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Abstract

Wireless ad hoc networks of battery–powered microsen-
sors are proliferating rapidly and transforming how infor-
mation is gathered and processed, and how we affect our
environment. The limited energy of those sensors poses the
challenge of using such systems in an energy efficient man-
ner to perform various activities. In many of these activi-
ties, a basic step is that of a sensor sending a data set to
a base station. Since communication drains sensor energy
fast, reducing the amount of bits transmitted can lead into
substantial energy savings.

We consider the problem of communicating a given set
S of elements from a universe in a way that transmits sub-
stantially fewer bits, with a very small computation over-
head at the sender. We present an approach that utilizes
Bloom filters to construct a small footprint signature for S,
from which candidates for S are computed. Our approach
trades some practical computation cost and a small pre-
cision loss at the receiver (base station), which is anyway
resource rich, for reducing the number of bits transmitted.
The precision loss stems from the fact that the recovered set
at the receiver may include false positive(s).

We experimentally show that our approach substantially
reduces the number of bits transmitted, while still hav-
ing practical receiver running times and few false posi-
tive errors. Moreover, we show that our approach can uti-
lize application–dependent characteristics to further reduce
false positives, or even eliminate them as in our experiments
with topology gathering and energy map gathering, without
noticeable increase in running times.

1 Introduction

Recent advances in sensing technologies and low–power
electronics have led to the development of distributed wire-
less ad hoc networks of battery powered microsensors [14].

Wireless sensor networks (WSN) are to consist of thousands
of such inexpensive sensors, that can be readily deployed in
physical environments to collect useful information and af-
fect their environment. Sensors typically communicate with
one another over short distances and establish multi–hop
communication paths to base stations. Managing WSNs
is challenging due to limited energy, large number of sen-
sor nodes, inhospitable working environments, and unpre-
dictable deployment. Foremost among these challenges is
how to best utilize the limited energy of the sensors.

Two basic approaches are used to conserve energy: lim-
iting radio operations [4, 16], and reducing the amount of
data transmitted [6, 8, 10, 11]. Reducing the amount of
data transmitted is attractive, since radio communication
has been regarded as a major energy consumer [12, 14].
Madden et al [12] find that Mica motes running TinyDB
use 41% of their energy on communications. Pottie and
Kaiser [14] report that future platforms could execute 3x106

instructions to transmit 1K bits over 100 meters. Note that,
currently, for the Berkeley sensor motes, it takes in the or-
der of 1µJ to transmit a single bit, 0.5µJ to receive a bit,
while executing roughly 100 instructions consumes up to
0.8µJ [9].

In this paper, we consider the problem of communicat-
ing any given set of elements from a known universe in
a way that transmits substantially fewer bits with a very
small computation overhead at the sender. Sending a set
of elements from a sensor to a receiver is a basic operation
in many activities in wireless sensor networks, therefore,
achieving this goal leads to substantial energy savings for
the sensors. We explore trading some practical computation
cost and a small precision loss at the receiver (base station),
which is anyway resource rich, for reduced amount of bits
transmitted. The precision loss is stemming from the fact
that the set recovered at the receiver always includes all the
elements in the original set, but it may include some extra
elements.

The basic idea of our approach is making use of Bloom
filters [2]. Consider a sensor (sender) that wants to com-



municate a set S of elements from a universe U to the base
station (receiver). 1 The sensor constructs an easily com-
putable signature for S which it sends to the base station.
The base station performs some computation with the re-
ceived signature and finds a set of candidate sets for S to-
gether with an approximate set that is always a superset of
S. The set signature is chosen so that it requires fewer bits
to send than sending S directly. To compute the signature
of a set S, the sensor sorts S and partitions it into small–
size blocks. We describe two methods for such partitioning:
fixed and varying block–sizes (adaptive). In adaptive parti-
tioning, block sizes vary so that the desired block–spans are
achieved. 2 Then, the sender constructs a signature that con-
tains the block boundaries, the block–sums, a Bloom filter
for the set of block–products, and the block–sizes. 3 Upon
receiving its signature, the base station recovers set S by
constructing a set of candidates as follows: find candidate
blocks with the prescribed block–sums and block–products
contained in the Bloom filter, and then using these block
candidates, find set candidates that have the same signature
as the one received. By taking the union of the set candi-
dates, the base station finds an approximate set that contains
S, and by intersecting all the set candidates finds those ele-
ments that must be in S. The receiver could make false pos-
itive mistakes but would never make a false negative mis-
take, due to the property of Bloom filters. When the base
station receives signatures of multiple sets, and depending
on the application, it may utilize additional information to
eliminate some set candidates without introducing any false
negative errors. This is the case for the two such appli-
cations we consider: topology gathering and energy map
gathering. Though the computation overhead at the sender
is small, the receiver may incur considerable computational
costs. The receiver’s computation cost is proportional to the

