

A PROactive Request Distribution (PRORD) Using Web Log Mining in a Cluster-Based Web
Server

Heung Ki Lee1, Gopinath Vageesan1, Ki Hwan Yum2 and Eun Jung Kim1
1Texas A&M University 2University of Texas at San Antonio

hklee@cs.tamu.edu vgopi@ee.tamu.edu ejkim@cs.tamu.edu yum@cs.utsa.edu

ABSTRACT

Widely adopted distributor-based systems forward user
requests to a balanced set of waiting servers in complete
transparency to the users. The policy employed in
forwarding requests from the front-end distributor to the
backend servers dominates the overall system performance.
The locality-aware request distribution (LARD) scheme
improves the system response time by having the requests
serviced by the web servers that contain the data in their
caches. In this paper, we propose a proactive request
distribution (PRORD) that applies an intelligent proactive-
distribution at the front-end and complementary pre-
fetching at the back-end server nodes to obtain the data of
high relation to the previous requests in their caches. The
pr-fetching scheme fetches the web pages in advance into
the memory based on a confidence value of the web page,
which is predicted by the proactive distribution scheme.
Designed to work with the prevailing web technologies,
such as HTTP 1.1, our scheme aims to provide reduced
response time to the users. Simulations carried out with
traces derived from the log files of real web servers witness
performance boost of 15-45% compared to the existing
distribution policies.

1. INTRODUCTION

Cluster systems are being increasingly used in the web-
server management, file distribution and database
transactions. The main reason for the large-scale
deployment of the cluster systems is their load sharing and
high-performance capabilities. The overall delay
experienced by the end-user is composed of network-link
delay, routing delay, delay accrued during address
resolution and finally the web-server service delay. It has
been observed that web servers contribute to approximately
40% of the overall delay [1], and this delay is likely to grow
with the increasing use of dynamic contents. The delay
incurred at a web server consists of the processing time and
data retrieval time. Cluster-based web servers incur an
additional delay to decode the incoming request and
forward the request to one of the back-end servers. Thus,
the delay at the web server is a critical component that has
to be reduced to achieve better web-server performance.

Among the different architectures in the cluster-based
servers, the distributor-based systems have been widely
adopted as shown in Fig. 1. These systems have a front-end
distributor that forwards the requests to any of the backend
servers. In the locality-based request distribution schemes [2,
4], the distributor contacts the dispatcher to obtain the
locality information. If the page is located in the same
backend server, the request is serviced directly. Otherwise,
the distributor forwards the request to the backend server
that has better locality for the requested file. The role of the
dispatcher is to notify the distributor of the locality of the
requested files. The forwarding of the requests from the
distributor to the backend servers is carried out in complete
transparency with the users. A handoff protocol and TCP
splicing are employed in most cases to make the transition
smooth and transparent [2, 13, 14]. The requests are
forwarded to a set of backend servers based on a certain
policy. LARD (Locality Aware Request Distribution) [2],
PARD (Power Aware Request Distribution) [3] and WRR
(Weighted Round Robin) are a few of the most prolifically
adopted policies. The policies focus on improving
efficiency, power conservation, and load balancing,
respectively.

Fig. 1: Distributor-Based Web Server System

In this paper, we propose a new proactive request

distribution scheme (PRORD), which reduces the delay at
the cluster-based web server by bundling requests. We
improve the distribution policy at the front-end by
dispatching the requests based on the analysis of the web
server log files. Web server log files let us know the critical

information, including the general user navigation pattern,
user behavior and general website organization. The
extracted information from web log file is made available
for the distributor at the front-end to discern and classify the
incoming requests and performs the dispatch to the
appropriate backend server. Besides, this extracted
information is used to prefetch the data files into the web
servers’ cache [20]. Prefetching is thus complementary to
the dispatches being made by the distributor at the front-
end. Simulation results with traces from real web servers
show that the proposed scheme, PRORD, outperforms other
distribution policies. In particular, PRORD shows 10% ~
45% improvement over LARD.

