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Abstract  
 
The ability to manage metadata is a critical 
requirement of the grid, but scientists have not been 
given the tools needed to catalog experimental data 
based on complex metadata attributes. Our research 
has shown that the specific characteristics of metadata 
catalogs require a different approach than that used 
for general queries over XML data. This paper 
presents a hybrid approach to storing XML in a 
relational database that exploits the specific 
characteristics of a metadata catalog.  
 

Index Terms — Metadata, Cyberinfrastructure, 
Grid Computing, XML, Databases, LEAD. 
 
1. Introduction 
 

The scientific community has identified the need 
to develop cross-domain data catalogs that can be 
queried based on rich sets of metadata so research can 
be leveraged to the greatest extent possible. The NSF’s 
Blue-Ribbon Advisory Panel on Cyberinfrastructure 
noted that “multidisciplinary, well-curated federated 
collections of data” should be part of the 
infrastructure, and that “A significant need exists in 
many disciplines for long-term, distributed, and stable 
data and metadata repositories that institutionalize 
community data holdings”[1]. In the UK, the Central 
Laboratory of Research Councils (CLRC) is bringing 
together data from multiple science disciplines with an 
aim of providing a single cross-discipline method for 
browsing and searching metadata [2]. 

Back in 1992, the Federal Geographic Data 
Committee (FGDC) started working on a cross-
discipline metadata standard for describing spatial data 
products [3], with the eventual development of a 
geospatial data clearinghouse as part of the National 
Spatial Data Infrastructure (NSDI). While 
clearinghouse networks such as the NSDI 
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Clearinghouse provide a means to catalog metadata for 
sharing publicly available datasets, the opportunity to 
gather the most detailed and accurate metadata to 
describe both the source data and experimental results 
is when the data or experiment results are first 
generated or augmented with additional insights 
generated during the scientific process. For this 
metadata to be captured, the cyberinfrastructure must 
include a personalized metadata catalog that can be 
used to both capture the metadata as it is generated 
and provide the ability to catalog and query on-going 
experiments; while also being able to ensure the 
privacy of unpublished data and results. As with 
metadata catalogs such as the NSDI or CLRC, grid 
environments capture and exchange metadata using 
one or more XML schemas common to their 
community [4][5]. 

Since metadata in a grid environment is 
exchanged in an XML format, a metadata catalog must 
be able to ingest metadata in an XML format and 
respond to queries using the schema of its grid 
community. Although a native XML database such as 
Xindice [6] may seem to be an obvious choice for the 
backend store, prior work by our group showed 
Xindice to be far inferior to a relational database in 
terms of throughput [7]. In a schema aware 
environment such as a grid, current research on storing 
XML in a relational database has focused on a lossless 
shredding of XML into relational tables based on an 
inlining approach. Our research on personal metadata 
catalogs in the Linked Environments for Atmospheric 
Discovery (LEAD) [9] project has identified 
characteristics of a metadata catalog that suggest a 
modified architecture for storing and querying 
metadata as XML in a relational database. 

Although scientists have a number of 
requirements related to the ability to manage data in a 
grid environment [8][9], not all of these directly 
impact the approach used to store and query metadata. 
In this paper, we show that the following three 
characteristics are key to the architecture of a metadata 
catalog and taken together suggest an alternate storage 
approach: 



• Queries Over Metadata Attributes: Since metadata 
is “data about data”, a metadata catalog is used to 
store properties of the data scientists have used in 
experiments and the products generated. In 
myLEAD these properties are referred to as 
metadata attributes. When querying, scientists are 
looking for objects (files or aggregations) that have 
a certain range of values for specific metadata 
attributes. This differs from the prior research that 
has focused on being able to respond to arbitrary 
queries over XML stored in a RDBMS. 

• Unordered Queries Generating Ordered XML 
Results: In the metadata catalog, scientists are not 
particularly concerned with the order or structure of 
the XML documents, but query responses require 
reconstructing the original schema-based 
documents. 

• Validated Dynamic Metadata Attributes: When 
XML is shredded for storage in relational tables, the 
relevant schemas are usually used to define the 
structure of the tables and the relations between 
tables. However, one of the key requirements of a 
metadata catalog is that scientists need the ability to 
define new properties of the data products that will 
be described by the metadata. For metadata queries 
to be meaningful, scientists must be able to define 
the structure of these properties and validate the 
data – but without changing the XML schema used 
to communicate in the grid environment. The 
schema alone does not validate the metadata being 
communicated in the XML documents being stored. 

