly available standard
test set. Without such a test set, a comparison of different
scheduling algorithms required the availability of their im-
plementations. Additionally, every researcher had to create
an own test set, making a comparison of scheduling heuris-
tics harder or sometimes even impossible.

These shortcomings could only be tackled by means of a
comprehensive test bench of task graph problems covering a
broad spectrum of meaningful graph properties along with
the corresponding optimal schedules. Because of the NP-
completeness, the optimal schedules for such a test bench
suite can only be computed by using informed search algo-

rithms [10, 11] and the task graphs’ size must be limited
in such a way that the optimal schedules can be found in a
reasonable period of time. By considering these aspects, a
comprehensive test set (Small Test Bench — STB) of 36000
task graph scheduling problems with up to 24 tasks was de-
veloped [12]. The task graphs were generated randomly and
structured concerning the graphs’ size, their meshing de-
gree (MD), their average edge length! (EL) and their node-
and edge-weights (heavy (H) or light (L)). In addition, the
assumed number of available processing elements was con-
sidered as well. To emphasize a certain graph property (e.g.
a high meshing degree), the random numbers were deter-
mined by a Gaussian distribution. Since this test bench
should also provide test cases which are unbiased with re-
spect to one or more graph attributes, subsets with uniform
distributed attributes (random - (R)) were created as well.
With respect to the fact that most publications in literature
use larger task graphs with sometimes even more than 1000
tasks, the question arises, if the results produced by using
such small task graphs are of any meaning to real world
scheduling problems. In order to answer this question, we
created another test bench (Large Test Bench — LTB) which
follows the same structure as the one already described, but
which consists of task graphs with up to 250 tasks. This
limit was introduced firstly, to keep the time required to
download the test bench acceptable (about 400 MB) and
secondly, to facilitate its processing by standard PC equip-
ment. Nevertheless, the requires hard disk space for all test
cases and their corresponding schedules is about 4.8 GB.
Of course, no optimal schedules could ever be computed
for graphs of that size. Both test benches are available at

http://valexia.fernuni-hagen.de
/OptSchedHome . html

By means of these two test sets, we analyzed and com-
pared the behavior of several deterministic and stochastic
scheduling heuristics. A description of the investigated
deterministic algorithms, namely DLS, ETF, HLFET and
MCP, can be found in [6]. The stochastic algorithms include
a pure Random List Scheduler (RLS), a Genetic Algorithm
(Genetic List Scheduler — GLS), a Simulated Annealing ap-
proach (Simulated Annealing List Scheduler — SALS) and
an ant-colony-based list scheduler (Ant List Scheduler —
AntLS) [13]. Further details on these stochastic algorithms
as well as some results concerning the obtained schedules’
lengths have already been published [14]. The cited paper
also confirms that the STB’s and LTB’s results are highly
correlated. Thus, we can conclude, that comparisons based
on STB’s optimal schedules will also be meaningful for the
larger task graph problems of the LTB.

The length of an edge is proportional to the number of nodes that are
shortcut by this edge.

Table 1. Maximum and average Speedup regarding both test sets

Speedup | AntLS | DLS ETF | GLS | HLFET | MCP | RLS | SALS

STB max. 5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.80
avg. 1.60 1.55 1.55 1.59 1.54 1.55 1.57 1.60

LTB max. 14.58 | 14.77 | 14.10 | 14.33 1471 | 14.64 | 13.92 | 14.33
avg. 2.07 2.04 2.03 2.04 2.01 2.05 1.93 2.09

3 Evaluation of efficiency

Publications about scheduling problems and algorithms
usually focus on the achieved schedules’ length and
speedup. In very few cases only, the number of used SPEs
and the efficiency, whose definition [15] is shown in equa-
tion 1 are considered as well. An efficient schedule com-
bines a high speedup with a low number of used SPEs. The
benefit of an efficiently used computer system is an im-
proved division of the costs incurred and therefore either
reduced costs for the particular users or, in case of an com-
mercial provider, a better asset for the resources’ provision.

Speedup
Number of SPE

Before one can analyze the efficiency of an heuristic’s
schedule, one has to examine the number of SPE this sched-
ule uses and its speedup. Since the analysis of a single
schedule would not be representative for a given heuristic,
we will present average values when discussing the speedup
and the number of used SPEs.