In Section 2, we discuss the existing technologies in
detail. Section 3 describes the applications of web log
mining in context of our research. Section 4 explains the
usage of web log mining for enhancing the distribution
policy at the front-end. While Section 5 shows the
simulation model and the results, Section 6 concludes the
paper.

2. RELATED WORK

Among the distributor-based policies, weighted round

robin (WRR) is considered to be a simple and efficient
scheme for providing excellent load balancing of the
requests arriving at the system. However, it does not affect
the performance of the system. The locality-based request
distribution schemes focus on improving the performance
through intelligent distribution of the incoming requests [2,
4, 5].

2.1 Locality-Aware Request Distribution (LARD)

The LARD [2] overcomes the drawbacks faced by the
WRR policy. It increases the memory hits at backend
servers by considering both data locality and load balancing
issues in a distributed cluster-based server. The distributor
in the LARD forwards all requests for the same web object
to a server node that has the requested file in its cache
(memory). If the load on the selected node is high, then the
requests are forwarded to another lightly loaded node that
has the contents in its disk. As an improvement on this idea,
Aron, et al. [4] proposed a scalable content-aware
distribution policy that decreases a heavy load of the front-
end node through paralleling distribution work of the
incoming requests using a de-centralized distributor. In this
policy, a layer-4 web-switch is used to forward the
incoming requests into one of distributors on the backend
server. However, this architecture suffers from a single
point of failure. Also, the overhead to dispatch all the
requests can be very high. In addition to these drawbacks,
both the above studies are based on HTTP 0.9/1.0-based
web transactions. With HTTP 1.1 based web transactions,
the persistent connection suffers from inefficient
distribution of the incoming requests among back-end

servers. While the front-end in a cluster system with HTTP
0.9/1.0 can handle every incoming request as an individual
connection, multiple requests from the same client are
coming through one single connection in HTTP 1.1.
Therefore, when the front-end for HTTP 0.9/1.0 is operating
on HTTP 1.1, it can not guarantee that all the requests are
distributed under the locality-aware distribution policy.

2.1.1 Persistent HTTP

With HTTP 1.1, the user can request multiple pages to
the server on the same persistent connection. Two schemes
have been proposed to address the problem of persistent
HTTP: multiple TCP handoffs and back-end forwarding
scheme. Multiple TCP handoffs [5] analyze and dispatch
whole incoming requests at the front-end. The LARD policy
is applied to each incoming request, requiring TCP handoffs
for each request, even though the requests are from the same
user. In the back-end forwarding scheme [5], the front-end
initiates a single handoff for every persistent HTTP
connection. The back-end servers are connected over a high
speed network and the request can be internally forwarded
and serviced among the back-end server nodes.

Both the above techniques suffer from high overhead.
We try to provide a low overhead content-based request
distribution at the distributor, while maintaining the QoS.

2.2 Website Log Mining

Web log mining has been frequently used in web
services [7, 8, 9, 10, 11]. However, none of them consider
the possibility of using the information from web log
mining for improving the distribution policy in a cluster-
based web server. The server logs can be analyzed for user
browsing pattern, general website organization and other
website statistics, and can be used to improve the QoS of
the website. The following sections describe the research
that has been done in this context.

2.2.1 User Navigation Pattern

The user navigation pattern is a rich source to
understand the general user behavior on a website. This
information can be easily gleaned from the web server log
files. It can be used to categorize the users based on their
interests and also to predict their intended navigation
pattern. In most large websites, the users’ target document
does not exist in the users’ expected location.

In [6], web log information was used to improve the
website organization by providing hyperlinks to users’
target document on the users’ expected location of the
webpage. Nakayama, et al. [10] used the web log files to
discover the gap between website users’ behavior and the
website designers’ expectations. They evaluated these
metrics using inter-page access co-occurrence and inter-
page conceptual relevance, respectively. Perkowitz, et al. [8,
9] developed a clustering algorithm to identify web pages
that occur together in a single user visit and built an index

page, which helps the users to effectively navigate the
website. Spiliopoulou, et al. [11, 12] proposed a web mining
tool called Web Utilization Miner (WUM) for analyzing the
log files. The tool analyzes the structure of the traversed
paths of the website users to extract sub-paths which lead to
a target item of interest.