The contribution of this research is a new hybrid 
XML/Relational approach to shredding, storing, and 
querying scientific metadata in a grid environment that 
leverages the distinct characteristics of metadata 
storage. Due to the focus of a metadata catalog on 
locating objects meeting specified criteria, the 
shredding of XML data for querying can be separated 
from the storage of metadata attributes as Character 
Large Objects (CLOBs) for use in reconstructing 
XML documents for query responses. This eliminates 
the need for achieving lossless shredding from XML 
since the shredded data is no longer needed to 
construct the XML documents returned in query 
responses. Although our research has been in the 
context of the LEAD grid, this approach generalizes to 
metadata in other scientific grid environments as well. 

This paper is organized as follows. Section 2 
provides an overview of the hybrid approach we 
propose. Sections 3, 4, and 5 discuss shredding XML, 
querying, and building the query response using a 
hybrid approach. Section 6 discusses related work, and 
we conclude with future research in Section 7. 

 

2. A Hybrid Approach 
 

When storing XML data in a relational database 
there are two main approaches – storing as an XML 
string in a CLOB, or extracting individual data items 
by shredding the XML into relational tables 
[10][14][16][17][25]. For metadata catalogs, we 
advocate a hybrid approach. In a hybrid approach, the 
metadata is shredded into both CLOBs and relational 
tables as illustrated in Figure 1. 
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Fig. 1 Hybrid Approach 

Under the hybrid approach, the XML schema 
used to communicate the metadata is first partitioned 
into metadata attributes based on the set of rules listed 
below; with each metadata attribute representing a 
single concept contained in the schema. To allow for 
complex concepts, each metadata attribute can contain 
multiple sub-attributes - without limit as to the nesting 
of sub-attributes. Within both metadata attributes and 
sub-attributes, metadata elements define the actual 
data values contained within the attributes. The 
metadata elements are always leaf nodes in the schema 
and the metadata attributes and sub-attributes are 
always interior nodes in the schema (except for those 
nodes that are both a metadata attribute and a metadata 
element). As an illustration of the hybrid approach, 
Figure 2 shows a portion of the LEAD schema with 
each metadata attribute or sub-attribute bolded and 
each metadata element italicized. 

The following rules apply in determining which 
elements in the schema are defined as metadata 
attributes: 
• Metadata attributes should define a concept. As an 

example, in Figure 2 the “status” metadata attribute 
contains two metadata elements: progress and 
update. Together these two elements define the 
concept of document status. 



• If a schema element allows for multiple instances, 
then it must be contained within a metadata 
attribute - it cannot have a metadata attribute start 
below it (except for sub-attributes). If multiple 
instances are allowed for an element in the schema, 
then that element most likely defines a concept. In 
the example schema, the “theme” element is a 
metadata attribute that defines the concept of a 
theme keyword (or set of related keywords). 

• Any element in the schema that has attribute nodes 
(XML attributes) must either be a metadata attribute 
or be contained within a metadata attribute. The 
LEAD schema does not contain any XML attribute 
nodes, but attribute nodes can be defined as 
metadata attribute/elements. 

• Any recurrence in the schema must be contained 
within a metadata attribute. In Figure 2, the “attr” 
element allows for recursion in that it can contain 
child attr elements. This recursion is contained 
within the detailed element which is defined as a 
metadata attribute. 

• Every leaf element in the schema must be within a 
metadata attribute, but each metadata attribute does 
not need to be queryable. Those metadata attributes 
that a scientist may want to use as criteria in a query 
are known as queryable metadata attributes. 

After the elements in the schema that are metadata 
attributes have been identified, an ordering of the 
schema nodes is created. As discussed in [19], a total 
ordering of the nodes in each document is required for 
reconstructing an ordered document in response to a 
query. Three possibilities proposed in [19] are global 
ordering (using a pre-order depth-first traversal), local 
ordering (children of an element are numbered 
independent of the children of other elements), and 
Dewey ordering based on the Dewey decimal 
classification approach. However, since the hybrid 

approach stores a CLOB for each metadata attribute 
during the shredding process, only those elements that 
are metadata attributes or higher in the schema need to 
be ordered – the elements within the CLOB are 
inherently in their original order. Since all of the 
elements in the schema that have recursion or a 
potential cardinality greater than one are contained 
within a metadata attribute, the ordering can be done 
once for the schema instead of having to be created for 
each document. In Figure 2, this node ordering is 
displayed as circled numbers next to each node. 