sum of block–spanblock–size of all the blocks.
We call our approach TOE, and TOE–a when vary-

ing block–sizes are used. We experimentally evaluate the
proposed algorithms through a simulation study. The ex-
perimental results demonstrate that both TOE and TOE–a
achieve substantial savings in the number of bits transmit-
ted (up to 53% in our simutations for a network with 1000
sensors), compared to sending S directly, at practical run-
ning times at the base station with few false positive errors.
Moreover, for the topology and energy map gathering, we
show, experimentally, that by utilizing easily derived inter-
set dependencies, the number of false positives becomes
zero, without noticeable increase in the running times.

Let us note here that our approach works for any (dis-

1We assume, w.l.o.g., that U is a contiguous sequence of numbers.
2The span of a block is the number of elements from U between the

block’s boundaries.
3A block–sum (block–product) is the sum(product) of all the elements

of a block.

crete) universe, and that in contrast to other Bloom filter ap-
plications, our approach also constructs candidate sets and
identifies elements that must be in the set, in addition to
answering membership queries.

The rest of the paper is organized as follows. Section 2
gives a brief overview of Bloom filters. We describe our
approach in section 3, and present the results of our experi-
mental evaluation in section 4. Related work is discussed in
section 5, and conclusions are given in section 6.

2 Overview of Bloom Filters

Bloom [2] introduced a space–efficient probabilistic data
structure, called Bloom filter, for representing a set that
supports membership queries. A Bloom filter F of size
m and order k is an m–bit vector together with k inde-
pendent hash functions H = {h1, · · · , hk} that hash each
element of a universe U to k bit positions of the bit vec-
tor (filter). Initially all its bits are 0. Filter F represents
a set S = {x1, x2, · · · , xn} ⊆ U of n elements as fol-
lows: for each element xi ∈ S, set the bits hj(xi) to 1,
for j = 1, 2, . . . , k. We call the ratio mo = m/n the filter’s
density. We answer a membership query y ∈ S? with yes if
all the k bits determined by the k hash functions evaluated
at y are set to 1 in the Bloom filter; otherwise, we answer
no. We say that an element y is consistent with F , if the
answer to the membership query for y is “yes”. Clearly,
it is possible to have false positive errors but not any false
negative errors. The probability f of a false positive error
is f = (1 − (1 − 1/m)kn)k ≈ (1 − e−

kn
m )k . Bloom filters

have some important properties:

• there are no false negative errors.

• the false positive error rate f dependents on the filter’s
order k and density m/n, and it is independent of the
size |U | of the universe.

• the expected number of false positive errors is f · |U |.

• for any two sets S1, S2 ⊆ U , a Bloom filter for S1∪S2

(S1 ∩ S2) can be obtained by taking the logical OR
(AND) of the Bloom filters for S1 and S2, provided
these two filters are of the same order and size, and
use the same hash functions.

• a Counting Bloom filter [7] support insertion and dele-
tion of elements; a counting Bloom filter is obtained
from a standard Bloom filter by replacing each bit with
a counter (and incrementing/decrementing those coun-
ters instead of setting/resetting the corresponding bits).



3 Trading cOmputation for Energy

We describe two algorithms, TOE and adaptive TOE
(TOE–a), for trading computation for energy when commu-
nicating sets between sensors and base stations. The pri-
mary difference between the two algorithms is on how a set
is partitioned into blocks.

3.1 TOE

The TOE algorithm uses the following system–wide pa-
rameters: a universe U of elements, a block size p, and a
Bloom filter density mo (e.g. number of bits per block).

Whenever a sensor wants to send set S ⊆ U of n ele-
ments, it sorts S in increasing order, and partitions it into
blocks of equal size p. The sensor then computes a sig-
nature for S that consists of the block boundaries d 4, the
block sums σ, the block sizes ω, and a Bloom filter for the
set of block products. It then sends the signature of S, while
omitting the sizes of all the blocks but of the last one, to the
base station. The complete sender–side algorithm is given
in Figure 1.