The navigation patterns of the users can help re-organize
the website such that the required target data is readily
available to the users.

2.2.2 Bundling Requests

[7] shows that prefetching of the embedded objects
associated with a particular page could provide considerable
performance boost. The webpage and its associated
embedded objects such as images, applets, etc. were
grouped into a “bundle” and delivered to the user browser in
a compressed form on the request of the web page. In [29],
Cohen, et al. proposed an improved method for updating the
cached webpage at the proxy servers. During the update of
the bundled information, the update period for the stale
webpage was prolonged due to a slight increase of update
overhead. Log mining information was used for creating the
update information based on the relationship between
webpages, and thus minimizing the update overhead.

2.2.3. Web Use Mining and Prediction

In web usage mining, it is critical how to analyze the log
files in the system. A considerable amount of schemes
suggested for improvement of web search can be classified
into two groups; association rule [23, 24] and sequence rule
[25]. The association rule uses set-based operations for
analyzing the log files, while, in the sequence rule, the
system analyzes the sequence of the web log files.
Kitsuregawa improved the scheme based on association rule
[23, 24] and sequence rule [25] and implemented a Mobile
Information Search (MIS) system through a PC cluster [17].

[20] presented another method for prefetching through
web log mining. Embedded Object Table (EOT) and a set of
association rules were constructed for prefetching and
caching the page. Besides, they extended GDSF [30]
through splitting frequency into future frequency and past
frequency through an association rule. [21] compared three
web mining approaches: association rules [23, 24], sequence
rules [25, 27] and generalized sequence rules [28]. They
proved that sequence rules outperform the other approaches.

Data structure for prefetching using web log mining can
be categorized into two schemes: Dependency graph (DG)
[19] and Prediction-by-Partial-Match (PPM) [26]. In [19],
Padmanabhan, et al. proposed a scheme for prefetching
through website log mining. The scheme used a prediction
engine which kept track of web page relationship
information. A weighted direct graph is constructed where
nodes correspond to the web pages and the arcs represent
the relationship between the web pages. In PPM [26], j-
order Markov predictor was maintained for the prediction in

the comparison of the previous j accessed pages. Even
though the predictor generates more accurate result with
higher orders, the overhead for maintaining the predictor
increases, and it becomes the bottleneck of the scheme. [18]
proposed a scheme for prefetching webpages through the
PPM and the DG. In [17], MIS was described for collecting
and clustering the web pages.

Though there have been a lot of studies carried out in
web log mining, its usage in improving the distribution
policy in cluster-based web servers has not been explored.
Besides, the information extracted from log files by our
algorithms and their usages to our system are unique.

3. UTILIZING WEB LOG FILES

We employ the web log files to collect a host of

information: users’ navigation pattern, popularity of the web
pages and ‘bundles’ of pages. This web log information can
be directly used for discerning the incoming requests and
dispatching them to the appropriate backend server nodes.
Web log information segments and their usage are
elaborated in the following subsections.

3.1 Users’ Navigation Pattern

We use the script to analyze the log files, garner the
access patterns of the users on a website and group web
pages using the collected information. Every website can be
subdivided based on the different categories of web users
who visited the website. For example, a university website
will most likely cater to the needs of current students,
prospective students, faculty members, support staff and
other users. Thus, the users on the university website can be
categorized into such well known groups including current
students, prospective students, faculty, staff and others.
Each of these groups’ users has a highly directional and
mostly unique access pattern. Thus, the web log information
can be used to categorize the users visiting the website into
pre-defined groups. The information about the user’s group
can be insightful in predicting the possible data that would
be requested by the user in the near future.

