

Servers Reintegration in Disconnection-Resilient File
Systems for Mobile Clients

Azzedine Boukerche Raed Al-Shaikh

PARADISE Research Laboratory
SITE, University of Ottawa

Email:{boukerch, rshaikh}@site.uottawa.ca

Abstract
Servers’ reintegration is a mode of file system operation that allows file servers
to synchronize their data after network partitions. The reintegration design
supports the main objectives of the disconnection-resilient file systems, which is
to provide high available and reliable storage for files, and guarantees that file
operations are executed in spite of concurrency and failures. In this paper, we
show that server reintegration is efficient and practical by describing its design
and implementation in Paradise File System. Moreover, we report on its
performance evaluation using a cluster of workstations. Our results indicate
clearly that our design exhibits a significant degree of automation and conflict-
free mobile file system.

1. Introduction
The last two decades have witnessed an increase

in complexity and maturity of distributed file
systems. Both well-established commercial and
research systems have addressed a vast palette of
users’ needs in today’s highly distributed
environments. Those needs range from failure
resiliency to mobility, to extended file sharing, and
to dramatic scalability. However, even the most
advanced of current systems fail to tackle the issue
of continuous availability of every mobile client’s
data in today’s increasingly wireless working
environments. Henceforth, there is a need for a novel
replication and a node reintegration technique,
different than those used in existing distributed file
systems aimed at mobility. More specifically,
distributed file systems may experience different
obstacles such as disconnection from the network
resulting from denial of access to the other nodes,
the limited network bandwidth, or serious conflicts
when synchronizing back to the file system.
Therefore, it is essential to come up with a file
system solution that solves these problems and
provides file system services during disconnections,
manages node arrivals and departures, and works out
data reintegration and conflict resolution on various
file system objects.

In this paper, we explore the server reintegration
mechanism that is used in Paradise Mobile File
System (PFS) [1]. In section 2, we review the related
work done on this field , and in section 3, we present
a detailed description of our design. In section 4, we
report the performance and tests results. The last
section also states our conclusions.

2. Related Work

The two systems that are most closely related to
our work are Coda [1,2,4] and InterMezzo [2,3].
They both support servers’ reintegration by adopting
replay logs to synchronize their data after
disconnections and attempt to provide a conflict-free
file system. For completeness, let us now present the
related work in more detail.

2.1 Server integration in Coda File system

The Coda file system, a successor of AFS-2 that
is developed at Carnegie Mellon University, is
designed to react to any potential network failures
[1]. It allows a user to continue working regardless
of network failures as well as potential server
disconnections. The namespace in Coda is mapped
to individual file servers (Vice), at the granularity of
sub-trees which is referred as volumes. At each
client, a cache manager (Venus) dynamically obtains
and caches volume mappings [1].

In order to achieve high availability, Coda
caches the needed objects during connection and
uses emulation operations to serve the disconnected
clients. While disconnected, Venus services file
system requests by relying solely on its cache’s
contents. It basically “emulates” the function of Vice
and service the client’s requests. When
disconnection ends, Venus cache manager
reintegrates all data and then switches back to server
replication mode [2]. During emulation, Venus
records sufficient logs to perform the update activity
when it reintegrates to the file system. It maintains
this information in a per-volume log, and each log
entry contains a copy of the corresponding system
call arguments as well as the version state of all
objects referenced by the call [3].

The propagation of changes from client to server
groups is accomplished in two steps [4]. In the first
step, Venus obtains permanent fids for new objects
and uses them to replace temporary fids in the replay
log. In the second step, the replay log is shipped in
parallel to the servers group, and executed
independently at each member. Each server
performs the replay within a single transaction,
which is aborted if any error is detected.

The Coda replay algorithm consists of four
phases. In phase one the log is prepared and all
objects referenced in the log are locked. In phase
two, each operation in the log is validated and then
executed. The validation consists of conflict
detection as well as integrity, protection, and disk
space checks. Fore most logged operations,
execution during replay is identical to execution in
connected mode. Phase three, which is known as
back-fetching [4], consists exclusively of performing
these data transfers. The final phase is committing
the transaction and releases all locks [4]. If
reintegration succeeds, Venus frees the replay log
and resets the priority of cached objects referenced
by the log. However, if reintegration fails, Venus
writes out the replay log to a local replay file, and all
corresponding cache entries are then removed, so
that subsequent references will cause refetch of the
current contents at the servers group [3].