Table 1 shows the maximum and average speedup of the
observed heuristics’ schedules. To point up that the results
are very similar for smaller and larger task graph scheduling
problems, we will consider both test sets simultaneously.
Later, we will focus on the larger task graphs only. As can
be seen in the first row of table 1, all heuristics achieve the
same maximum speedup of 5.8 when considering the small
task graphs. This value is equal to the best speedup found
by the optimal algorithm. Concerning the larger test cases,
the optimal values differ from algorithm to algorithm. Nev-
ertheless, the maximum speedups achieved by the heuristics
are still quite similar. The average speedup of the smaller
task graph scheduling problems is always very low, rang-
ing from 1.54 to 1.60. Keeping in mind, that the average
speedup of the optimal schedules is 1.61, this result is sur-
prisingly good. Row four of table 1 reveals a very low av-
erage speedup for the large task graph scheduling problems
with a maximum value of 2.09. Before conducting this anal-
ysis, we expected a higher value, because the task graphs
had up to 250 tasks and the expected target architectures
had up to 32 TPE. The observed values can be reasoned by
the existing data dependencies, which inhibit a larger-scale

Ef ficiency =

* 100 (1)

parallelization. Anyway, these results show a still consider-
able acceleration, which can justify the additional efforts of
parallel program execution.

As already mentioned in section 2, the considered test
sets are structured regarding several task graph properties
and system sizes. Table 2 shows the average number of
SPEs with respect to the LTB’s scheduling problems with
given properties. Obviously, the HLFET heuristic’s sched-
ules require more SPEs then those of the other heuristics.
In contrast, ETF uses the available resources more econom-
ically than the other considered algorithms. Overall, the
difference between the best and the worst scheduling algo-
rithm is rather small in all cases.

Table 2 also shows the impact of some task graph prop-
erties on the number of required SPEs. Obviously, for task
graphs with either a low meshing degree, long edges or
low communication costs, the corresponding schedules use
more SPEs than on average. This observation can be ex-
plained as follows: A low meshing degree means a low
number of dependencies and thus more tasks that can be
executed in parallel. Similarly, long edges cause a low num-
ber of dependencies between the task graphs first tasks and
therefore a small number of tasks that have to be executed
sequentially. Finally, low communication costs reduce the
effect of the existing data dependencies because the receiv-
ing node can be executed earlier.

Another observation of this analysis reveals, that the
number of used SPEs is usually much smaller than that of
the available TPEs. The larger the target architecture, the
smaller is the percentage of the SPEs used. Concerning tar-
get systems with 32 TPEs, less than one third of them is
used on average.

Now as we know, that only a small fraction of the avail-
able TPE:s is really involved in the parallel programs’ exe-
cution, our next objective is to find out how efficiently the
SPEs are used. For this reason, we calculate the efficiency
of every task graph scheduling problem separately. Then,
we calculated the average values for all test cases with given
properties. As can be seen in table 3, the analyzed heuris-
tics achieve similar results. With the exception of very small
target architectures, the obtained values are below 60%. Ef-
ficiency boosting task graph properties are a low meshing
degree, long edges or low communication costs. These ob-

