
Parallel Algorithms for Evaluating Centrality Indices in Real-world Networks

David A. Bader Kamesh Madduri

College of Computing

Georgia Institute of Technology, Atlanta GA 30332

{bader,kamesh}@cc.gatech.edu

Abstract

This paper discusses fast parallel algorithms for evalu-

ating several centrality indices frequently used in complex

network analysis. These algorithms have been optimized

to exploit properties typically observed in real-world large

scale networks, such as the low average distance, high lo-

cal density, and heavy-tailed power law degree distribu-

tions. We test our implementations on real datasets such as

the web graph, protein-interaction networks, movie-actor

and citation networks, and report impressive parallel per-

formance for evaluation of the computationally intensive

centrality metrics (betweenness and closeness centrality)

on high-end shared memory symmetric multiprocessor and

multithreaded architectures. To our knowledge, these are

the first parallel implementations of these widely-used so-

cial network analysis metrics. We demonstrate that it is pos-

sible to rigorously analyze networks three orders of mag-

nitude larger than instances that can be handled by ex-

isting network analysis (SNA) software packages. For in-

stance, we compute the exact betweenness centrality value

for each vertex in a large US patent citation network (3 mil-

lion patents, 16 million citations) in 42 minutes on 16 pro-

cessors, utilizing 20GB RAM of the IBM p5 570. Current

SNA packages on the other hand cannot handle graphs with

more than hundred thousand edges.

1 Introduction

Large-scale network analysis is an exciting field of re-

search with applications in a variety of domains such as so-

cial networks (friendship circles, organizational networks),

the internet (network topologies, web graphs, peer-to-peer

networks), transportation networks, electrical circuits, ge-

nealogical research and bio-informatics (protein-interaction

networks, food webs). These networks seem to be en-

tirely unrelated and indeed represent quite diverse relations,

but experimental studies [5, 23, 11, 36, 35] have shown

that they share some common traits such as a low aver-

age distance between the vertices, heavy-tailed degree dis-

tributions modeled by power laws, and high local densities.

Modeling these networks based on experiments and mea-

surements, and the study of interesting phenomena and ob-

servations [13, 18, 42, 52], continue to be active areas of

research. Several models [26, 37, 40, 51, 15] have been pro-

posed to generate synthetic graph instances with scale-free

properties.

Network analysis is currently a very active area of re-

search in the social sciences [44, 50, 47, 25], and seminal

contibutions to this field date back to more than sixty years.

There are several analytical tools [32, 6, 45] for visualizing

social networks, determining empirical quantitative indices,

and clustering. In most applications, graph abstractions and

algorithms are frequently used to help capture the salient

features. Thus, network analysis from a graph theoretic per-

spective is about extracting interesting information, given a

large graph constructed from a real-world dataset.

Network analysis and modeling have received consider-

able attention in recent times, but algorithms are relatively

less studied. Real-world networks are often very large in

size, ranging from several hundreds of thousands to billions

of vertices and edges. A space-efficient memory represen-

tation of such graphs is itself a big challenge, and dedicated

algorithms have to be designed exploiting the unique char-

acteristics of these networks. On single processor worksta-

tions, it is not possible to do exact in-core computations on

large graphs due to the limited physical memory. Current

high-end parallel computers have sufficient physical mem-

ory to handle large graphs, and a naı̈ve in-core implemen-

tation of a graph theory problem is typically two orders of

magnitude faster than the best external memory implemen-

tation [1]. Algorithm design is further simplified on parallel

shared memory systems; due to the globally address mem-

ory space, there is no need to partition the graph, and we

can avoid the the overhead of message passing. However,

attaining good performance is still a challenge, as a large

class of graph algorithms are combinatorial in nature, and

involve a significant number of non-contiguous, concurrent

accesses to global data structures with low degrees of local-



ity.

The main contributions of our work are the following:

We present new parallel algorithms for evaluating network

centrality metrics, optimized for scale-free sparse graphs.

To our knowledge, this is the first work on parallelizing

SNA metrics. We have implemented the algorithms on

high-end shared memory systems such as the IBM p5 570

and the Cray MTA-2, and report results on several large-

scale real datasets, that are three orders of magnitude larger

than the graph sizes solved using existing SNA packages.

Further, our implementations are designed to handle graph

instances on the order of billions of vertices and edges.

