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Abstract 
Servers’ reintegration is a mode of file system operation that allows file servers 
to synchronize their  data after network partitions. The reintegration design 
supports the main objectives of the disconnection-resilient file systems, which is 
to provide high available and reliable storage for files, and guarantees that file 
operations are executed in spite of concurrency and failures. In this paper, we 
show that server reintegration is efficient and practical by describing its design 
and implementation in Paradise File System. Moreover, we report on its 
performance evaluation using a cluster of workstations. Our results indicate 
clearly that our design exhibits a significant degree of automation and conflict-
free mobile file system. 

 
 

1. Introduction 
The last two decades have witnessed an increase 

in complexity and maturity of distributed file 
systems. Both well-established commercial and 
research systems have addressed a vast palette of 
users’ needs in today’s highly distributed 
environments. Those needs range from failure 
resiliency to mobility, to extended file sharing, and 
to dramatic scalability. However, even the most 
advanced of current systems fail to tackle the issue 
of continuous availability of every mobile client’s 
data in today’s increasingly wireless working 
environments. Henceforth, there is a need for a novel 
replication and a node reintegration technique, 
different than those used in existing distributed file 
systems aimed at mobility.  More specifically, 
distributed file systems may experience different 
obstacles such as disconnection from the network 
resulting from denial of access to the other nodes, 
the limited network bandwidth, or serious conflicts 
when synchronizing back to the file system. 
Therefore, it is essential to come up with a file 
system solution that solves these problems and 
provides file system services during disconnections, 
manages node arrivals and departures, and works out 
data reintegration and conflict resolution on various 
file system objects. 

In this paper, we explore the server reintegration 
mechanism that is used in Paradise Mobile File 
System (PFS) [1]. In section 2, we review the related 
work done on this field , and in section 3, we present 
a detailed description of our design. In section 4, we 
report the performance and tests results. The last 
section also states our conclusions. 

 
2. Related Work 

The two systems that are most closely related to 
our work are Coda [1,2,4] and InterMezzo [2,3]. 
They both support servers’ reintegration by adopting 
replay logs to synchronize their data after 
disconnections and attempt to provide a conflict-free 
file system. For completeness, let us now present the 
related work in more detail. 

 
2.1 Server integration in Coda File system 

The Coda file system, a successor of AFS-2 that 
is developed at Carnegie Mellon University, is 
designed to react to any potential network failures 
[1]. It allows a user to continue working regardless 
of network failures as well as potential server 
disconnections. The namespace in Coda is mapped 
to individual file servers (Vice), at the granularity of 
sub-trees which is referred as volumes. At each 
client, a cache manager (Venus) dynamically obtains 
and caches volume mappings [1]. 



  

In order to achieve high availability, Coda 
caches the needed objects during connection and 
uses emulation operations to serve the disconnected 
clients. While disconnected, Venus services file 
system requests by relying solely on its cache’s 
contents. It basically “emulates” the function of Vice 
and service the client’s requests. When 
disconnection ends, Venus cache manager 
reintegrates all data and then switches back to server 
replication mode [2]. During emulation, Venus 
records sufficient logs to perform the update activity 
when it reintegrates to the file system. It maintains 
this information in a per-volume log, and each log 
entry contains a copy of the corresponding system 
call arguments as well as the version state of all 
objects referenced by the call [3]. 

The propagation of changes from client to server 
groups is accomplished in two steps [4]. In the first 
step, Venus obtains permanent fids for new objects 
and uses them to replace temporary fids in the replay 
log. In the second step, the replay log is shipped in 
parallel to the servers group, and executed 
independently at each member. Each server 
performs the replay within a single transaction, 
which is aborted if any error is detected. 