SendSet(S, p,mo)
1 let the set S in increasing order be S = {s1, s2, . . . , sn}
2 let (ω, σ, d, F )←− ComputeSignature(S, p,mo)
3 send messagemsg = (σ, d, ωb, F ) to base station

ComputeSignature (S, p, mo)
1 let (d, b)←− GetBlockBoundary(S, p)
2 for i←− 1 to b do
3 Bi ←− {sj ∈ S | di < sj < di+1 }
4 ωi ←− |Bi|
5 σi ←−

∑
x∈Bi

x

6 πi ←− Πx∈Bi
x

7 let ω ←− {ωi}, σ ←− {σi}, and π ←− {πi}
8 let F ←− an initially empty Bloom filter with length m = b ·mo bits
9 Hash π to F
10 return (ω, σ, d, F )

GetBlockBoundary (S, p)
1 let n←− |S|, b←− 0, and i←− 1
2 let d be {s1}
3 while i < n do
4 if (i + p+ 1) ≤ n then
5 b←− b+ 1
6 i←− i + p+ 1
7 append si to the end of d
8 else if (n− i) ≤ 2 then
9 append {sj ∈ S | i < j ≤ n} to the end of d
10 break
11 else
12 b←− b+ 1
13 append sn to the end of d
14 break
15 return (d, b)

Figure 1. Sender–side TOE algorithm.

Whenever the base station receives a message with the
signature of a set S, it computes a superset Ŝ of S as well

4The symbol x denotes a sequence x1, x2, . . ..

as a set of candidate sets for S from that signature. First,
it finds candidates for each block, of size l, by identifying
all l–subsetsX ⊆ U that fall within the block’s boundaries,
have sum

∑
x∈X x equal to that block’s sum in the signa-

ture, and their product Πx∈Xx is consistent with the Bloom
filter in the signature. Second, using the block candidates,
it identifies candidates for S as follows. Take the Carte-
sian product Co of all the block candidates, remove from
Co all those tuples whose Bloom filter is not equal to the
Bloom filter in the signature, and then create a set of candi-
date sets CS by taking, for each tuple in Co, the union of all
the elements in that tuple with the block boundaries. It may
happen that some additional information is available from
other sources, such that the candidates for S must include
(exclude) all the elements in some set Sin (Sout). Such side
information, whenever available, is utilized to further elim-
inate candidates from CS . Observe that the set of elements
that belong in every candidate set must be in the original S;
those elements are guaranteed to be in S, and are thus ap-
pended to Sin. The union of all the elements in the candi-
date sets is an approximation Ŝ to S. The algorithm returns
Ŝ, the set of guaranteed elements Sin, and the set of all
candidate sets CS . The complete receiver–side algorithm is
given in Figure 2.

The running time of the sender–side TOE is O(n log n).
The running–time of the receiver-side TOE depends on the
block spans. The running–time of the receiver–side TOE is

Θ

(
b∑
i=1

gpi + Co

)
= O (ngpmax/p+ Co) , (1)

where gi is the span of block i and gmax = max{gi}.
We compute the savings in bits that are communicated in

a msg from a sender to a receiver, by sending the signature
of S instead of S itself. Suppose that each element of U , as
well as the block sums use no more than λ bits. The number
of bits for the size of the last block, which is included in the
msg, is �log2 (p− 1)�. Consequently, the savings in bits
communicated is

λ(n− |d| − |σ|) − |σ| ·mo − �log2 (p− 1)�, (2)

when using a Bloom filter with density mo.

3.2 Adaptive TOE (TOE–a)

To further decrease the amount of bits communicated,
one may attempt to increase the size of the blocks a set
S is partitioned to. Unfortunately, increasing the size of
a block may lead to an increase of the block span as well
as an increase to the number of block candidates, which in
turn may adversely affect the running time of the receiver–
side of TOE (see Eq. (1)). Blindly increasing block sizes



ReceiveSet(msg, p,mo , Sin, Sout , U )
1 let msg be (σ, d, ωb, F )
2 let b←− |σ|
3 for i from 1 to b do
4 let Ci ←− ∅
5 if i = b then
6 Ci ←− GetBlockCandidates(σi, di, di+1, ωb, F, U)
7 else
8 Ci ←− GetBlockCandidates(σi, di, di+1, p, F, U)
9 let C ←− {Ci | i = 1, . . . , b }
10 let (CS, Sin)←− GetSetCandidates(C,F, d, Sin, Sout)