3.2 Popularity and Spotting Bundles for Web Pages

We also identify and rank the web pages based on their
popularity and demand. The number of requests to a
particular page can be easily retrieved from the log files and
number of requests can be used to rank the web pages. We
employ a two-fold system to rank the web pages; we have
offline analysis of the log files and also dynamic online
tracking of the page hits to obtain the realistic estimate for
the popularity of the web pages.

As in [7], the web page and its associated embedded
objects can be identified from the log files. Image files,
applets, audio/video streams, etc. constitute a “bundle” for
the main web page. The embedded objects are bound to be
requested by the user’s browser in the subsequent requests.

Though spotting the bundles is similar to the method
outlined in [7], the application of bundles differs in our
system and is explained in detail in Section 4.

4. PROACTIVE REQUEST DISTRIBUTION

SCHEME (PRORD) USING WEB LOG
INFORMATION

In this section, we present a new proactive request

distribution scheme, called PRORD, which uses the web log
information to improve the distribution at the front-end and
provide prefetching at the back-end servers.

4.1 Prefetching at the Back-End Servers

A back-end server prefetches a specific group of data
containing currently requested pages based on user’s access
pattern using web log mining scripts. The requests from a
particular user can be monitored and identified as a
particular group by correlating the user’s current access path
and the information from the log mining. This is achieved
by comparing the current user access path with the
predefined paths in correspondence with each of the group
or category of the website. The longer the comparison paths
are, the better the confidence of the predicted category is
[18].

Once a user is categorized using the above matching, the
related data files can be prefetched into the back-end
servers’ memory depending on the confidence of the data
file under the current user’s access path. The files with high
confidence immediately below the current access location
on the user navigation tree will be prefetched into the cache.
An example of this mechanism is shown in Fig. 2.

Fig. 2 An Example of Building the Confidence of the
Guesses

4.1.1 Algorithm for Categorizing
We use n-order dependency graphs in our system. In Fig.

3, a 2-order dependency graph is illustrated. Each node in
the graph represents a web page and each edge stands for
the confidence value into the continuing sequence of user
navigation pattern. Our algorithm analyzes and categorizes
the user’s request into specific groups. In the figure, we
have two groups of sequences which contain page ‘D’. The
70% of sequences in the first group that start from page ‘A’
visit page ‘C’, while 60% of sequences in the second group
that start from page ‘B’ visit page ‘E’.

Fig. 3 2-Order Dependency Graph in PRORD

i) Constructing map
It is critical how to store a dependency graph

representing the relation between pages in the limited
memory space. The necessary space for requested sequence
from users depends on the data structure and the order of
the sequence. Even though the amount of web log mining
information contributes directly to better prefetching, it
leads to severe memory constraints. For l web log mining
sequences with the total number of n pages, all possible
number of relations between pages stored on the memory is

1+ln . Thus memory for the web log information increases
exponentially according to the order of the sequence. To
avoid this space overhead, we propose to store relations
between pages only when one page is directly linked to
other pages.

ii) Finding a candidate path
We find the candidate paths for sequences of requested

pages from users based on the link between pages.
Algorithm 1 shows the details of our approach. For all
pages in the site, the function ‘make_candidate_path’ is
called. Initially, the path and current page is set to its own
page. For example, in the call for page ‘a’, both ‘path’ and
‘current_page’ are set to ‘a’. In each call, ‘current_page’ is
added into array ‘candidate_ path’.

Algorithm 1 Making Candidate Path

iii) Making set for prefetching
In each request, Algorithm 2 selects the candidate page

and updates the hit rate of each sequence. For every
incoming request, ‘sequence’ and ‘previous_page’ are
assigned to each connection. ‘Sequence’ stands for the
sequence of the previous accessed pages and
‘previous_page’ is for most recently accessed page.
Function ‘get_prefetch_ page’ is called on every request
from the user. The hit rate of sequence with requested page
is increased and ‘previous_page’ is updated with requested
page. Finally, the web-page with the highest possibility for
next request from user is selected. If the possibility of the
chosen page is bigger than threshold, this page is
prefetched.