The most efficient ordering of nodes would be 
same-sibling order as defined in [19], but as the 
authors note, it does not provide a total ordering of the 
nodes in the document. However, since the hybrid 
approach uses a global ordering based on the schema, 
this can be combined with a same-sibling ordering to 
create a total ordering for those metadata attributes 
which allow for multiple instances (such as the theme 
element in Figure 2). A table in the catalog contains 
this global ordering based on the schema – tracking 
each node’s order, tag, and last child (which for 
metadata attribute nodes is the same as the node 
order). The catalog also contains tables with the 
definition of each metadata attribute and metadata 
element. For each metadata attribute the definition 
includes a unique internal ID, the schema order, and 
parent metadata attribute ID (in the case of sub-
attributes). Each metadata element is also assigned a 
unique ID and the catalog tracks the associated 
metadata attribute and data type. Each metadata 
element definition is associated with a single metadata 
attribute definition. 

Metadata attributes such as the “status” element in 
Figure 2 are defined based on the structure of the 
schema and we refer to these as structural metadata 
attributes. However, one of the three distinct 
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characteristics of a metadata catalog is the need to 
provide for validated dynamic metadata attributes. 
Such attributes are not directly based on the structure 
of the schema, and are the cause of recursion in the 
schema used to communicate metadata in a grid 
environment. In Figure 2, the subtree rooted at the 
detailed element addresses the need for dynamic 
metadata attributes. 
 
3. Shredding Using the Hybrid Approach 
 

Figure 3 contains an example XML fragment 
based on the schema shown in Figure 2. 
<Leadresource> 
   <resourceID></resourceID> 
   <data> 
      <idinfo> . . . 
         <keywords> 
            <theme> 
               <themekt>CF NetCDF</themekt> 
               <themekey>convective_precipitation_amount</themekey>
               <themekey>convective_precipitation_flux</themekey> 
            </theme> 
            <theme> 
               <themekt>CF NetCDF</themekt> 
               <themekey>air_pressure_at_cloud_base</themekey> 
            </theme> 
         </keywords> 
      </idinfo> 
      <geospatial> . . . 
         <eainfo> 
            <detailed> 
               <enttyp> 
                  <enttypl>grid</enttypl> 
                  <enttypds>ARPS</enttypds> 
               </enttyp> 
               <attr> 
                  <attrlabl>grid-stretching</attrlabl> 
                  <attrdefs>ARPS</attrdefs> 
                  <attr> 
                     <attrlabl>dzmin</attrlabl> 
                     <attrdefs>ARPS</attrdefs> 
                     <attrv>100.000</attrv> 
                  </attr> 
                  <attr> 
                     <attrlabl>reference-height</attrlabl> 
                     <attrdefs>ARPS</attrdefs> 
                     <attrv>0</attrv> 
                  </attr> 
               </attr> 
               <attr> 
                  <attrlabl>dx</attrlabl> 
                  <attrdefs>ARPS</attrdefs> 
                  <attrv>1000.000</attrv> 
               </attr> 
            </detailed> 
         </eainfo> 
      </geospatial> 
   <data> 
<Leadresource>  

Fig. 3 Metadata Document 

As illustrated in Figure 1, each element in the 
document that represents a metadata attribute is stored 
as a CLOB in the catalog and also shredded into 
queryable metadata attributes and elements. For 
example, the two theme elements in Figure 3 are 
structural metadata attributes and each of the theme 
metadata attributes (bolded) would be stored as a 
CLOB along with their global node ordering (10) and 
their sequence IDs based on same-sibling ordering (1 
and 2). Each of the theme metadata attributes would 
also be shredded, and the metadata attribute definition 
is determined based on the tag for that element. 
Likewise, the metadata element definitions are 

determined based on their tag and their parent 
metadata attribute. For each metadata attribute and 
element the following data is stored: 
Metadata Attribute: 
• Object ID – the internal ID assigned to the object. 
• Attribute ID – the internal ID assigned to the 

definition of the metadata attribute. 
• Sequence ID – same sibling ordering. 
• CLOB Sequence – same sibling ordering for CLOB. 
Metadata Element: 
• Object ID, Attribute ID, and Sequence ID – Primary 

key for parent metadata attribute. 
• Element ID – the internal ID assigned to the 

definition of the metadata element. 
• Element Sequence – local order within the attribute. 
• Element Value – string or other data type. 