Table 2. Average number of SPEs used for the LTB

AntLS | DLS | ETF | GLS | HLFET | MCP | RLS | SALS
2 TPE 2.00 2.00 2.00 2.00 2.00 2.00 1.99 2.00
4 TPE 3.94 3.94 3.86 3.87 3.96 3.87 3.87 3.93
8 TPE 6.53 6.38 5.86 5.99 6.82 5.92 5.95 6.47
16 TPE 8.55 8.37 7.78 7.95 8.97 7.86 7.90 8.49
32 TPE 10.23 | 10.04 9.45 9.62 10.65 9.54 9.57 | 10.17
All TPE 6.25 6.14 5.79 5.88 6.48 5.84 5.86 6.21
MD Low 7.15 6.99 6.59 6.70 7.41 6.65 6.68 7.09
MD Avg 6.13 6.04 5.71 5.80 6.35 5.75 5.77 6.10
MD High 5.33 5.29 5.02 5.09 5.48 5.06 5.07 5.32
MD Rand 6.39 6.26 5.84 5.95 6.68 5.89 5.92 6.34
EL Long 10.16 | 10.15 | 10.14 | 10.15 10.16 | 10.15 | 10.15 | 10.15
EL Short 4.23 4.11 3.58 3.65 4.53 3.61 3.62 4.15
EL Avg 5.86 5.76 5.49 5.67 6.09 5.58 5.63 5.89
EL Rand 4.75 4.56 3.95 4.07 5.14 4.00 4.03 4.65
LNode LEdge 6.25 6.12 5.74 5.86 6.46 5.79 5.82 6.21
LNode HEdge 5.92 5.81 5.55 5.59 6.21 5.57 5.58 5.87
HNode LEdge 6.51 6.41 6.08 6.16 6.68 6.13 6.13 6.47
HNode HEdge 6.31 6.19 5.84 5.95 6.53 5.91 5.90 6.28
RNode REdge 6.26 6.17 5.77 5.88 6.50 5.81 5.86 6.22

Table 3. Efficiency of the SPEs’ usage for the LTB (in %)

AntLS | DLS | ETF | GLS | HLFET | MCP | RLS | SALS
2 TPE 84.16 | 83.72 | 84.39 | 83.73 80.56 | 84.06 | 78.59 | 86.02
4 TPE 58.66 | 58.26 | 58.93 | 58.46 56.59 | 59.29 | 5442 | 59.27
8 TPE 40.84 | 41.00 | 44.28 | 43.58 38.19 | 44.30 | 41.08 | 41.23
16 TPE 33.54 | 33.57 | 37.07 | 36.76 30.60 | 37.02 | 35.02 | 33.90
32 TPE 30.85 | 30.94 | 34.47 | 34.19 27.98 | 3434 | 32.67 | 31.27
All TPE 49.61 | 49.50 | 51.83 | 51.34 46.78 | 51.80 | 48.35 | 50.34
MD Low 53.67 | 53.84 | 56.04 | 54.96 50.79 | 56.05 | 51.30 | 54.51
MD Avg 48.88 | 48.75 | 51.00 | 50.68 46.10 | 50.95 | 47.80 | 49.62
MD High 46.85 | 46.24 | 48.62 | 48.82 44.05 | 48.50 | 46.47 | 47.35
MD Rand 49.03 | 49.17 | 51.64 | 5091 46.19 | 51.70 | 47.85 | 49.87
EL Long 63.46 | 62.77 | 62.78 | 62.61 61.15 | 63.30 | 58.63 | 63.43
EL Short 40.03 | 39.83 | 43.70 | 43.82 37.04 | 43.59 | 42.00 | 41.02
EL Avg 52.88 | 52.92 | 54.37 | 52.98 50.01 | 54.02 | 49.40 | 53.53
EL Rand 42.07 | 4247 | 46.46 | 45.96 38.93 | 46.30 | 43.39 | 43.37
LNode LEdge 50.13 | 49.92 | 52.56 | 51.93 4731 | 5247 | 48.96 | 50.69
LNode HEdge 40.32 | 39.79 | 42.11 | 42.31 35.72 | 42.12 | 39.29 | 41.27
HNode LEdge 56.70 | 57.25 | 59.14 | 58.16 55.46 | 59.12 | 55.64 | 57.21
HNode HEdge 50.66 | 50.95 | 52.98 | 52.15 48.34 | 52.75 | 49.04 | 51.50
RNode REdge 49.92 | 49.53 | 52.09 | 51.76 46.93 | 52.17 | 48.59 | 50.68

servations can be reasoned by the reduced effect of the ex-
isting communication dependencies.

It can therefore be summarized, that the functional par-
allel programs given by the LTB have a low degree of paral-
lelism and thus can only use a small subset of the available
resources. Furthermore, the actually occupied resources
are used very inefficiently, posing the question if the par-
allelization of functional parallel programs is rational. In
some cases, the achievable speedup might justify this waste-
ful use of expensive resources. Nevertheless, new methods
are required which improve the target architectures’ utiliza-
tion.

4 Maximizing the utilization by Hyper-
scheduling

As we have seen in the previous section, the computed
schedules show a poor efficiency of predominantly less than
60%. This is the price we have to pay for shortening the ex-
ecution time by means of parallelism. Due to the constraints
imposed by the DAG, the TPEs of the target system are not
utilized permanently.