The check for conflicts in Coda relies on the fact
that each replica of an object is tagged with a storied
that uniquely identifies the last update to it [2].
During phase two of replay, a server compares the
storied of every object mentioned in a log entry with
the storied of its own replica of the object. If the
comparison indicates equality for all objects, the

operation is performed and the mutated objects are
tagged with a new storied specified in the log entry.
If a storied comparison fails, the action taken
depends on the operation during being validated. In
the case of a store of a file, the entire reintegration is
aborted.

2.2 InterMezzo KML integration

InterMezzo is a filtering file system layer, which
is placed between the virtual file system and a
specific file system such as ext3, ReiserFS, JFS, or
XFS [3]. It provides distributed file system
functionality with a focus on high availability. It
uses InterSync, which is a client-server system that
synchronizes folders between a server system and its
clients [2]. InterSync periodically pulls the server for
changes and reintegrates those changes into the
client file system. The changes are recorded on the
server by the InterMezzo file system, which
maintains a Kernel Modification Log (KML) [2] as
the file system is modified. The modification log
makes it possible to collect the changes in the server
file system without scanning for differences during
reintegration. InterSync synchronizes the file system
by fetching the KML using the HTTP protocol. It
then processes the records in the KML and when it
comes across a file modification record, it fetches
the file from the server again using the HTTP
protocol. The KML file consists of records, each of
which encodes a change to the file system. The
records track in detail [5] : Objects were affected by
the change, the identity and group membership of
the process making the modifications the version of
the object that was changed, the new attributes of
affected objects and the record sequence number.

Typically a KML record is between 100-300
bytes in size, depending on the operation being
performed and the length of the pathnames. Once the
KML has been transferred from one system to
another the process of reintegration can begin. The
reintegration process goes through a few steps: First,
InterMezzo unpacks the records in the KML
segment, then it checks if the versions of the objects
that are being modified match those given in the
record. If they do not match, then this is an
indication of a possible conflict. After that,
InterMezzo makes the change to the file system and
proceeds with the next record.

In addition to KML, InterMezzo maintains a
secondary replication log called the synchronization
modification log (SML) [3] , which allows an empty

or heavily out of date client to synchronize in an
efficient manner, as follows: a newly-connected
client should do a replicator status call to find out
the status of the KML. If it determines that it is older
than the last KML truncation, i.e. the clients last
received part of KML is older than the current KML
logical offset, it first fetches the SML. Following the
reintegration of the entire SML, the client must
remove any files present in its local cache which
were not referenced in the SML or updated on the
client, because they are no longer on the server.
Once the entire SML is reintegrated, the client
fetches the next part of the KML. It integrates this
with similarly relaxed conflict checking until it
encounters the first record following the SML
creation [3]. Once this segment of KML is
reintegrated, the client is once again up to date and
resumes activity as normal.

3. Servers Integration Design in Paradise
File System (PFS)

As explored in Section-2, most available
distributed files systems tailor their propagation
algorithms to work for the client-side caches in order
to guarantee data consistency. However, our goal in
this paper is to propose an efficient algorithm that
focuses on those file servers, which need to be
synchronized with the centralized cache after
disconnections. Before illustrating our algorithm, we
present the PFS framework [2] in more detail:

The framework of PFS can be divided into three
main stages: the connected stage, the disconnected
stage, and the re-joining stage. Initially and while
clients are connected, file system service is provided
by the actual file servers. We define the connected
stage as all file servers are viewable to clients and
are able to answer their RPC requests. However, if
one of the file server(s) does not respond to clients
calls within a certain period of time, part of the file
system is said to be disconnected and the system will
switch to the disconnected stage. During this stage,
the client will continue probing the disconnected
server(s) on a regular basis. At the same time, part of
the file system service is provided by the cache
server, which is an independent file service as shown
in figure-1. Finally, if both the file servers and the
communication channel are back available, the file
system will switch into the re-joining stage. In this
phase, the communication link between the file
system and the previously disconnected servers is re-

established and file system services can be provided
by these servers again. The propagation of the files,
which were updated during the disconnection phase,
is performed by the re-integrator module. During
this phase, the file system propagates the updates
made by the nodes during the disconnected stage
back to the file server(s). Upon the successful
termination of the re-joining process, the file server
will switch back to the connected stage. Note that it
is possible for the connection with the server to be
lost again, bringing the client back into the
disconnected phase.

Figure-1: STL/CTL replaying rules

The backup cache is a secondary repository that
saves file conflicts and is exported to the users,
allowing them to view their backed-up files. It is the
file owner’s call to move these files from the backup
cache to the actual file system.

