
Performance Modeling based on Multidimensional Surface Learning for
Performance Predictions of Parallel Applications in Non-Dedicated

Environments ∗

Jay Yagnik
Google Inc.

1600 Amphitheatre Pky.
Mountain View,CA 94043

USA.
jayyagnik@gmail.com

H.A. Sanjay and Sathish Vadhiyar
Supercomputer Education and Research Centre

Indian Institute of Science
Bangalore - 560012

India
{sanjay@rishi.serc, vss@serc}.iisc.ernet.in

Abstract

Modeling the performance behavior of parallel applica-
tions to predict the execution times of the applications for
larger problem sizes and number of processors has been
an active area of research for several years. The exist-
ing curve fitting strategies for performance modeling uti-
lize data from experiments that are conducted under uni-
form loading conditions. Hence the accuracy of these mod-
els degrade when the load conditions on the machines and
network change. In this paper, we analyze a curve fitting
model that attempts to predict execution times for any load
conditions that may exist on the systems during applica-
tion execution. Based on the experiments conducted with
the model for a parallel eigen value problem, we propose
a multi-dimensional curve-fitting model based on rational
polynomials for performance predictions of parallel appli-
cations in non-dedicated environments. We used the ratio-
nal polynomial based model to predict execution times for
2 other parallel applications on systems with large load dy-
namics. In all the cases, the model gave good predictions of
execution times with average percentage prediction errors
of less than 20%.

1 Introduction

Performance predictions of parallel applications have
been mainly used for scheduling decisions, identification
of bottlenecks in applications and systems and fine tun-
ing of algorithms to provide scalability for larger problem
sizes and larger number of processors. Over the years,

∗This work is supported by Indian Institute of Science’s 10th Plan
Grant SERC Part(2A) Special Grant (45/SERC)

many performance modeling efforts [9, 12] have been un-
dertaken to predict the performance of parallel applica-
tions on various systems. The performance modeling strate-
gies are of different types including trace-event simulations
[2, 12], parametrized analytical models [9, 13] and curve-
fitting models [13].

Most of the existing curve-fitting modeling strategies as-
sume uniform loading conditions on the systems or dedi-
cated environments when the experiments for modeling are
conducted and use the models to predict execution times for
large problem sizes and/or larger number of processors for
the same loading conditions [13]. This assumption is unre-
alistic in non-dedicated environments. Although major sci-
entific parallel applications are primarily executed on ded-
icated space-shared systems, non-dedicated environments
form important testbeds for testing, developing and fine-
tuning of parallel applications and also for executing less
time-critical applications. On these systems, it is essential
to predict execution times of applications for various kinds
of scheduling decisions.

In this paper, we explore a curve-fitting strategy based
on rational polynomials for predicting execution times of
applications in non-dedicated systems where the external
CPU and network loads on the systems during predictions
can be different from the loads when experiments for mod-
eling were conducted. Our work considers predicting exe-
cution times of a parallel application for different problem
sizes for a fixed number of processors, i.e., given execu-
tion times of the application for few different problem sizes
for a certain number of processors, our methodologies pre-
dict the execution times of the application for certain other
problem sizes for the same number of processors in non-
dedicated environments. Unlike the previous models that
require detailed knowledge of the applications, our model
requires only approximate complexities of the applications.

Also, our model does not require detailed instrumentation
and profiling of applications but only require observation
of total execution times. The modeling techniques are in-
tended for simple parallel application kernels which are in-
voked in complex parallel applications. These parallel ker-
nels have single phases of computation and communication
and are integral to many scientific applications. In most
cases, the developers of the parallel kernels will be able to
provide coarse computation and communication complex-
ities. These complexities are used in our models to pre-
dict the execution times of the kernels. Although the coarse
complexities are available, automatically refining the model
by careful parametrization of the coarse complexity terms
with adequate application and system parameters in order
to provide decent predictions on noisy non-dedicated sys-
tems is a non-trivial task.

By conducting experiments for predicting execution
times of a parallel eigen value problem on 4 processors with
small load dynamics1, we found that the model based on ra-
tional polynomials provides good accuracies and that the re-
sulting performance prediction trends for different problem
sizes closely match with the trends shown by actual values.
We then evaluated the rational polynomial based model on
8-processor and 32-processor systems with large load dy-
namics by predicting execution times for 3 parallel applica-
tions: eigen value problem, Fast Fourier Transforms (FFT),
and conjugate gradient (CG). Approximate complexities of
the applications and approximations of the load dynamics
were used to parametrize the model for the applications.
In all cases, the model gave less than 20% average per-
centage prediction errors. Models with prediction errors of
less than 20% are considered to be reasonable in the lit-
erature especially when used to predict execution times in
non-dedicated environments with high load dynamics.