The Coda replay algorithm consists of four 
phases. In phase one the log is prepared and all 
objects referenced in the log are locked. In phase 
two, each operation in the log is validated and then 
executed. The validation consists of conflict 
detection as well as integrity, protection, and disk 
space checks. Fore most logged operations, 
execution during replay is identical to execution in 
connected mode. Phase three, which is known as 
back-fetching [4], consists exclusively of performing 
these data transfers. The final phase is committing 
the transaction and releases all locks [4]. If 
reintegration succeeds, Venus frees the replay log 
and resets the priority of cached objects referenced 
by the log. However, if reintegration fails, Venus 
writes out the replay log to a local replay file, and all 
corresponding cache entries are then removed, so 
that subsequent references will cause refetch of the 
current contents at the servers group [3]. 

The check for conflicts in Coda relies on the fact 
that each replica of an object is tagged with a storied 
that uniquely identifies the last update to it [2]. 
During phase two of replay, a server compares the 
storied of every object mentioned in a log entry with 
the storied of its own replica of the object. If the 
comparison indicates equality for all objects, the 

operation is performed and the mutated objects are 
tagged with a new storied specified in the log entry. 
If a storied comparison fails, the action taken 
depends on the operation during being validated. In 
the case of a store of a file, the entire reintegration is 
aborted.  
 
2.2 InterMezzo KML integration 

InterMezzo is a filtering file system layer, which 
is placed between the virtual file system and a 
specific file system such as ext3, ReiserFS, JFS, or 
XFS [3]. It provides distributed file system 
functionality with a focus on high availability. It 
uses InterSync, which is a client-server system that 
synchronizes folders between a server system and its 
clients [2]. InterSync periodically pulls the server for 
changes and reintegrates those changes into the 
client file system. The changes are recorded on the 
server by the InterMezzo file system, which 
maintains a Kernel Modification Log (KML) [2] as 
the file system is modified. The modification log 
makes it possible to collect the changes in the server 
file system without scanning for differences during 
reintegration. InterSync synchronizes the file system 
by fetching the KML using the HTTP protocol. It 
then processes the records in the KML and when it 
comes across a file modification record, it fetches 
the file from the server again using the HTTP 
protocol. The KML file consists of records, each of 
which encodes a change to the file system. The 
records track in detail [5] : Objects were affected by 
the change, the identity and group membership of 
the process making the modifications the version of 
the object that was changed, the new attributes of 
affected objects and the record sequence number. 

Typically a KML record is between 100-300 
bytes in size, depending on the operation being 
performed and the length of the pathnames. Once the 
KML has been transferred from one system to 
another the process of reintegration can begin. The 
reintegration process goes through a few steps: First, 
InterMezzo unpacks the records in the KML 
segment, then it checks if the versions of the objects 
that are being modified match those given in the 
record. If they do not match, then this is an 
indication of a possible conflict. After that, 
InterMezzo makes the change to the file system and 
proceeds with the next record.  

In addition to KML, InterMezzo maintains a 
secondary replication log called the synchronization 
modification log (SML) [3] , which allows an empty 



  

or heavily out of date client to synchronize in an 
efficient manner, as follows: a newly-connected 
client should do a replicator status call to find out 
the status of the KML. If it determines that it is older 
than the last KML truncation, i.e. the clients last 
received part of KML is older than the current KML 
logical offset, it first fetches the SML. Following the 
reintegration of the entire SML, the client must 
remove any files present in its local cache which 
were not referenced in the SML or updated on the 
client, because they are no longer on the server. 
Once the entire SML is reintegrated, the client 
fetches the next part of the KML. It integrates this 
with similarly relaxed conflict checking until it 
encounters the first record following the SML 
creation [3]. Once this segment of KML is 
reintegrated, the client is once again up to date and 
resumes activity as normal.  