The theme metadata attributes are structural 
attributes defined by the schema, whereas the detail 
element in Figure 3 illustrates a dynamic metadata 
attribute. Discussions early on in the LEAD project 
identified the need for a metadata catalog to be able to 
capture complex attributes that may evolve with the 
continued refinement of the weather forecasting 
models used in LEAD. For example, both the 
Advanced Regional Prediction System (ARPS) [12] 
and Weather Research & Forecasting (WRF) [13] 
models use Fortran namelist files containing detailed 
model parameters which cannot be built into the 
structure of the schema because scientists must be able 
to define new parameters as they continue to enhance 
the models or create new models. In addition, the 
schema would grow to an unmanageable size if it had 
to accommodate all possible parameters. The need to 
address model parameters, and the general need to 
provide a means to define new complex metadata 
attributes, requires metadata catalogs to accommodate 
dynamic metadata attributes. The schema in Figure 2 
addresses dynamic metadata attributes through the 
detailed element. 

When the detail element is shredded, the metadata 
attribute definition is determined based on the name 
and source of the metadata attribute, but in the case of 
dynamic metadata attributes the name and source are 
based not on the element tag but instead on the values 
contained in the enttypl and enttypds elements, (which 
contain “grid” and “ARPS” respectively). Within the 
detailed element there are two attr child elements 
which based on the schema in Figure 2 can contain 
either attrv elements, (which indicates a metadata 
element) or attr elements (which indicates a sub-
attribute). In Figure 3, the first attr element is a sub-
attribute and the second is a metadata element. In the 
case of both sub-attributes and metadata elements, the 
name and source are determined based on the attrlabl 



and attrdefs elements. In shredding the structural 
metadata attributes, the element tag was used for the 
name, but the source was not necessary. Having both a 
name and source allows different scientific models 
such as the ARPS and WRF models to have metadata 
attributes with the same name based on their 
respective namelist files, but which may have different 
meaning or content in their respective models. The 
shredding validates the name and source of each 
dynamic metadata attribute with the definitions stored 
in the catalog. Any element in a document that does 
not match a defined metadata attribute is still stored as 
a CLOB, but the data is not shredded into the tables 
used to support queries. By validating dynamic 
metadata attributes on insert, the catalog provides a 
consistent, but dynamic set of definitions for query 
purposes that could also be connected to an ontology 
for enhanced search capabilities. Additional metadata 
attributes can be defined at both an administrator or 
user level, with those defined at the user level kept 
private. 

In addition to shredding the metadata attributes 
and elements into their respective tables, for any 
metadata attribute that contains sub-attributes, (such as 
the “grid stretching” sub-attribute within the dynamic 
“grid” metadata attribute in Figure 3) the relationship 
between the sub-attribute and attribute is stored in a 
table which maintains an inverted list of the 
relationship between a sub-attribute and any parent 
metadata attribute as well as intervening sub-
attributes. 

In contrast to handling recursion in general XML 
documents, in a metadata catalog recursion is used to 
define dynamic metadata attributes. Although the 
structure would vary between schemas, the general 
idea is to allow for the definition of metadata 
properties not envisioned or captured in the schema 
structure. The hybrid approach to cataloging metadata 
benefits from this distinction because the recurrence 
“disappears” by handling dynamic metadata attributes 
based the name and source instead of the recursive 
structure of the document. A more general XML-
Relational approach cannot take advantage of this 
distinction. 
 
4. Querying Using a Hybrid Approach 
 

Research on storing XML in an RDBMS has 
focused on converting queries written in XPath or 
XQuery into SQL and running them against a 
relational database. However, queries over a metadata 
catalog are looking for objects in what we refer to as 
unordered queries over metadata attributes. The 
purpose of a metadata query is to return those 
documents that contain metadata attributes meeting 

the criteria specified. We use the term “unordered 
queries” because only the values within the metadata 
attributes are important to the query. As an example, a 
scientist looking for all objects with horizontal grid 
spacing = 1000 meters that also have grid stretching 
with a minimum vertical spacing = 100 meters could 
issue the following XQuery FLWOR expression 
against the XML schema: 
for $r in fn:doc("catalog.xml")/LEADresource 
let $g := 
$r/data/geospatial/eainfo/detailed/enttyp 
  [enttypl eq “grid” and enttypds eq “ARPS”] 
let $d := $g/../attr[attrlabl eq “dx”  
  and attrdefs eq “ARPS” and attrv eq 1000] 
let $z := $g/../attr[attrlabl eq  
    “grid-stretching”  
  and attrdefs eq “ARPS”]/attr/[attrlabl eq    
    “dzmin”  
  and attrdefs eq “ARPS” and attrv eq 100] 
return 
  if (fn:exists($d) and fn:exists($z)) then 
    $r 
  else () 