This paper is organized as follows. Section 2 gives an

overview of the various centrality metrics, and the com-

monly used sequential algorithms to compute them. We

present parallel algorithms for evaluating these metrics in

Section 3. Section 4 details the performance of these algo-

rithms on parallel shared memory and multithreaded archi-

tectures, on a variety of large-scale real-world datasets and

synthetic scale-free graphs.

2 Centrality Metrics

One of the fundamental problems in network analysis is

to determine the importance of a particular vertex or an edge

in a network. Quantifying centrality and connectivity helps

us identify portions of the network that may play interesting

roles. Researchers have been proposing metrics for central-

ity for the past 50 years, and there is no single accepted

definition. The metric of choice is dependent on the ap-

plication and the network topology. Almost all metrics are

empirical, and can be applied to element-level [10], group-

level [21], or network-level [49] analyses. We present a few

commonly used indices in this section.

Preliminaries

Consider a graph G = (V, E), where V is the set of vertices

representing actors or nodes in the social network, and E,

the set of edges representing the relationships between the

actors. The number of vertices and edges are denoted by

n and m, respectively. The graphs can be directed or undi-

rected. Let us assume that each edge e ∈ E has a positive

integer weight w(e). For unweighted graphs, we use w(e)
= 1. A path from vertex s to t is defined as a sequence of

edges 〈ui, ui+1〉, 0 ≤ i ≤ l, where u0 = s and ul = t. The

length of a path is the sum of the weights of edges. We use

d(s, t) to denote the distance between vertices s and t (the

minimum length of any path connecting s and t in G). Let

us denote the total number of shortest paths between ver-

tices s and t by σst, and the number passing through vertex

v by σst(v).

Degree Centrality

The degree centrality DC of a vertex v is simply the de-

gree deg(v) for undirected graphs. For directed graphs, we

can define two variants: in-degree centrality and out-degree

centrality. This is a simple local measure, based on the no-

tion of neighborhood. This index is useful in case of static

graphs, for situations when we are interested in finding ver-

tices that have the most direct connections to other vertices.

Closeness Centrality

This index measures the closeness, in terms of distance, of

an actor to all other actors in the network. Vertices with a

smaller total distance are considered more important. Sev-

eral closeness-based metrics [7, 46, 38] have been devel-

oped by the SNA community. A commonly used definition

is the reciprocal of the total distance from a particular vertex

to all other vertices:

CC(v) =
1

∑

u∈V d(v, u)

Unlike degree centrality, this is a global metric. To calculate

the closeness centrality of a vertex v, we may apply breadth-

first search (BFS, for unweighted graphs) or a single-source

shortest paths (SSSP, for weighted graphs) algorithm from

v.

Stress Centrality

Stress centrality is a metric based on shortest paths counts,

first presented in [48]. It is defined as

SC(v) =
∑

s6=v 6=t∈V

σst(v)

Intuitively, this metric deals with the work done by each ver-

tex in a communications network. The number of shortest

paths that contain an element v will give an estimate of the

amount of stress a vertex v is under, assuming communica-

tion will be carried out through shortest paths all the time.

This index can be calculated using a variant of the all-pairs

shortest-paths algorithm, that calculates and stores all short-

est paths between any pair of vertices.

Betweenness Centrality

Betweenness Centrality is another shortest paths

enumeration-based metric, introduced by Freeman in

[24]. Let δst(v) denote the pairwise dependency, or the

fraction of shortest paths between s and t that pass through

v:

δst(v) =
σst(v)

σst



Betweenness Centrality of a vertex v is defined as

BC(v) =
∑

s6=v 6=t∈V

δst(v)

This metric can be thought of as normalized stress central-

ity. Betweenness centrality of a vertex measures the control

a vertex has over communication in the network, and can

be used to identify key actors in the network. High central-

ity indices indicate that a vertex can reach other vertices on

relatively short paths, or that a vertex lies on a considerable

fraction of shortest paths connecting pairs of other vertices.

We discuss algorithms to compute this metric in detail in

the next section.

This index has been extensively used in recent years

for analysis of social as well as other large scale complex

networks. Some applications include biological networks

[30, 43, 20], study of sexual networks and AIDS [33], iden-

tifying key actors in terrorist networks [31, 17], organiza-

tional behavior [12], supply chain management [16], and

transportation networks [27].

There are a number of commercial and research software

packages for SNA (e.g., Pajek [6], InFlow [32], UCINET

[2]) which can also be used to determine these centrality

metrics. However, they can only be used to study compar-

atively small networks (in most cases, sparse graphs with

less than 40,000 vertices). Our goal is to develop fast, high-

performance implementations of these metrics so that we

can analyze large-scale real-world graphs of millions to bil-

lions of vertices.