Fortunately, the users submit a great number of parallel
programs and thus it is obvious that the efficiency could be
improved by interweaving multiple subsequent schedules.
Very often, when two (or even more) subsequent sched-
ules require less SPEs than TPEs are available, the corre-
sponding parallel programs can even be processed in paral-
lel completely.

In order to preserve the benefits of parallel processing,
the parallel programs should be executed as soon as possible
in the order they have been submitted. Thus, they will be
entered into a parallel job queue from where they will be
successively scheduled by a heuristic. The basic idea of
the here proposed Hyper-scheduling approach is to reduce
the amount of idle times by interweaving subsequent DAG-
schedules from the parallel job queue. For this purpose,
we select a DAG-schedule from the top of the parallel job
queue. Its SPEs must then be assigned and aligned (in time)
to the best fitting TPEs.

To accomplish this, we sort the TPEs according to their
finishing times in ascending order. Similarly, the SPEs of
a selected DAG-schedule are also ordered in ascending or-
der with respect to their starting times. In Figure 1 an ideal
matching situation is depicted. Here, the size of the target
system is equal to the number of the required SPEs. In gen-
eral, there will be more TPEs available than SPEs needed
by the DAG-schedule. In this case, we assign the number of
required SPEs to the first TPEs.

Next, we have to align the DAG-schedule relating to the
needed TPEs’ utilization. Initially, we align the earliest task
of the first SPE to the first TPE and check if this would
result in an overlap between the first tasks of the other SPEs

TPE SPE

= =

TPE finishing times

N © w =
N = O W

SPE starting times

Figure 1. Principle of assignment and align-
ment illustrated by a perfect fitting schedule

with the utilization of the corresponding TPEs. Note, that
the relative positions of the tasks in the subsequent DAG-
schedule must be preserved.

TPE SPE

N ©O W =
N

N = O W

TPE SPE
Ve
1 \ . 3
3\ 0
0 \ Z 1
2 j‘ U7 2
TPE SPE
Ve
1 ‘ ‘ ‘ 3
3\ | 0
0 } | 1
2) | 2

Figure 2. Aligning a non-perfect fitting DAG-
schedule

Aligning the DAG-schedule as described above can re-
sult in an overlapping between the TPEs’ and SPEs’ busy
time. An example with a nonfitting DAG-schedule is shown
in Figure 2. In this example we have to delay the whole
DAG-schedule by the maximum amount of all the overlaps.

Even if this delay will leave some time periods of idle
TPEs, the sketched Hyper-scheduling approach will still
improve the target system’s utilization. Only in the worst
case that all the SPEs are busy from the beginning, no im-
provements could be achieved.

In Figure 3 some example DAG-schedules and the re-
sulting hyper-schedule are shown. In order to guarantee that
the SPEs will be executed as scheduled, the TPEs must be
reserved for the corresponding time periods.

We analyzed this algorithm by means of the already de-
scribed test bench with task graphs ranging from 25 to 250

7 NEN =
vizz727 Y B

SL=5 SL=6 SL=5

WW % Ef SL=13

Figure 3. Hyper-scheduling of three example
DAG-schedules

nodes. Because the scheduling heuristics behave very simi-
lar in most cases, we will focus on schedules computed by
the HLFET-heuristic for target architectures consisting of 4
and 8 TPE within this work. By using a small system size of
4 TPE, we avoid side effects caused by the parallel execu-
tion of multiple programs as it can happen in larger architec-
tures. Therefore, the improvements presented in table 4 can
unambiguously assigned to the interweaving of subsequent
DAG-schedules. Because a larger number of processing el-
ements will provide a better basis for the Hyper-scheduler’s
operation, the results presented in table 4 have to be under-
stood as some kind of lower bound of the algorithm’s capa-
bility. In order to verify this assertion, some results obtained
for target architectures of 8 TPE are added as well (see ta-
ble 5). An analysis of larger target architectures was not
included, because the low average number of required pro-
cessing elements (see table 2 for further information) would
facilitate the parallel execution of the parallel programs to a
very high degree.