In a metadata catalog, the path to the dynamic 
metadata attribute contained in the detail element 
(grid) is immaterial, the query is over metadata 
attributes and the question the scientist wants 
answered is “Which files contain the metadata 
attributes of interest to me?” The myLEAD metadata 
catalog has a simple Java API that allows users to 
construct metadata attribute queries: 
MyFile fileQry = new MyFile (); 
MyAttr gridAttr = new MyAttr(“grid”, “ARPS”); 
gridAttr.addElement(“dx”,“ARPS”,1000,MYEQUAL)
; 
MyAttr stAttr =  
  new MyAttr(“grid-stretching”, “ARPS”); 
stAttr.addElement(“dzmin”,100, MYEQUAL); 
gridAttr.addAttribute (stAttr); 
fileQry.addAttribute (gridAttr); 

The MyFile instance created in these few lines is 
then sent as the criteria for the query method. From a 
user’s perspective, they would not even see this since 
there is a GUI query tool available that prompts the 
user with the available attributes and elements and 
allows them to build a query graphically. 

Since queries over the catalog are searching for 
items that contain certain metadata attributes, queries 
are first shredded to determine the number of metadata 
attribute criteria that must be met to satisfy the query. 
In our simple example, there is only the metadata 
attribute criteria named “grid”, which in turn has one 
sub-attribute – “grid-stretching”. After determining the 
required metadata attribute and element counts, the 
metadata criteria are inserted into temporary tables. 
Figure 4 illustrates the query process that is then used    
to determine which objects in the metadata catalog 
meet the query criteria. 



This approach is based in part on inverted lists 
that track the relationship of sub-attributes to parent 
attributes, which allows the query to avoid recursion. 
If the attributes specified in the query do not have 
multiple instances within a single object in the data, or 
if there are not sub-attributes in the query criteria, then 
the query can be significantly simplified, so the 
physical implementation may differ – including 
possible partitioning of the data. The result of this 
query process is the internal IDs of the set of objects 
meeting the query criteria – the query response is then 
built from these IDs as described in the next section. 
 
5. Query Response - the Hybrid Approach 
 

In a metadata catalog, the query result as 
discussed above is the set of IDs for those objects in 
the catalog that match the metadata attribute criteria 
specified in the query. When the document was 
originally shredded, and as additional metadata was 
added later, CLOBs were stored for each metadata 
attribute along with the object ID, the position in the 
document based on the global ordering of the schema, 
and a sequence ID for multiple instances of the same 
metadata attribute. In order to build the query response 
as shown earlier in Figure 1, the CLOBs are retrieved 
based on the set of object IDs generated by the query. 
The contents of the CLOBs for each metadata attribute 
are inherently ordered, but to build the response, we 

also need to add the element tags for all of the higher 
nodes in the document. 

An inverted list is maintained for all of the nodes 
in the global ordering that maps each node in the 
ordering to those higher level nodes in the schema 
which are ancestors. This inverted list is joined with 
the table of CLOBs to determine the distinct set of 
ancestor nodes that are required for each object in the 
response (since many of the metadata attributes are 
optional, not all of the ancestor nodes are required). 
The set of required ancestor order IDs is joined with 
the table containing the global ordering to create all of 
the opening and closing tags for the ancestor nodes. 
Since the global order is built once and stored in a 
table in the catalog, the order of the last child element 
is also maintained in that table – allowing the opening 
and closing tags to both be added using set-based 
query operations instead of having to use an external 
tagger. Although the inverted list must be joined with 
the table containing the metadata CLOBs, (to 
determine the required ancestors) the CLOBs 
themselves are not needed at this point so the join can 
utilize the index without accessing the CLOBs until 
needed in the final join. 

This approach is possible only because schema 
elements with cardinality greater than one as well as 
recursive elements are all contained within metadata 
attributes – allowing us to define the global ordering at 
the schema level. If the global ordering was done at 
the document level as in [19], then the inverted list 
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mapping CLOBs to their required ancestors would not 
be possible since the mapping would be different for 
every document. 

The resulting set of required tags for higher level 
nodes is joined with the CLOB table for the final 
result returned to the myLEAD server. Since the 
global ordering allows all of the tags to be determined 
using set-based queries, no final tagging is needed at 
the server as in [24] – the results returned by the 
database are already tagged and can be returned to the 
client. 
 