Also, when a request for a main page arrives at the
backend, the embedded objects associated with main page
are pre-fetched into the cache. The subsequent requests
from the user for the embedded objects is forwarded by the
distributor to backend server with pre-fetched embedded
object and this scheme avoids a disk access and hence the
latency.

Algorithm 2 Prefetching of pages

4.1.2 Replication at the Back-End Server

The popularity of the files, as registered by the recorded
hits for each web page, is used to rank the web pages. The
files are distributed and replicated across the back-end
servers’ memory based on their ranks. The higher the ranks
of the pages are, the larger the replication of these pages on
the back-end servers’ memory is. Algorithm 3 explains the
replication process.

Algorithm 3 Replication at the Back-End Server

The replication algorithm controls whole replicas of web

documents in the system. The interval of the operation (t
seconds) is decided based on the current operating
conditions of the system (load, service time, etc.) or a fixed
interval, whichever is smaller. A rank table (rank_table)
is built based on the frequency of hits registered for each
web page through dynamic log mining of the recent history.
Each one of the files has a “rank” associated with the
popularity of the file. Based on the value of “rank,” the files
are replicated across the back-end servers through the
‘Replication’ algorithm.

 4.2 Request Distribution at the Front-End

To solve the bottleneck formed by the distributor of a
web cluster system, the efficient distribution through web
log mining is suggested in this section. In any locality based
distributed systems, we can divide the distribution process
into several steps. Fig. 4 illustrates the steps involved in
distributing the incoming requests. First, distributor read
and analyzes the incoming request. Second, distributor
determines whether current request is for the embedded
object for previous request. If it is for embedded object,
request is forwarded to backend server that processed
previous request. Third, the distributor decides whether
request is for pre-fetched object or is already distributed. If
it is, request is distributed to backend server that has pre-
fetched object or already processes it. If not, the distributor
selects a least loaded backend server which hosts the file in

For every t seconds do :

(i) Sort (rank_table)

(ii) For every element in rank_table do :
 if (rank_table[i]. Rank > T1)
 Replicate (rank_table[i].file, all);
 else if (rank_table[i].rank is btw T11/2 & T13/4)
 Replicate (rank_table[i].file, all3/4);
 else if (rank_table[i].rank is btw T11/4 & T11/2)
 Replicate (rank_table[i].file, all1/2);
 else if (rank_table[i].rank is btw T11/8 & T11/4)
 Replicate (rank_table[i].file, NO_CHANGE);
 else
 Replicate (rank_table[i].file, NONE);

 (iii) Return to step 1.

Function: get_prefetch_page (sequence, requested_page) {
if (compared sequence from users c1 with candidate_path) {

 hit_candidate_path [sequence][p1] <-
hit_candidate_path [sequence][p1] + 1;

 sequence <- sequence + requested_page;
 Accessed_Num[requested_page] <-

 Accessed_Num[requested_page] + 1;
 Previous_page = requested_page;
 Pick up the large value in hit_candidate_path [sequence];

 if ((Picked up value/Accessed_Num[requested_page])
 > Threshold)

 return Picked_Page;
 else
 return Null;
 }
}

Function: make_candidate_path (order, Path, current_page) {
if (order > 0) {
 For (current_page linked page b) {
 Path <- Path U {b};
 make_candidate_path (order – 1, Path, ‘b’);
 }
}
else

candidate_path[current_page] <-
 candidate_path{current_page} U {Path};

}

the memory. Finally, the incoming requests are forwarded to
the selected backend server.

From our observation, interval between request and
following request is short. User requests for the embedded
objects arrive at the server as separate requests over a period
of time. If these requests are processed individually, every
request requires a dispatch and hence increases the
processing overhead. Besides, the requests incur misses,
when the content is not available on the memory at the
backend. For improving the processing, a module for
tossing the request into ‘forward module’ is added in the
flow at front-end. It is enclosed by the dash-line in Fig. 4.
This mechanism decreases the number of dispatches
dramatically and improves the performance of the cluster
system. In section 5, we present the results of the simulation
show the improvement achieved with the help of these
schemes.