 
3. Servers Integration Design in Paradise 
File System (PFS) 

As explored in Section-2, most available 
distributed files systems tailor their propagation 
algorithms to work for the client-side caches in order 
to guarantee data consistency. However, our goal in 
this paper is to propose an efficient algorithm that 
focuses on those file servers, which need to be 
synchronized with the centralized cache after 
disconnections. Before illustrating our algorithm, we 
present the PFS framework [2] in more detail: 

The framework of PFS can be divided into three 
main stages: the connected stage, the disconnected 
stage, and the re-joining stage. Initially and while 
clients are connected, file system service is provided 
by the actual file servers. We define the connected 
stage as all file servers are viewable to clients and 
are able to answer their RPC requests. However, if 
one of the file server(s) does not respond to clients 
calls within a certain period of time, part of the file 
system is said to be disconnected and the system will 
switch to the disconnected stage. During this stage, 
the client will continue probing the disconnected 
server(s) on a regular basis. At the same time, part of 
the file system service is provided by the cache 
server, which is an independent file service as shown 
in figure-1. Finally, if both the file servers and the 
communication channel are back available, the file 
system will switch into the re-joining stage. In this 
phase, the communication link between the file 
system and the previously disconnected servers is re-

established and file system services can be provided 
by these servers again. The propagation of the files, 
which were updated during the disconnection phase, 
is performed by the re-integrator module. During 
this phase, the file system propagates the updates 
made by the nodes during the disconnected stage 
back to the file server(s). Upon the successful 
termination of the re-joining process, the file server 
will switch back to the connected stage. Note that it 
is possible for the connection with the server to be 
lost again, bringing the client back into the 
disconnected phase. 

Figure-1: STL/CTL replaying rules 
 

The backup cache is a secondary repository that 
saves file conflicts and is exported to the users, 
allowing them to view their backed-up files. It is the 
file owner’s call to move these files from the backup 
cache to the actual file system. 
 
3.1 PFS Logging and Reintegration 

In PFS, reintegration is a transitory state through 
which the file servers reconnect back to the file 
system network after a disconnection. In this stage 
and as presented in section 3, the file servers reach a 
consistent state by synchronizing all modified data 
with the centralized cache and resolving all conflicts. 
This state is achieved by having two supporting 
phases, the logging stage and the reintegration stage. 

 
3.1.1 The logging process 

In PFS, the logging process starts once the file 
server looses connection with the metadata. To 
coordinate this action, the metadata periodically 
exchange heartbeat packets with the file servers to 
detect disconnections. When this event is triggered, 
both the cache and the file server will start the 
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logging process. In particular, the cache server will 
start maintaining a log file , which we refer to as 
Cache Transaction Log (CTL), for each file server 
that is disconnected from the network and will log 
all client accesses to the files in the centralized 
cache. On the other side, there will be other log files 
in each disconnected server, referred as Server 
Transaction Log (STL) that will log the actions done 
by the local users on the disconnected servers. 

At the end of the disconnection stage, the system 
would be in an inconsistent state where objects on 
both sides, the file servers and the centralized cache, 
are modified and need to be synchronized. Both the 
STL and the CTL files consist of records that 
represent the changes to the file system during 
disconnection. The records track in details: The 
modified file name, the file size, the file owner and 
the MD5 signature of the file.  

In our design, we minimize the network 
communication by shipping the STL logs and 
making the comparison locally on the cache server. 
This way, not only the communication is minimized, 
but the burden of replaying STL logs is shifted from 
the file servers to the centralized cache, which meets 
our goals of freeing the file servers as much as 
possible. 

 
3.1.2 The Reintegration Process 

The reintegration process is started the moment 
metadata triggers the heartbeat packets back. To 
demonstrate the reintegration process, consider PFS 
file servers FSi and FSj that are re-synchronizing 
with the cache server (CS). At first, each file server 
will ship its STL file to the cache server, which will 
replay all the received STL files in parallel. In 
particular, CS will read each transaction for each 
reintegrating server, and identify which objects have 
changed during the disconnection stage. Then, CS 
communicates with FSi and issue one lock at a time 
on these objects. The locking step is important in 
order to prevent the local users on the file server 
from doing any modifications while the reintegration 
process. Once locks are successfully placed, the 
cache server will start the reintegration process. 