2.1 Algorithms for computing Between-
ness Centrality

A straightforward way of computing betweenness cen-

trality for each vertex would be as follows:

1. compute the length and number of shortest paths be-

tween all pairs (s, t).
2. for each vertex v, calculate every possible pair-

dependency δst(v) and sum them up.

The complexity is dominated by step 2, which re-

quires Θ(n3) time summation and Θ(n2) storage of pair-

dependencies. Popular SNA tools like UCINET use an ad-

jacency matrix to store and update the pair-dependencies.

This yields an Θ(n3) algorithm for betweenness by aug-

menting the Floyd-Warshall algorithm for the all-pairs

shortest-paths problem with path counting [8].

Alternately, we can modify Dijkstra’s single-source

shortest paths algorithm to compute the pair-wise depen-

dencies. Observe that a vertex v ∈ V is on the shortest path

between two vertices s, t ∈ V , iff d(s, t) = d(s, v)+d(v, t).
Define a set of predecessors of a vertex v on shortest paths

from s as pred(s, v). Now each time an edge 〈u, v〉 is

scanned for which d(s, v) = d(s, u) + d(u, v), that ver-

tex is added to the predecessor set pred(s, v). Then, the

following relation would hold:

σsv =
∑

u∈pred(s,v)

σsu

Setting the initial condition of pred(s, v) = s for all neigh-

bors v of s, we can proceed to compute the number of short-

est paths between s and all other vertices. The computa-

tion of pred(s, v) can be easily integrated into Dijkstra’s

SSSP algorithm for weighted graphs, or BFS Search for un-

weighted graphs. But even in this case, determining the

fraction of shortest paths using v, or the pair-wise depen-

dencies δst(v), proves to be the dominant cost. The number

of shortest s−t paths using v is given by σst(v) = σsv ·σvt.

Thus computing BC(v) requires O
(

n2
)

time per vertex v,

and O
(

n3
)

time in all. This algorithm is the most com-

monly used one for evaluating betweenness centrality.

To exploit the sparse nature of typical real-world graphs,

Brandes [8] came up with an algorithm that computes the

betweenness centrality score for all vertices in the graph in

O
(

mn + n2 log n
)

time for weighted graphs, and O(mn)
time for unweighted graphs. The main idea is as follows.

We define the dependency of a source vertex s ∈ V on a

vertex v ∈ V as

δs(v) =
∑

t∈V

δst(v)

The betweenness centrality of a vertex v can be then ex-

pressed as BC(v) =
∑

s6=v∈V δs(v). The dependency

δs(v) satisfies the following recursive relation:

δs(v) =
∑

w:v∈pred(s,w)

σsv

σsw

(1 + δs(w))

The algorithm is now stated as follows. First, n SSSP com-

putations are done, one for each s ∈ V . The predecessor

sets pred(s, v) are maintained during these computations.

Next, for every s ∈ V , using the information from the short-

est paths tree and predecessor sets along the paths, compute

the dependencies δs(v) for all other v ∈ V . To compute the

centrality value of a vertex v, we finally compute the sum of

all dependency values. The O
(

n2
)

space requirements can

be reduced to O(m + n) by maintaining a running central-

ity score.

3 Parallel Approaches

In this section, we present our new parallel algorithms

and implementation details of the centrality metrics on two

classes of shared memory systems: symmetric multiproces-

sors (SMPs) such as the IBM p5 575, and multithreaded



architectures such as the Cray MTA-2 [19, 14]. The high

memory bandwidth and uniform memory access offered by

these systems aid the design of high-performance graph the-

ory implementations [3]. We use a cache-friendly adja-

cency array representation [41] for storing the graph. For

algorithm analysis, we use a complexity model similar to

the one proposed by Helman and JáJá [28] that has been

shown to work well in practice. This model takes into

account both computational complexity and memory con-

tention. We measure the overall complexity of an algo-

rithm on SMPs using TM (n, m, p), the maximum number

of non-contiguous accesses made by any processor to mem-

ory, and TC(n, m, p), the upper bound on the local com-

putational complexity. The MTA-2 is a novel architectural

design and has no data cache; rather than using a memory

hierarchy to hide latency, the MTA-2 processors use hard-

ware multithreading to tolerate the latency. Thus, if there is

enough parallelism in the problem, and a sufficient number

of threads per processor are kept busy, the system is satu-

rated and the memory access complexity becomes zero. We

report only TC for the MTA-2 algorithms.