Fig. 4 Proactive Request Distribution Flow Chart

5. SIMULATION MODEL AND RESULTS

5.1 Simulation Model
The simulation model consists of ‘n’ backend servers

and a front-end including distributor and dispatcher. Our
model is scalable to any number of backend servers and we
show that results are consistent with 6 to 16 backend
servers. The model emulates a real-time cluster system with
request queues at the distributor and the backend servers.
The simulation model is illustrated in Fig. 5.

Fig. 5 Simulation Model

The simulation system parameters are enumerated in
table 1.

Parameter Value

Memory (Kernel memory +
Application memory)

256 MB, 133 MHz

Kernel Memory 128 MB
Application Memory 128 MB
Pinned Memory 72 MB (Variable)
Connection latency 150 µs
Disk latency 18.215 ms (fixed) + 15.5

µs per KB
Power Consumption 100% when ON, 0% when

OFF and 5% in
Hibernation

Interconnection Network 100 Mbps Fast Ethernet
TCP handoff latency 200 µs per request
Data transmission rate
(across network – for
migration)

80 µs per 1 KB block

.
Table 1 System Parameters

5.2 Simulation Results

Simulations have been carried out by implementing the
proposed algorithms in C++. The program simulates a
scalable, user configurable cluster with realistic system and
disk queues. Additionally, we have implemented the WRR,
LARD, and existing algorithms for P-HTTP (Ext-LARD-
PHTTP) for benchmarking or comparison purposes. The
simulation code takes any log file in common log format as
the input. In our simulation, we obtain workload from logs
of Texas A&M University CS department web site and from
Soccer World cup 1998 web site. The data set for Texas
A&M University CS departments contains 27,000 requests
and has 4,700 files of average size 12Kb, while logs for
Soccer World cup 1998 contains 897,498 requests for 3809
files We have also used a set of synthetic web trace for the
simulations composed of 30,000 requests and 3000 files of
average size 10Kb. In the first section of the results, the
efficiency of the distributors of LARD and our system,
PRORD, are compared. In the second section, the following
metrics are closely monitored for evaluating the
performance of the system: Average Response Time and
Throughput. We compare our policy (PRORD) against
WRR, LARD and Ext-LARD-PHTTP.

Fig. 6 shows the reduced frequency of dispatches with
our policy. This is largely due to the effect of forwarding of
requests to the embedded objects. The dispatcher does not
have to be contacted for any of the requests comprising the
embedded objects. The throughput of all the algorithms for
each of the trace is compared in Fig. 7. The throughput is
the summation of the number of requests processed by each
of the backend servers. Our scheme performs considerably

better than the LARD system with an improvement of 10%
to 45 %. The improvement in both LARD and PRORD over
WRR is due to the reduced disk accesses or the improved
hit rates in the memory of the backend servers. Generally,
about 30% of the website’s data can be accommodated in
the backend servers’ memory at any given point of time.
This assumption yield 85% hit rates with LARD and 10%
boost with our scheme.

Fig. 6 Frequency of Dispatches

Fig. 7 Throughput Comparison

To prove that our system has a better locality than
LARD, we run simulations varying the amount of data that
can be accommodated in backend servers’ memory. Also,
we varied the amount of website’s data that can be
accommodated in the backend servers’ memory and
recorded the throughput. This is illustrated in Fig. 8. This
illustration shows that PRORD is more consistent in
preserving the locality of the files than LARD. This
comparison has been necessary to portray the efficiency of
PRORD. The scenarios depicted here can be a possibility
with large websites with large data contents.