11 Ŝ ←− {∪cj | cj ∈ CS}
12 return (Sin, Ŝ, CS)

GetBlockCandidates(σ, low, high, k, F, U )

1 let Û ←− {uj ∈ U | low < uj < high}
2 let C ←− ∅
3 foreach k–subset X of Û
4 let π ←− Πk

i=1xi

5 if
∑

k

i=1
xi = σ and π is consistent with F then

6 add X to C
7 return C

GetSetCandidates(C , F , d, Sin, Sout)
1 let m be the number of bits of the Bloom filter F and b be |C|
2 let Co ←− C1 × C2 × · · · × Cb

3 foreach tuple τ = (cj | j = 1 . . . b) ∈ Co of b block candidates do

4 let π ←−
{

Πx∈cj
x | j = 1, . . . , b

}
5 let F ′ be a Bloom filter of sizem for π
6 if F ′ �= F then
7 remove τ from Co

8 let CS ←− ∅
9 foreach tuple τ = (cj | j = 1 . . . b) ∈ Co do
10 let c be the set of the elements in d and in τ
11 add c to CS

12 while CS changes do
13 CS ←− EliminateSetCandidates(CS , Sin, Sout)
14 Sin ←− Sin ∪ {∩cj | cj ∈ CS}
15 return (CS , Sin)

EliminateSetCandidates(CS , Sin, Sout)
1 foreach c ∈ CS do
2 if ¬ (Sin ⊆ c ∧ Sout ∩ c = ∅) then
3 remove c from CS

4 return CS

Figure 2. Receiver–side TOE algorithm.

to achieve better bit savings will soon lead to unacceptable
running times.

To mitigate this issue, we describe the adaptive TOE
(TOE–a). The parameter p for TOE–a now becomes the
maximum block size permitted. TOE–a uses an additional
system parameter Ψ = {ψ2, ψ3, · · · , ψp}, which specifies
an upper bound ψi on the span of blocks of size i, for
i = 2, 3, . . . , p. These upper bounds on the block spans
are used when a set is greedily partitioned into blocks of
size j as big as possible, provided j ≤ p and the block–
span is ≤ ψj . In addition, the sender in TOE–a needs to
include the sizes of all the blocks, not just the size of the
last block. These are the essential differences between TOE
and TOE–a. The details of TOE–a are given in Figure 3.

The bit–savings of TOE–a over the naive method of
sending S iteself is

λ(n− |d| − |σ|) − |σ| · (mo + �log2 (p− 1)�). (3)

SendSetAdaptive(S, p, Ψ,mo, U )
1 let the set S in increasing order be S = {s1, s2, . . . , sn}
2 let (ω, σ, d, F )←−

ComputeSignatureAdaptive(S, p,Ψ,mo, U)
3 send messagemsg = (σ, d, ω, F ) to base station

ComputeSignatureAdaptive (S, p, Ψ,mo, U )
1 let (d, b)←− GetBlockBoundaryAdaptive(S, p,Ψ, U)

rest of code is identical to lines 2–10 of ComputeSignature procedure
of Figure 1

GetBlockBoundaryAdaptive (S, p, Ψ, U )
1 let n←− |S|, b←− 0, and i←− 1
2 let d be {s1}
3 while i < n do
4 if (i + 3) ≤ n then
5 pick biggest j that j ≤ p ∧ (i + j + 1) ≤ n ∧

∧GetSpan(si, si+j+1, U) ≤ ψj

6 b←− b + 1
7 i←− i+ j + 1
8 append si to the end of d
9 else
10 append {sj ∈ S | i < j ≤ n} to the end of d
11 break
12 return (d, b)

GetSpan(low, high, U )

1 let Û ←− {uj ∈ U | low < uj < high}
2 return |Û|

ReceiveSetAdaptive(msg, mo, Sin, Sout, U )
1 let msg be (σ, d, ω, F )
2 let b←− |σ|
3 for i from 1 to b do
4 let Ci ←− GetBlockCandidates(σi, di, di+1, ωi, F, U)

rest of code is identical to lines 9–12 in the ReceiveSet procedure of
Figure 2

Figure 3. Adaptive TOE (TOE-a).