Degree Centrality

We store both the in- and out-degree of each vertex in con-

tiguous arrays during construction of the graph from the test

datasets. This makes the computation of degree centrality

straight-forward, with a constant time look-up on the MTA-

2 and the p5 570. As noted earlier, this is a useful metric

for determining the graph structure, and for a first pass at

identifying important vertices.

Closeness Centrality

Recall the definition of closeness centrality:

CC(v) =
1

∑

u∈V d(v, u)

We need to calculate the distance from v to all other ver-

tices, and then sum over all distances. One possible solu-

tion to this problem would be to pre-compute a distance

matrix using the O
(

n3
)

Floyd-Warshall All-Pairs Shortest

Paths algorithm. Evaluating a specific closeness centrality

value then costs O(n) on a single processor (O
(

n
p

+ log p
)

using p processors) to sum up an entire row of distance val-

ues. However, since real-world graphs are typically sparse,

we have m ≪ n2 and this algorithm would be very inef-

ficient in terms of actual running time and memory utiliza-

tion. Instead, we can just compute n shortest path trees, one

for each vertex v ∈ V , with v as the source vertex for BFS

or Dijkstra’s algorithm. On p processors, this would yield

TC = O
(

nm+n2

p

)

and TM = nm
p

for unweighted graphs.

For weighted graphs, using a naı̈ve queue-based representa-

tion for the expanded frontier, we can compute all the cen-

trality metrics in TC = O
(

nm+n3

p

)

and TM = 2nm
p

. The

bounds can be further improved with the use of efficient pri-

ority queue representations.

Since the evaluation of closeness centrality is computa-

tionally intensive, it is valuable to investigate approximate

algorithms. Using a random sampling technique, Eppstein

and Wang [22] show that the closeness centrality of all ver-

tices in a weighted, undirected graph can be approximated

with high probability in O
(

log n
ǫ2

(n log n + m)
)

time, and

an additive error of at most ǫ∆G (ǫ is a fixed constant, and

∆G is the diameter of the graph). The algorithm proceeds

as follows. Let k be the number of iterations needed to ob-

tain the desired error bound. In iteration i, pick vertex vi

uniformly at random from V and solve the SSSP problem

with vi as the source. The estimated centrality is given by

CCa(v) =
k

nΣk
i=1d(vi, u)

The error bounds follow from a result by Hoeffding [29] on

probability bounds for sums of independent random vari-

ables. We parallelize this algorithm as follows. Each pro-

cessor can run SSSP computations from k
p

vertices and

store the evaluated distance values. The cost of this step is

given by TC =O
(

k(m+n)
p

)

and TM = km
p

for unweighted

graphs. For real-world graphs, the number of sample ver-

tices k can be set to Θ( log n

ǫ2
) to obtain the error bounds

given above. The approximate closeness centrality value

of each vertex can then be calculated in O(k) =O
(

log n

ǫ2

)

time, and the summation for all n vertices would require

TC =O
(

n log n

pǫ2

)

and constant TM .

Stress and Betweenness Centrality

These two metrics require shortest paths enumeration and

we design our parallel algorithm based on Brandes’ [8] se-

quential algorithm for sparse graphs. Alg. 1 outlines the

general approach for the case of unweighted graphs. On

each BFS computation from s, the queue Q stores the cur-

rent set of vertices to be visited, S contains all the vertices

reachable from s, and P (v) is the predecessor set associ-

ated with each vertex v ∈ V . The arrays d and σ store the

distance from s, and shortest path counts, respectively. The

centrality values are computed in steps 22–25, by summing

the dependencies δ(v), v ∈ V . The final scores need to

be divided by two if the graph is undirected, as all shortest

paths are counted twice.