Because reading STL logs are done in parallel, it 
could happen that the cache server locates two 
entries in two different STLs with the same file 
namespace, causing a conflict. In this case, the 
caches server has to decide which log entry to start 
with. The decision is made based on the following 
classification: 

Let t be the last modified time of object f. f ∈ 
FS1 and f ∈ FS2 during the reintegration stage. In 
case of object f exists on both file servers, the caches 
server will resolve the conflict by locating the entry 
that has an older timestamp t. The file with an older 
timestamp entry will be moved to the backup cache. 
The reason is that we assume the newer objects will 
more probability that will be accessed in the near 
future, and therefore they should be available on 
primary cache (cache temporal locality [1]). 
However, if by coincidence both have the same 
timestamp, then the metadata will base its 
comparison on the sizes of these objects; the smaller 
size object is moved to the backup cache, while the 
larger object is copied to the centralized cache. The 
owner of the smaller object is notified by this 
operation. 
 
4. Experiment Results and Performance 
Measurements  

In this section, we describe the current state of 
implementation and evaluate the performance of our 
server integration mechanism. In our prototype, we 
used eight Linux machines running Coda file 
system, with PFS file system layer on top. Two of 
these machines are acting as servers (Vice), and the 
other four as file servers (Venus). All of the three 
machines are connected by 100Mb/s Ethernet. As to 
make PFS functional, the file system is also exported 
to the sixth machine, which has the Cache 
Replacement Algorithm (CRA) [2] code running on 
the file system and acting as the cache server as 
well. The primary cache size is 150MB and the 
backup cache is 100MB.  

First, we ran a number of experiments to explore 
the behavior of the system. Typically an STL file 
with 10,000 records is 50-75KB in size. Figure-2 
shows the relation between the STL size and the 
number of files conflicts. As shown in the figure, the 
larger STL file is, the more likelihood that an entry 
is repeated in the log, causing more object 
movements from the cache server to the backup 
repository. Repeated entries are generally resulted 
from updating a particular file more than once 
during a disconnection period. As we may notice in 
the figure, probability of conflicts tend to increase in 
a higher rate when STL logs exceed 10,000 entries. 

Likewise we expect the relation between the 
number of STL logs and the likelihood of conflicts 
to be the same. That is, having more servers to 



  

reintegrate (i.e., more STL logs to be shipped), 
would cause more conflicts to occur. Of course, we 
expect the process to consume more time because 
the cache will start switching from one STL log to 
another. 

 

Figure-2: STL size vs. number of conflicts 
 
The time of reintegration process is the period of 

which the metadata allocate the joining server to the 
time of integrating the last record in the STL and 
CTL files. Figure-3 shows how reintegration time is 
affected when more STL conflicts are introduced. 
Clearly, the metadata would need more processing 
time to resolve file  conflicts and move the objects to 
the backup repository. Our simulation results shows 
that replaying a conflicting entry takes 21% more 
time than a conflict-free entry. 

 

Figure-3: conflict vs. conflict-free STL reintegration time 
 

In Figure 4, we show how reintegration time is 
affected by the number of reintegrating servers. The 
bottleneck for the integration process is determined 
by how many STL logs the cache server can process. 
In our experiment, the time taken to reintegrate all 
eight servers is almost linear, indicating that the 
cache server did not reach this bottleneck yet. 
 
 
 
 

Figure-4: Reintegration time vs. number of servers 
 
5. Conclusion and Future Work 

In this paper, we have presented our servers 
reintegration design and implementation using 
Paradise File System. Our results clearly indicate 
that the design exhibits a significant degree of 
automation and supports the objectives of building a 
conflict-free mobile file system. We have also 
reported on its performance evaluation using a 
cluster of workstations. Our results indicates that 
efficient servers’ reintegration is achievable  in file 
systems, bearing in mind the right size of STL logs 
and the number of reintegrating servers. 

Our future work includes incorporating the 
design into the VFS level; we expect that the 
reintegration time will be significantly reduced, 
allowing even longer STL replays to be feasible . 
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