Even though TOE–a may give less bit–savings with respect
to TOE, our experimental evidence suggests that for highly
dynamic sets TOE–a offers a better balance among bit–
savings, efficiency, and effectiveness (e.g. false positive er-
rors).

4 Experimental Evaluation

We describe two kinds of experiments: experiments with
individual sets to assess performance on recovering individ-
ual sets, and application experiments, where multiple sets
are sent/recovered in the context of two applications: gath-
ering the topology and the energy map of an ad hoc sensor



network of realistic sizes. 5 The experiments with individ-
ual sets allow us to analyze and compare performance of the
TOE and TOE–a. The application experiments demonstrate
that the proposed algorithms, used together with some ap-
plication characteristics (e.g. topology is symmetric), pro-
vide substantial energy–savings without any false positive
errors.

We assume networks that are ad hoc, symmetric, and
have 1000 sensor nodes. Each sensor has an unique identi-
fier (ID). 6 We use the following performance metrics: bit–
savings, match effectiveness, and match efficiency. The
bit–savings is the difference between the number of bits
sent by TOE and TOE–a vs. sending the set directly, not
counting packet overhead. Including packet overhead, due
to packet headers, increases the benefit of our algorithms
even more. 7 Match efficiency is measured by the running–
time to complete execution of the ReceiveSet procedure at
the receiver (base station). Match effectiveness is evaluated
with two measures: the percentage of the sets for which
the ReceiveSet procedure returns only one candidate set
(i.e. there are no false positives), and the percentage of el-
ements identified as guaranteed in the recovered set when
false positives are present. All the simulations were done
using Java and run on a Gateway GT5012 PC. For symme-
try with TOE–a, hereafter, we refer to the TOE algorithm as
TOE–f (“f” for fixed block sizes).

4.1 Set Experiments

We describe two experiments: one for comparing the
performance of TOE-f and TOE–a, and one for analyzing
the adaptivity of TOE–a.

For each experiment, we generate random sets of nodes
over the whole network with size varying from 10 to 40, and
transmit their IDs to base station. For each set size, we gen-
erate 100 sets and compute the average of the performance
metrics over these sets. The density of the Bloom filters is
mo = 12 and the block span–size thresholds for TOE–a are
Ψ = (ψ2, ψ3, ψ4, ψ5) = (1000, 500, 100, 50).

In the experiment for comparing TOE–f and TOE–a, we
fix the span of all the generated sets at 200. The span of a
set is defined to be the number of elements of the universe
between the smallest and largest elements of the set. The
performance metrics (bit–savings, effectiveness, and effi-
ciency) of TOE–f and TOE–a are shown in Figure 4. Com-
pared to TOE-f with block size p = 5, TOE-a provides less

5Due to space limitations, experiments with sets with a single block
level are omitted. These experiments illustrate how the various parameters
impact the performance, and are used for choosing the parameter values
for the experiments reported.

6We experimentally find that using consecutive prime numbers as IDs
leads to better selectivity by σ in line 5 of the GetBlockCandidate pro-
cedure.

7For example, TinyOS has packet header of 7 bytes for a data payload
of up to 29 bytes per packet.
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Figure 4. Performance metrics for TOE-f vs.
TOE-a.
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Figure 5. Adaptivity of TOE-a.

bit–savings but much better match effectiveness and match
efficiency. Compared to TOE-f of smaller block size, TOE-
a achieves better bit-savings yet comparable match effec-
tiveness and match efficiency. Overall, TOE-a provides a
very good balance among the three performance metrics.

In the experiment for the adaptivity of TOE–a, for each
set size, we generate 100 sets with span g of 100, 300, and
998. The results are shown in Figure 5. As expected, the
span g of a set has significant impact on the performance
of TOE–a, but TOE-a adapts very well on it – even for the
extreme case of g = 998.



4.2 Application Experiments

In many applications, multiple sets are communicated to
base station where candidates for those sets are being com-
puted. Since those sets may be related and provide us addi-
tional information, it is interesting to investigate how such
inter–set dependencies may be utilized, especially for elimi-
nating false positives. To this end, we consider two applica-
tions: gathering the topology and gathering an energy map
of a sensor network.