In order to get meaningful values, we generated 25 se-
quences of 10 randomly selected schedules for each consid-
ered test case property. These sequences were forwarded to
the Hyper-scheduler for processing. The first column of ta-
ble 4 shows the average values one obtains when placing the
schedules without, the second column those when placing
the schedules with the proposed Hyper-scheduler. As can be
easily seen, interweaving subsequent DAG-schedules can
improve the efficiency by up to approximately 2 %. The
table’s third column shows the additional speedup when
applying our algorithm. This value ranges from 1.00004
to 1.04929 indicating a maximum speedup of almost 5 %.
When considering individual sequences, these values can be
nearly doubled compared to the average ones.

Maximum increase can be observed for test cases with
a high meshing degree, because the corresponding task
graphs tend to have a small number of starting nodes and
are therfore particularly suitable for Hyper-scheduling. In
contrast, task graphs with predominantly long edges usually
have a large number of starting tasks which are scheduled
as soon as possible by most scheduling algorithms. For this
reason, the Hyper-scheduler achieves poor results when ap-

Table 4. The effect of Hyper-scheduling (HS)
on efficiency and speedup regarding target
architectures of 4 TPE

Efficiency | Efficiency | additional
without HS | with HS Speedup
(in %) (in %)

MD Low 62.851 63.205 1.00563
MD Avg 52.383 53.310 1.01769
MD High 40.854 42.868 1.04929
MD Rand 52.806 53.503 1.01319
EL Long 86.135 86.139 1.00004
EL Short 36.018 37.590 1.04364
EL Avg 63.977 64.293 1.00493
EL Rand 41.147 42.153 1.02444
LNode LEdge 51.813 52.586 1.01491
LNode HEdge 36.618 37.728 1.03031
HNode LEdge 65.464 66.373 1.01388
HNode HEdge 51.654 52.528 1.01692
RNode REdge 50.274 51.186 1.01814

plied on test cases basing on task graphs with predominantly
long edges.

Table 5 shows the results when considering target archi-
tectures of 8 processing elements. As expected, the mea-
sured values are much better than for the smaller system
size. Again, the proposed algorithm shows the best im-
provements for test cases with a high meshing degree. The
average Speedup measured for these test cases was 1.49,
the maximum value we observed for a single sequence was
2.07. By applying the Hyper-Scheduler, the efficiency was
improved by 10.45 % on average and 20.005% on maxi-
mum. Again, the worst results were found for test cases
with predominantly long edges. It is obvious, that the val-
ues shown in table 5 are affected by the fact that the average
number of used TPE is only 6.82 (see table 2 for details).
Nevertheless, it is very unlikely that two or more schedules
can be completely executed in parallel because they require
only very few processing elements.

5 Conclusion

In this paper, we used a huge test bench with a total of
36000 test cases and up to 250 task nodes to compare dif-
ferent DAG-scheduling heuristics regarding their speedup
and efficiency. Because the used test bench covers a broad
spectrum of conceivable task graph problems, we also an-
alyzed and discussed the influence of various task graph
properties on the efficiency. Essentially, we found out that
the efficiency of the DAG-schedules is mostly below 60%
which means, that a lot of the provided computing power

Table 5. The effect of Hyper-scheduling (HS)
on efficiency and speedup regarding target
architectures of 8 TPE

Efficiency | Efficiency | additional
without HS | with HS Speedup
(in %) (in %)

MD Low 35.315 36.989 1.04740
MD Avg 28.364 32.315 1.13929
MD High 21.334 31.790 1.49010
MD Rand 28.180 31.147 1.10528
EL Long 64.544 64.600 1.00086
EL Short 18.011 25.544 1.41824
EL Avg 33.973 36911 1.08648
EL Rand 20.609 25.275 1.22640
LNode LEdge 27.803 31.667 1.13897
LNode HEdge 18.988 23.219 1.22282
HNode LEdge 37.255 40.940 1.09891
HNode HEdge 27.746 31.520 1.13601
RNode REdge 26.887 31.022 1.15379

is wasted. For this reason, we proposed a new Hyper-
scheduling algorithm which ameliorates the efficient use of
the available resources. The presented results show a sig-
nificant improvement of efficiency and speedup.