We observe that parallelism can be exploited at two lev-

els:



Input: G(V, E)

Output: Array BC[1..n], where BC[v] gives the

centrality metric for vertex v

1 for all v ∈ V in parallel do

2 BC[v]← 0;

for all s ∈ V in parallel do

3 S ← empty stack;

4 P [w]← empty list, w ∈ V ;

5 σ[t]← 0, t ∈ V ; σ[s]← 1;

6 d[t]← −1, t ∈ V ; d[s]← 0;

7 Q→ empty queue;

8 enqueue s← Q;

9 while Q not empty do

10 dequeue v ← Q;

11 push v → S;

12 for each neighbor w of v in parallel do

13 if d[w] < 0 then

14 enqueue w→ Q;

15 d[w]← d[v] + 1;

16 if d[w] = d[v] + 1 then

17 σ[w] ← σ[w] + σ[v];
18 append v → P [w];

19 δ[v]← 0, v ∈ V ;

20 while S not empty do

21 pop w← S;

22 for v ∈ P [w] do

23 δ[v]← δ[v] + σ[v]
σ[w] (1 + δ[w]);

24 if w 6= s then

25 BC[w]← BC[w] + δ[w];

Algorithm 1: Parallel Betweenness Centrality for un-

weighted graphs

• The BFS/SSSP computations from each vertex can

be done concurrently, provided the centrality running

sums are updated atomically.

• The actual BFS/SSSP can be also be parallelized.

When visiting the neighbors of a vertex, edge relax-

ation can be done concurrently.

It is theoretically possible to do all the SSSP computa-

tions concurrently (steps 3 to 25 in Alg. 1). However, the

memory requirements scale as O(p(m + n)), and we only

have a modest number of processors on current SMP sys-

tems. For the SMP implementation, we do a coarse-grained

partitioning of work and assign each processor a fraction of

the vertices from which to initiate SSSP computations. The

loop iterations are scheduled dynamically so that work is

distributed as evenly as possible. There are no synchroniza-

tion costs involved, as a processor can compute its own par-

tial sum of the centrality value for each vertex, and all the

sums can be merged in the end using a efficient reduction

operation. Thus, the stack S, list of predecessors P and the

BFS queue Q, are replicated on each processor. Even for a

graph of 100 million edges, with a conservative estimate of

10GB memory usage by each processor, we can employ all

16 processors on our target SMP system, the IBM p570. We

further optimize our implementation for scale-free graphs.

Observe that in Alg. 1, Q is not needed as the BFS fron-

tier vertices are also added to S. To make the implemen-

tation cache-friendly, we use dynamic adjacency arrays in-

stead of linked lists for storing elements of the predecessor

set S. Note that |Σv∈V Ps(v)| = O(m), and in most cases

the predecessor sets of the few high-degree vertices in the

graph are of comparatively greater size. Memory allocation

is done as a pre-processing step before the actual BFS com-

putations. Also, the indices computation time and memory

requirements can be significantly reduced by decomposing

the undirected graph into its biconnected components.

However, for a multithreaded system like the MTA-2,

this simple approach will not be efficient. We need to ex-

ploit parallelism at a much finer granularity to saturate all

the hardware threads. So we parallelize the actual BFS

computation, and also have a coarse grained partition at

the outer level. We designed a parallel approach for BFS

on the Cray MTA-2 in [4], and show that it is possible

to attain scalable performance for up to 40 processors on

low-diameter, scale-free graphs. The MTA-2 programming

environment provides primitives to automatically handle

nested parallelism, and the loop iterations are dynamically

scheduled.

For the case of weighted graphs, Alg. 1 must be mod-

ified to consider edge weights. The relaxation condition

changes, and using a Fibonacci heap or pairing heap priority

queue representation, it is possible to compute betweenness

centrality for all the n vertices in TC = O
(

mn+n2 log n
p

)

.

We can easily adapt our SMP implementation to consider

weighted graphs also. We intend to work on a parallel mul-

tithreaded implementation of SSSP on the MTA-2 for scale-

free graphs in the near future.

An approximate algorithm for betweenness centrality is

detailed in [9], which is again derived from the Eppstein-

Wang algorithm [22]. As in the case of closeness cen-

trality, the sequential running time can be reduced to

O
(

log n

ǫ2
(n + m)

)

by setting the value of k appropriately.

The parallel algorithms can also be derived similarly, by

computing only k dependencies (δ[v] in Alg. 1) instead of

v, and taking a normalized average.

4 Results

This section summarizes the experimental results of our

centrality implementations on the Cray MTA-2 and the



Dataset Source Network description

ND-actor [34] an undirected graph of 392,400 vertices (movie actors) and 31,788,592 edges. An edge

corresponds to a link between two actors, if they have acted together in a movie. The

dataset includes actor listings from 127,823 movies.

ND-web [34] a directed network with 325,729 vertices and 1,497,135 arcs (27,455 loops). Each vertex

represents a web page within the Univ. of Notredame nd.edu domain, and the arcs represent

from→ to links.