For the topology gathering application, each sensor
sends to the base station the set of its immediate neigh-
bors, and the base station attempts to construct the com-
plete topology of the network. Topology gathering may be
initiated on demand or periodically as needed, and the data
communicated is appropriately timestamped. Symmetric
topologies afford us simple inter–set dependencies for elim-
inating match candidates: at base station, when constructing
the complete topology, if v is guaranteed to be u’s neighbor
then so is u for v. By incorporating this simple test in the
candidate elimination procedure of the receiver, and apply-
ing it in an iterative manner until no candidates are elimi-
nated anymore, we expect that the number of false positive
errors will be decreasing. Note that applying this test does
not introduce any false negative errors. Clearly, in this case,
we need to carefully consider the number of iterations until
no further candidate eliminations are obtained.

We consider neighborhoods with span bounded by 100,
200, 300, and 998. For each neighborhood span, we gener-
ate 5 networks of 1000 nodes with neighborhood sizes be-
tween 15 and 35. We then, compute average performance
metrics. The results are shown in Table 1. The table shows
the bit–savings, the one candidate set match effectiveness
(percentage of neighborhoods with only one candidate) be-
fore applying any inter–set dependency on candidate elimi-
nation (1–match (before)), the number of iterations Iter for
the candidate elimination utilizing inter–set dependencies,
the one candidate set match effectiveness after applying the
candidate elimination (1–match (after)), and the total run-
ning time T in seconds. Note that it took one iteration over
all the neighborhoods to eliminate all possible false posi-
tives. Thus, TOE–a is a promising method to gather net-
work topology at substantially lower communication costs
with very few if any false positive errors.

The second application we consider is that of gathering
an energy map of the sensor network. In this application,
each sensor is labeled by an e-label chosen among a small
set of energy labels E = {e1, e2, . . .}. Energy labels are
used to indicate the amount of energy available (or con-
sumed) by a sensor, and may be chosen in various ways.
Sensors are grouped into disjoint clusters of nodes, and each
cluster has a head that may change over time. Each cluster
head constructs, for each energy label e ∈ E, the set of

Table 1. Topology and energy map gathering.

Topology gathering using TOE–a
Span Bit-savings 1–match (before) Iter 1–match (after) T (secs)

≤ 100 45.0% 88.9% 1 100% 78.6
≤ 200 38.5% 82.1% 1 100% 189.5
≤ 300 33.8% 84.4% 1 100% 435.7
≤ 998 25.1% 83.7% 1 100% 329.6

Energy Map gathering using TOE–a
#Clusters #e-Labels Bit-savings 1–match (before) Iter 1–match (after) T (secs)

5 5 48.6% 88.8% 1.0 100% 3.6
5 10 41.0% 86.0% 1.0 100% 6.1

10 5 45.5% 91.2% 1.0 100% 3.4
10 10 35.8% 63.2% 1.8 100% 4.6

nodes Se in its cluster that have label e and communicates
Se to the base station if Se 	= ∅. The base station gathers all
these energy sets, and then creates a map that provides the
energy label of each sensor in the network. An energy map
may be subsequently used by numerous other applications,
such as scheduling, network management, data migration,
etc.

Suppose that TOE–a is used to communicate the signa-
tures of energy sets of the clusters and at the base station,
the energy sets are recovered. Observe that each node can
have only one energy label. Thus, the base station, when
computing candidates for the energy sets, can make use of
the following simple test to eliminate candidate(s): if a sen-
sor is found to be a guaranteed member of one energy set
candidate, then it can not belong to any other energy set. 8

This test can be used iteratively to further eliminate set can-
didates for all the energy sets. In doing so, no false negative
errors are introduced.

For the experiments with energy map gathering, we clus-
ter the nodes into either 5 or 10 clusters, and randomly label
the sensors with either 5 or 10 energy labels. The nodes of
each cluster are then assigned consecutive IDs. We generate
5 networks of 1000 nodes for each combination of (#clus-
ters, #e-labels) and then compute average performance met-
rics. The results are shown in Table 1. The experiments sug-
gest that TOE–a coupled with the simple candidate elimina-
tion test is an effective approach to significantly reduce false
positives, or even eliminate them as in our experiments,
while still enjoying the substantial bit–savings offered by
TOE–a.

For the experiments reported here, the running times at
the receiver side of TOE–a are quite practical. For larger
networks, since the computation of set candidates can be
easily parallelized/distributed, the running times can still be
kept practical.