PRORD consists of the enhancements outlined in
section 4 which improve the locality of the web pages and
files in the memory of the backend servers. To identify the
individual improvements provided by each of the
enhancement, we ran the simulations by turning ON/OFF
these enhancements. Fig. 9 illustrates the throughput
comparison of each of the enhancement schemes. LARD-
bundle denotes the bundle-based distribution scheme.
LARD-distribution stands for the improvement achieved

through the dynamic distribution of the files on the backend
servers’ memory based on their popularity. Finally, LARD-
prefetch-nav indicates the enhancement achieved through
proactive pre-fetching in the backend servers’ memory
through web log mining. It can be seen that pre-fetching
complemented by web log mining provides the best
improvement clearly outperforming the other schemes by
100%. Also, PRORD is the combination of these schemes
and performs better as the schemes are complementary
among themselves.

Fig. 8 Throughput varying data amount in memory

Fig. 9 Throughput Comparison for Individual Enhancements

with CS-Trace

6. CONCLUSIONS

As the use of cluster systems increases, improving
performance has been a critical issue. In this paper, we
proposed a proactive request distribution scheme, called
PRORD, compared it with three other policies including
WRR, LARD and Ext-LARD-PHTTP, and showed which
policy provides best results in terms of efficiency such as
throughput and frequency of dispatches. WRR has a good
load balancing capability, but its locality is so poor that it
increases miss rates. In order to reduce the miss rates and
improve secondary storage scalability, LARD can be used.

However, for large websites with immensely huge
datasets, where caching considerable website contents

becomes impossible, the performance of LARD degrades.
Thus, we propose PRORD that employs ‘PROactive’
locality-based request distribution which is complemented
by prefetching at the back-end servers. Such dynamic
reconfiguration of the mining usage data in the web server's
cache becomes a significant factor for the contribution of
the performance of the system. The simulation results with
original website logs indicate that our system provides
considerable improvement in the performance of the system
(10-45%). We are planning to explore the possibility of
providing support for dynamic contents.

REFERENCES

[1] C. Huitema, “Network vs. Server Issues in End-to-End
Performance,” Keynote Speech at Performance and Architecture of
Web Servers 2000, Santa Clara, CA.
http://www.huitema.net/talks/server-and-networks.ppt.
[2] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W.
Zwaenepoel, and E. Nahum, “Locality-Aware Request
Distribution in Cluster-based Network Servers,” in Proc. 8th Intl.
Conf. on Architectural Support for Programming Languages and
Operating Systems, pp. 205-216, October 1998.
[3] K. Rajamani and C. Lefurgy, “On Evaluating Request-
Distribution Schemes for Saving Energy in Server Clusters,” in
Proc. Intl. Sym. Performance Analysis of Systems and Software,
March 2003.
[4] M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel,
"Scalable Content-aware Request Distribution in Cluster-Based
Network Servers,” in Proc. of the USENIX 2000 Annual Technical
Conference, June 2000.
[5] M. Aron, P. Druschel, and W. Zwaenepoel, “Efficient Support
for P-HTTP in Cluster-Based Web Servers,” in Proc. of the Annual
Usenix Technical Conference, 1999.
[6] S. Ramakrishnan and Y. Yinghui, “Mining Web Logs to
Improve Website Organization.” In Proc. of WWW-10, May 2001.
[7] C. E. Wills, G. Trott, and M. Mikhailov, “Using Bundles for
Web Content Delivery,” in Proc. ACM Computer Network,
August 2003.
[8] P. Mike and E. Oren, “Adaptive Web Sites: Automatically
Synthesizing Web Pages.” in Proc. of the 15th National Conf. on
Artificial Intelligence (AAAI), 1998.
[9] P. Mike and E. Oren, “Towards Adaptive Web Sites:
Conceptual Framework and Case Study.” in Proc. of WWW-8,
May 1999.
[10] N. Takehiro, K. Hiroki, and Y. Yohei, “Discovering the Gap
between Website Designers’ Expectations and User’s Behavior,”
in Proc. of WWW-9, May 2000.
[11] S. Myra and F. C. Lukas, “WUM: A Web Utilization Miner,”
In Proc. of EDBT Workshop WebDB98, Spain, March 1998.
[12] S. Myra, F. C. Lukas, and W. Karsten, “A DataMiner
Analyzing the Navigational Behaviour of Web Users,” in Proc. of
Workshop on Machine Learning in User Modeling, June 1999.
[13] A. Cohen, S. Rangarajan, and H. Slye, “On the Performance
of TCP Splicing for URL-Aware Redirection,” in Proc. of the 2nd
USENIX Symposium on Internet Technologies and Systems,
October 1999.
[14] K. Fall and J. Pasquale, “Exploiting in-Kernel Data Paths to
Improve I/O Throughput and CPU Availability,” in Proc. of the
Winter 1993 USENIX Conference, January 1993.