ND-yeast [34] undirected network with 2114 vertices and 2277 edges (74 loops). Vertices represent pro-

teins, and the edges interactions between them in the yeast network.

PAJ-patent [39] a network of about 3 million U.S. patents granted between January 1963 and December

1999, and 16 million citations made among them between 1975 and 1999

PAJ-cite [39] the Lederberg citation dataset, produced using HistCite, in PAJEK graph format with 8843

vertices and 41609 edges.

Table 1. Test dataset characteristics

Figure 1. Degree distributions of some network instances

Figure 2. Single processor execution time comparison of the centrality metric implementations on

the IBM p5 570 (left) and the Cray MTA-2 (right)



(a) (b)

(c) (d)

Figure 3. Multiprocessor Performance of Betweenness Centrality for various graph instances on the

IBM p5 570 and the Cray MTA-2

IBM p5 570. We report results on a 40-processor MTA-

2, with each processor having a clock speed of 220 MHz

and 4GB of RAM. Since the address space of the MTA-2 is

hashed, from the programmer’s viewpoint, the MTA-2 is a

flat shared memory machine with 160 GB memory. The

IBM p5 570 is a 16-way symmetric multiprocessor with

16 1.9 GHz Power5 cores with simultaneous multithread-

ing (SMT), and 256 GB shared memory.

We test our centrality metric implementations on a va-

riety of real-world graphs, summarized in Table 1. Our

implementations have been extended to read input files in

both PAJEK and UCINET graph formats. We also use

a synthetic graph generator [15] to generate graphs obey-

ing small-world characteristics. The degree distributions of

some test graph instances are shown in Fig. 1. We observe

that the out-degree distribution contains a heavy tail, which

is in agreement with prior experimental studies on scale-

free graphs.

Fig. 2 compares the single processor execution time of

the three centrality metrics for three graph instances, on the

MTA-2 and the p5 570. All three metrics are of the same

computational complexity and show nearly similar running

times in practice.

Fig. 3 summarizes multiprocessor execution times for

computing Betweenness centrality, on the p5 570 and the

MTA-2. Fig. 3(a) gives the running times for the ND-actor



graph on the p570 and the MTA-2. As expected, the execu-

tion time falls nearly linearly with the number of processors.

It is possible to evaluate the centrality metric for the entire

ND-actor network in 42 minutes, on 16 processors of the

p570. We observe similar performance for the patents cita-

tion data. However, note that the execution time is highly

dependent on the size of the largest non-trivial connected

component in these real graphs. The patents network, for

instance, is composed of several disconnected sub-graphs,

representing patents and citations in unrelated areas. How-

ever, it did not take significantly more time to compute the

centrality indices for this graph compared to the ND-actor

graph, even though this is a much larger graph instance.

Figs. 3(c) and 3(d) plot the execution time on the MTA-

2 and the p5 570 for ND-web, and a synthetic graph in-

stance of the same size generated using the R-MAT algo-

rithm. Again, note that the actual execution time is depen-

dent on the graph structure; for the same problem size, the

synthetic graph instance takes much longer than the ND-

web graph. Compared to a four processor run, the execution

time reduces significantly for forty processors of the MTA-

2, but we do not attain performance comparable to our prior

graph algorithm implementations [3, 4]. We need to opti-

mize our implementation to attain better system utilization,

and the current bottleneck is due to automatic handling of

nested parallelism. For better load balancing, we need to

further pre-process the graph and semi-automatically assign

teams of threads to the independent BFS computations. Our

memory management routines for the MTA-2 implementa-

tion are not as optimized p570 routines, and this is another

reason for drop in performance and scaling.

5 Conclusions

We present parallel algorithms for evaluating several net-

work indices, including betweenness centrality, optimized

for Symmetric Multiprocessors and multithreaded architec-

tures. To our knowledge, this is the first effort at paralleliz-

ing these widely-used social network analysis tools. Our

implementations are designed to handle problem sizes in the

order of billions of edges in the network, and this is three

orders of magnitude larger than instances that can be han-

dled by current social network analysis tools. We are cur-

rently working on improving the betweenness centrality im-

plementation on the MTA-2, and also extend it to efficiently

compute scores for weighted graphs. In future, we plan to

implement and analyze performance of approximate algo-

rithms for closeness and betweenness centrality detailed the

paper, and also apply betweenness centrality values to solve

harder problems like graph clustering.
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