8Note also that if a sensor is found to belong in only one set candidate
with label e, among all candidates for the cluster across all labels, then it
is guaranteed to be in Se.



5 Related work

Bloom filters have been widely utilized in a variety of
applications, since they offer a succinct and space–efficient
way to represent a set of items and answer membership
queries fast with some false positive errors. Broder and
Mitzenmacher [3], have an excellent survey of applications
of Bloom filters. The interested reader is referred to [3]
and references therein for more details on various Bloom
filter applications. Below, we focus on recent applications
of Bloom filters in sensor networks.

Abadi et al [1] present algorithms for evaluating join
queries over static data tables in sensor networks in an en-
ergy efficient manner. They use Bloom filters to dissemi-
nate the static data tables to every node, and to allow nodes
to avoid transmitting sensor data tuples that would not join
with any entries in the join table. Ye et al [15] use Bloom fil-
ters in their Statistical En-route Filtering (SEF) system that
filters out false reports injected by attackers as they were
forwarded toward the data collection point. To minimize
the communication overhead and the corresponding energy
consumption, they use Bloom filters to represent the mes-
sage authentication codes (MACs) while retaining en-route
verification of the MACs. Both works are concerned with
energy conservation, and use Bloom filters for representing
data sets and answering membership queries. Our approach,
though similar to these in origin, is novel and differs from
them in that we construct list of candidates for the set rep-
resented by Bloom filters.

Deb et al [5] describe a topology gathering approach,
STEM, which is a distributed parameterized algorithm for
extracting topology at multiple resolutions, which makes
trade-off between topology details and resource expended
to gather it. Our approach can be used in STEM to re-
duce the communication cost/energy in gathering the net-
work topology at each resolution.

Zhao et al [17] describe an in-network aggregation ap-
proach for collecting abstracted residual energy scan (eS-
can). An eScan depicts an aggregated picture of the remain-
ing energy levels for different regions in a sensor field, and
provides an abstracted view of energy resource distribution.
A composite scan is built by combining local scans piece-
wise in-network, and at each step of aggregation, these par-
tial scans are auto-scaled by varying their resolutions. In
order to do in-network aggregation, each node is assumed
to have location information, and the network is expected to
have spatial locality on energy spending. Our approach for
gathering energy information is different from eScan in that
our approach provides detailed energy information of each
node, doesn’t depend on sensor node location information
nor spatial locality on energy spending, and does the com-
putation at the base station, which is resource-rich.

Mini et al [13] describe a prediction–based approach for

constructing an energy map of a WSN. An energy dissipa-
tion model is proposed and is used to simulate the energy
spending behavior of sensor nodes. Certain amount of in-
formation is still gathered from sensor nodes, and clearly
the effectiveness of this method is dependent on the pre-
diction accuracy. When the network is dynamic and has
multiple on-going tasks, sensors may have to switch from
different energy dissipation models and may spend differ-
ent amount of energy during different periods within the
same model. This leads to a complex prediction task with
an adverse impact on accuracy. In contrast, our approach for
gathering an energy map, provides almost real–time energy
information of the network, and is less sensitive to dynamic
changes in the network.

6 Conclusions

We consider the problem of energy efficiently transmit-
ting a given set of elements from a known universe from a
sensor to a base station in wireless sensor networks. Send-
ing a data set is a basic step in many applications.

We present novel methods, TOE and adaptive TOE,
for energy conserving data communication from sensors to
base stations. Our approach reduces the number of bits
transmitted by trading precision and computation at the
resource-rich base stations. It can achieve significant bit-
savings and lower bandwidth consumption, compared to di-
rect transmission of a set, and can be easily used by various
applications in large-scale networks such as gathering net-
work topology and energy maps.

Our proposed methods use Bloom filters together with
some easily derived additional information to construct
small-footprint signatures for the set of elements. In achiev-
ing a small–footprint signature, some false positive errors
may be introduced. Our methods compute a set of candi-
dates for a given signature of a set S, identify elements that
must be in S, and construct a superset of S. In addition,
they still support efficient membership queries. Moreover,
our methods can use additional application–dependent char-
acteristics to further reduce, or even eliminate, the false pos-
itive errors without noticeable additional computation over-
head.

We perform experiments to analyze the performance of
the proposed methods and demonstrate their utility, effec-
tiveness, and efficiency in two applications: topology and
energy map gathering in wireless sensor networks.
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