3.1 PFS Logging and Reintegration

In PFS, reintegration is a transitory state through
which the file servers reconnect back to the file
system network after a disconnection. In this stage
and as presented in section 3, the file servers reach a
consistent state by synchronizing all modified data
with the centralized cache and resolving all conflicts.
This state is achieved by having two supporting
phases, the logging stage and the reintegration stage.

3.1.1 The logging process

In PFS, the logging process starts once the file
server looses connection with the metadata. To
coordinate this action, the metadata periodically
exchange heartbeat packets with the file servers to
detect disconnections. When this event is triggered,
both the cache and the file server will start the

Weakly
connected
File servers

Backup
Cache

Centralized
Cache

Metadata

 PFS

Network

Ship STL

Backup
conflicts /
smaller /
older files

Cache
larger /
newer files

Compare
STL / CTL

Maintain CTL

Thin mobile
clients

logging process. In particular, the cache server will
start maintaining a log file , which we refer to as
Cache Transaction Log (CTL), for each file server
that is disconnected from the network and will log
all client accesses to the files in the centralized
cache. On the other side, there will be other log files
in each disconnected server, referred as Server
Transaction Log (STL) that will log the actions done
by the local users on the disconnected servers.

At the end of the disconnection stage, the system
would be in an inconsistent state where objects on
both sides, the file servers and the centralized cache,
are modified and need to be synchronized. Both the
STL and the CTL files consist of records that
represent the changes to the file system during
disconnection. The records track in details: The
modified file name, the file size, the file owner and
the MD5 signature of the file.

In our design, we minimize the network
communication by shipping the STL logs and
making the comparison locally on the cache server.
This way, not only the communication is minimized,
but the burden of replaying STL logs is shifted from
the file servers to the centralized cache, which meets
our goals of freeing the file servers as much as
possible.

3.1.2 The Reintegration Process

The reintegration process is started the moment
metadata triggers the heartbeat packets back. To
demonstrate the reintegration process, consider PFS
file servers FSi and FSj that are re-synchronizing
with the cache server (CS). At first, each file server
will ship its STL file to the cache server, which will
replay all the received STL files in parallel. In
particular, CS will read each transaction for each
reintegrating server, and identify which objects have
changed during the disconnection stage. Then, CS
communicates with FSi and issue one lock at a time
on these objects. The locking step is important in
order to prevent the local users on the file server
from doing any modifications while the reintegration
process. Once locks are successfully placed, the
cache server will start the reintegration process.

Because reading STL logs are done in parallel, it
could happen that the cache server locates two
entries in two different STLs with the same file
namespace, causing a conflict. In this case, the
caches server has to decide which log entry to start
with. The decision is made based on the following
classification:

Let t be the last modified time of object f. f ∈
FS1 and f ∈ FS2 during the reintegration stage. In
case of object f exists on both file servers, the caches
server will resolve the conflict by locating the entry
that has an older timestamp t. The file with an older
timestamp entry will be moved to the backup cache.
The reason is that we assume the newer objects will
more probability that will be accessed in the near
future, and therefore they should be available on
primary cache (cache temporal locality [1]).
However, if by coincidence both have the same
timestamp, then the metadata will base its
comparison on the sizes of these objects; the smaller
size object is moved to the backup cache, while the
larger object is copied to the centralized cache. The
owner of the smaller object is notified by this
operation.

4. Experiment Results and Performance
Measurements

In this section, we describe the current state of
implementation and evaluate the performance of our
server integration mechanism. In our prototype, we
used eight Linux machines running Coda file
system, with PFS file system layer on top. Two of
these machines are acting as servers (Vice), and the
other four as file servers (Venus). All of the three
machines are connected by 100Mb/s Ethernet. As to
make PFS functional, the file system is also exported
to the sixth machine, which has the Cache
Replacement Algorithm (CRA) [2] code running on
the file system and acting as the cache server as
well. The primary cache size is 150MB and the
backup cache is 100MB.

First, we ran a number of experiments to explore
the behavior of the system. Typically an STL file
with 10,000 records is 50-75KB in size. Figure-2
shows the relation between the STL size and the
number of files conflicts. As shown in the figure, the
larger STL file is, the more likelihood that an entry
is repeated in the log, causing more object
movements from the cache server to the backup
repository. Repeated entries are generally resulted
from updating a particular file more than once
during a disconnection period. As we may notice in
the figure, probability of conflicts tend to increase in
a higher rate when STL logs exceed 10,000 entries.

Likewise we expect the relation between the
number of STL logs and the likelihood of conflicts
to be the same. That is, having more servers to

reintegrate (i.e., more STL logs to be shipped),
would cause more conflicts to occur. Of course, we
expect the process to consume more time because
the cache will start switching from one STL log to
another.