In our future work we will extend this approach to het-
erogeneous target systems which represent more appropri-
ate models for real grid environments. In addition, we plan
to develop an alternative approach based on a Multi-DAG-
Scheduling concept.

Acknowledgment The authors would like to thank
Rajkumar Buyya and Anthony Sulistio from Melbourne
University for motivating our research on the topic of
scheduling efficiency.

References

[1] Kwok, Y.-K., Ahmad, I.: Benchmarking and Compari-
son of the Task Graph Scheduling Algorithms, Journal
of Parallel and Distributed Computing, Vol. 59, No. 3,
pp- 381-422, Academic Press, Inc., 1999

[2] Deelman E. et al.: Pegasus: Mapping Scientific Work-
flows onto the Grid, European Across Grids Confer-
ence, pp. 11-20, Springer, 2004

[3] Yu, J., Buyya, R.: A taxonomy of scientific workflow
systems for grid computing, SIGMOD Rec., Vol. 34,
No. 3, pp. 44—49, ACM Press, 2005

[4] Wieczorek M., Prodan R., Fahringer T., Scheduling of
scientific workflows in the ASKALON grid environ-
ment, SIGMOD Rec., Vol. 34, No. 3, pp. 56-62, ACM
Press, 2005

[5] Fahringer T., Pllana S., Villazén A.: A-GWL: Abstract
Grid Workflow Language, International Conference on
Computational Science, Springer, pp. 4249, 2004

[6] Kwok, Y.-K., Ahmad, I.: Static Scheduling Algorithms
for Allocating Directed Task Graphs to Multiproces-
sors, ACM Computing Surveys, Vol. 31, No. 4, pp.
406471, ACM Press, 1999

[7] Coffman, E.G.: Computer and Job-Shop Scheduling
Theory, John Wiley & Sons, 1976

[8] Kwok, Y.-K., Ahmad, I.: Efficient Scheduling of Arbi-
trary Task Graphs to Multiprocessors Using a Parallel
Genetic Algorithm, Journal of Parallel and Distributed
Computing, Vol. 47, No. 1, pp. 58-77, Academic Press,
Inc., 1997

[9] Ahmad, 1., Kwok, Y.-K.: Optimal and Near-Optimal
Allocation of Precedence-Constrained Tasks to Parallel
Processors: Defying the High Complexity Using Effec-
tive Search Techniques, ICPP "98: Proceedings of the
1998 International Conference on Parallel Processing,
pp- 424-431, IEEE Computer Society, 1998

[10] Honig, U., Schiffmann, W.: A Parallel Branch-
and-Bound Algorithm for Computing Optimal Task
Graph Schedules, Proceedings of the Second Interna-
tional Workshop on Grid and Cooperative Computing
(GCC’03), LNCS 3033, pp. 18-25, Springer-Verlag,
2004

[11] Honig, U., Schiffmann, W.: Fast optimal task graph
scheduling by means of an optimized parallel A*-
Algorithm, Proceedings of the International Confer-
ence on Parallel and Distributed Processing Techniques
and Applications (PDPTA’04), Vol. 2, pp. 842-848,
CSREA Press, 2004

[12] Honig, U., Schiffmann, W.: A comprehensive Test
Bench for the Evaluation of Scheduling Heuristics, Pro-
ceedings of the sixteenth IASTED International Con-
ference on Parallel and Distributed Computing and Sys-
tems (PDCS *04), pp. 437-442, 2004

[13] Bank, M., Honig, U., Schiffmann, W.: An ACO-based
approach for scheduling task graphs with communica-
tion costs, Proceedings of the 2005 International Con-
ference on Parallel Processing (ICPP 2005), pp. 623—
629, IEEE Computer Society, 2005

[14] Honig, U., Schiffmann, W.: Comparison of nature in-
spired and deterministic scheduling heuristics consider-
ing optimal schedules, Adaptive and Natural Comput-
ing Algorithms, pp. 361-364, Springer Wien New York,
2005

[15] Bansal, S., Kumar, P., Singh, K.: An improved dupli-
cation strategy for scheduling precedence constrained
graphs in multiprocessor systems, IEEE Transactions
on Parallel and Distributed Systems, Vol. 14, No. 6,
IEEE Press, 2003