[15] J. Kim, G. S. Choi, and C. R. Das, “A Load Balancing
Scheme for Cluster-based Secure Network Servers,” in Proc. of
Cluster 2005, 2005.
[16] E. Frias-Martinez and V. Karamcheti, “A Prediction Model
for User Access Sequences,” in Proc. of WEBKDD Workshop:
Web Mining for Usage Patterns and User Profiles, 2002.
[17] M. Kitsuregawa, M. Toyoda, and I. Pramudiono, “Web
Community Mining and WEB Log Mining:Commodity Cluster
Based Execution,” in Australasian Database Conference, 2002.
[18] A. Nanopoulos, D. Katsaros, and Y. Manolopoulos, “A Data
Mining Algorithm for Generalized Web Prefetching,” in IEEE
Tran. on Knowledge and Data Engineering, 2003.
[19] V. N. Padmanabhan and J. C. Mogul, “Using Predictive
Prefetching to Improve World Wide Web Latency,” ACM
SIGCOMM Computer Communication Review, 1996.
[20] Q. Yang, H.H.Zhang, and T.Li, “Mining Web Logs for
Prediction Models in WWW Caching and Prefetching,” in Proc. of
the Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2001.
[21] M. Gery and H. Haddad, “Evaluation of Web Usage Mining
Approaches for User’s Next Request Prediction,” in Proc. of the 5th
ACM Intl. Workshop on Web Information and Data Management
(WIDM), 2003.
[22] J. Srivastava, R. Cooley, M. Deshpande, and P. N. Ten, “Web
Usage Mining: Discovery and Application of Usage patterns from
Web Data,” in SIGKDD Exploration, 2000.
[23] R. Agrawal, T. Lmielinski, and A. Swami, “Mining
Association Rules between Sets of Items in Large Databases,” in
Proc. of ACM SIGMOD Conference on Management of Data,
1993.
[24] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules,” in Proc. of VLDB, 1994.
[25] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” in
Proc. of 11th Intl. Conference on Data Engineering, 1995.
[26] T. Palpanas and A. Mendelzon, “Web Prefetching Using
Partial Match Prediction,” in Proc. 4th Web Caching Workshop,
1999.
[27] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa, “Using
Sequential and Non-Sequential Patterns for Predictive Web Usage
Mining Tasks,” in Proc. of the IEEE Intl. Conference on Data
Mining (ICDM), 2002.
[28] W. Gaul and L. Schmidt-Thieme, “Mining Web Navigation
Path Fragments,” in Workshop on Web Mining for E-commerce –
Challenges and Opportunities, 2000.
[29] E. Cohen, B. Krishnamurthy, and J. Rexford, “Improving
End-to-End Performance of the Web Using Server Volumes and
Proxy Filters,” in Proc. of ACM SIGCOMM, 1998.
[30] L. Cherkasova, “Improving WWW Proxies Performance with
Greedy-Dual-Size-Frequency Caching Policy,” HP Technical
Report, 1998.
[31] L. Aversa and A. Bestavros, "Load Balancing a Cluster of
Web Servers Using Distributed Packet Rewriting," in Proc. of the
2000 IEEE Intl. Performance, Computing, and Communications
Conference, Feb 2000.
[32] E. V. Carrera and R. Bianchini. "PRESS: A Clustered Server
Based on User-Level Communication". IEEE Transactions on
Parallel and Distributed Systems, volume 16, number 5, May 2005.