Figure-2: STL size vs. number of conflicts

The time of reintegration process is the period of

which the metadata allocate the joining server to the
time of integrating the last record in the STL and
CTL files. Figure-3 shows how reintegration time is
affected when more STL conflicts are introduced.
Clearly, the metadata would need more processing
time to resolve file conflicts and move the objects to
the backup repository. Our simulation results shows
that replaying a conflicting entry takes 21% more
time than a conflict-free entry.

Figure-3: conflict vs. conflict-free STL reintegration time

In Figure 4, we show how reintegration time is
affected by the number of reintegrating servers. The
bottleneck for the integration process is determined
by how many STL logs the cache server can process.
In our experiment, the time taken to reintegrate all
eight servers is almost linear, indicating that the
cache server did not reach this bottleneck yet.

Figure-4: Reintegration time vs. number of servers

5. Conclusion and Future Work

In this paper, we have presented our servers
reintegration design and implementation using
Paradise File System. Our results clearly indicate
that the design exhibits a significant degree of
automation and supports the objectives of building a
conflict-free mobile file system. We have also
reported on its performance evaluation using a
cluster of workstations. Our results indicates that
efficient servers’ reintegration is achievable in file
systems, bearing in mind the right size of STL logs
and the number of reintegrating servers.

Our future work includes incorporating the
design into the VFS level; we expect that the
reintegration time will be significantly reduced,
allowing even longer STL replays to be feasible .

References
[1] Ebling, M.R., Mummert, L.B., Steere, D.C.,
Overcoming the Network Bottleneck in Mobile
Computing, Proceedings of the IEEE Workshop on
Mobile Computing Systems and Applications, Santa
Cruz, CA, Dec. 1994.

[2] Willick, D.L., Eager, D.L. and Bunt, R.B., Disk
Cache Replacement Policies for Network
Fileservers, Proc. 13th International Conference on
Distributed Computing Systems, May 1993, 2-11

[3] Satyanarayanan, M., Scalable, Secure, and
Highly Available Distributed File Access, IEEE
Computer, Vol. 23, No. 5, May 1990.

[4] Braam, P. J., The Coda Distributed File System,
Linux Journal, #50, June 1998.

[5] Lu Q., Satyanarayanan, M., Improving Data
Consistency in Mobile Computing Using Isolation-
Only Transactions, Proceedings of the Fifth IEEE
HotOS Topics Workshop, May 1995.

0
150
300
450
600
750
900

0 1 2 3 4 5 6 7 8
Number of reintegrating servers

re
in

te
gr

at
io

n
tim

e
(s

ec
)

0

4000

8000

12000

16000

20000

0 80 200 320 520 504
Object conflicts

 S
TL

 e
nt

rie
s

0
500

1000
1500
2000
2500
3000

0
10

00
50

00
90

00
13

00
0

17
00

0

STL entries

re
in

te
gr

at
io

n
 ti

m
e

(s
ec

) with conflicts

conflict-free

[6] Kistler, J.J., Satyanarayanan, M., Disconnected
Operation in the Coda File System, ACM
Transactions on Computer Systems, Vol. 10, No. 1,
pp. 3-25, Feb. 1992.

[7] Peter J. Braam Philip A. Nelson., Removing
Bottlenecks in Distributed Filesystems: Coda &
InterMezzo as examples, Proceedings of Linux Expo
1999, May, 1999.

[8] Kistler, J.J., Disconnected Operation in a
Distributed File System, School of Computer
Science, Carnegie Mellon University, May 1993.

[9] Peter J. Braam. InterMezzo: File Synchronization
with InterSync.

[10] Silvano M., Cache management algorithms for
flexible file systems, ACM SIGMETRICS
Performance Evaluation Review, December 1993.

[11] John C.S. Lui, Oldfield K.Y. So, T.S. Tam.,
NFS/M: An Open Platform Mobile File System, The
18th International Conference on Distributed
Computing Systems (ICDCS'98), May, 1998.

[12] Michael N. Nelson, Brent B. Welch, and John
K. Ousterhout, Caching in the Sprite Network File
System, ACM Trans. Computer Systems, Vol. 6(1),
pp. 134-154, 1988.

[13] A. Boukerche, R. AlShaikh, Bo Marleau,
“Disconnection-resilient Filesystem for Mobile
Clients”, 2005

[14] R. AlShaikh, Highly available File System for
Mobile Networks, Master thesis, Univ. of Ottawa. In
preparation.