6. Related Work 
 

There has been considerable research regarding 
storing XML data in an RDBMS with the aim of 
allowing the data to be queried using XPath or 
XQuery. Since prior work has not focused specifically 
on cataloging metadata, it could not exploit any 
characteristics specific to metadata catalogs. When an 
XML schema is available, research has focused on 
using an approach of shredding XML into relational 
tables using variations of a technique know as inlining 
[14][15][16][10]. Earlier research on shredding using a 
schema-less approach had often used the edge-table 
approach [10][17][16][18]. 

Under the inlining approach, elements are stored 
in the same relational table to the extent that the 
schema does not allow for cardinality greater than one. 
Where multiple instances of an element are allowed, 
the subtree for that element is split into a separate 
table. In comparison to the edge-table approach where 
all edges are stored in the same table, inlining reduces 
the number of joins required [14]. However, this 
benefit would be significantly diminished for metadata 
catalogs since dynamic metadata attributes would be 
split into numerous tables due to the cardinality issue. 
The hybrid approach we present here would at first 
seem to be more similar to the edge-table approach. 
That approach views the XML document as a directed 
graph, and each tuple in the edge table represents 
either a connection between two nodes in the graph, or 
in the case of a leaf node, either the node value [16] or 
a pointer to separate value tables based on the data 
type [17]. However, as shown earlier, since queries 
over a metadata catalog focus on metadata attributes, 
we do not need to consider the full path, and through 
inverted lists can avoid the self-joins that hinder the 
edge-table approach. 

An issue raised in [20] regarding inlining is that it 
is an unordered data model – so when reconstructing 
XML documents the system cannot ensure that the 
elements are in the original order. In a metadata 
catalog this could be problematic – such as in the 
LEAD schema where the lineage section tracks the 

process steps used to create a product. In [19] this was 
addressed through three approaches to creating a total 
order. In the hybrid approach we also have a total 
ordering of the elements, but through a global ordering 
based on the schema we avoid the update costs of 
maintaining a total ordering by document [19]. 

Other research has lead to systems that either 
allow for a hybrid approach or allow for the option of 
using either approach. IBM’s DB2 XML Extender 
allows XML data to be saved as a CLOB in an “XML 
Column” or shredded into a set of relational tables 
known as an “XML Collection” [21]. As noted in [21], 
a hybrid approach that uses a combination of both 
storage methods may be desirable since the CLOB 
approach allows the document to be retrieved in its 
original form, while the shredded approach provides 
faster results. The default storage approach in Oracle’s 
implementation of SQL/XML in version 10g of their 
product is to use a CLOB, but if a schema is available, 
the document can be shredded using an object-
relational approach [11][22]. In both the IBM and 
Oracle implementations, the entire document is saved 
as a single CLOB. In contrast, the hybrid approach 
used in myLEAD is closer to that used in [15] where 
CLOBs are stored for the subtrees rooted at every 
element in the XML document (except the root and 
leaf elements). In myLEAD, CLOBs are stored for 
each element identified as a metadata attribute, and 
since there can only be a single metadata attribute on 
any path from the root of a document to a leaf node, 
our hybrid approach would not face the issue in [15] 
of possibly having high space overhead due to storing 
multiple CLOBs on the same path. 

 
7. Conclusion and Future Work 
 

Although our research in the LEAD project has 
focused on the requirements of the meteorological 
community, we believe many of these same issues 
apply to other scientific domains that need to manage 
significant volumes of data. Metadata management 
continues to be a pressing issue in other scientific 
domains, with a recent article mentioning metadata as 
one of the big challenges facing the Large Hadron 
Collider project [23]. Scientific metadata catalogs are 
likely to use different schemas tailored to their 
domain, but many of the issues in querying the catalog 
as well as a structure based on metadata attributes will 
be similar. The approach used in myLEAD can be 
used to create a framework for metadata catalogs that 
would be based on an annotated schema to indicate 
which schema elements are structural or dynamic 
metadata attributes and elements. 

In this paper we have shown how the distinct 
characteristics of metadata storage can be exploited 



using the hybrid approach as an alternative to inlining.  
Future work will focus on quantifying the benefit of 
the hybrid approach as applied to managing metadata. 

Although not discussed in detail due to space 
limitations, one of the distinguishing features of 
myLEAD is its ability to perform complex context 
queries. However, challenges exist in presenting this 
query capability to users in an interface that is intuitive 
and easy to use. The current myLEAD GUI interface 
addresses queries from a containment viewpoint, but it 
does not address searching for objects based on a 
broader context. Presenting this capability to users 
remains a challenge. 
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