In the next section, detailed description of the the curve-
fitting model based on rational polynomials is given. The
model is evaluated in terms of prediction accuracies by con-
ducting experiments with a parallel eigen value application
on a 4-processor system with small load dynamics. Based
on the results, we claim that models based on rational poly-
nomials can give close to accurate predictions. In Section 3,
we propose a generic model based on rational polynomials
for predicting execution times of generic parallel applica-
tions executing in non-dedicated environments with poten-
tial large load dynamics. We evaluate the generic rational
polynomial based model in Section 4 by showing predic-
tion accuracies for three parallel applications on 8-processor
and 32-processor systems with large load dynamics. In Sec-
tion 5, relevant work is presented. Section 6 gives conclu-

1We consider a system as having small load dynamics when the load
conditions change from one application execution to another but remain the
same throughout the duration of an application execution. We consider a
system as having large load dynamics when the load conditions can change
even during an application execution.

sions and Section 7 details future work needed for automatic
building of performance models.

2 Models and Their Evaluations

In this section we describe the general methodology for
modeling and evaluation of the model. We then describe the
rational polynomial based model and evaluate its accuracy.

2.1 Methodology

We evaluate the models with the help of ScaLAPACK [4]
parallel eigen value problem. The ScaLAPACK kernel that
was used for the experiments is PDSYEV, the kernel for
parallel eigen value solver for a double-precision symmet-
ric matrix. The matrix was distributed in 2D block-cyclic
fashion across processors.

The experiments for modeling were conducted on a In-
tel Pentium IV based Linux cluster consisting of 8 nodes
with small load dynamics. All the 8 nodes are connected
to each other by 100 Mbps Ethernet link using a 8-port 100
Mbps Ethernet switch. Each of the nodes has a single 2.8
GHz CPU, a 512 MB RAM, a 80 GB hard disk and running
Fedora Core 2.0, Linux 2.6.5-1.358 operating system. For
the experiments reported in this section, only 4 processors
were used. Before conducting an experiment correspond-
ing to the application execution with a problem size, syn-
thetic CPU and network loads were applied to the proces-
sors and links between processors, respectively. The loads
were maintained at constant amounts throughout the dura-
tion of the application execution but were varied by random
amounts for different application executions.

In order to construct models and predict the execution
times for larger problem sizes for a given number of pro-
cessors, P, experiments were conducted by executing the
application on P processors for smaller problem sizes. In
our work, we restrict our predictions to only those problem
size ranges where the entire data needed by the application
will fit in the local memories of the processors and hence
will not incur disk swapping costs.

At the start of conducting an experiment with a problem
size, the transient CPU and network characteristics were ob-
tained. Network Weather Service (NWS) [16], a tool for
measuring and forecasting system parameters, was used for
obtaining available CPUs of the processors used for appli-
cation execution and available bandwidths on the links be-
tween the processors. Available CPU is a fraction of the
CPU that can be used for the application and inversely pro-
portional to the amount of CPU load. Available bandwidth
of a link to an application is usually lesser than the link ca-
pacity and is also inversely proportional to the network load
on the link. min avail cpu and min avail band are then cal-
culated as the minimum of available CPUs of all processors

involved in the application execution and minimum of avail-
able bandwidths of all the links between the processors, re-
spectively. Then the experiment is conducted by executing
the application with the problem size and the duration of
application execution is observed.

The problem sizes, min avail cpu and min avail band
values, and the execution times, corresponding to differ-
ent experiments with different small problem sizes, were
used as inputs for training our models. The trained mod-
els were then used for predicting execution times for a
large problem size for given values of min avail cpu and
min avail band. For the ScaLAPACK eigen value problem,
experiments were conducted for matrix sizes 100-8000 in
step sizes of 100 and the measurements were used for train-
ing the models. The resultant models were used to predict
execution times for matrix sizes 9000-12000 in step sizes of
100.

The models were evaluated and compared based on av-
erage percentage prediction errors. For a given model, the
average percentage prediction error is given by:

1
N

N∑

i=1

|(actuali − predictedi)|
|actuali|

where N is the number of experiments, actuali is the mea-
sured execution time and predictedi is the predicted exe-
cution time by the model for experiment i. Since in some
cases, the average percentage prediction errors can be mis-
leading, we also evaluated the models by comparing the
trends shown by the prediction and actual values.

In this section, the min avail cpu and min avail band
values were measured only once for an experiment at the
beginning of the application execution. Although calcula-
tion of the values only once for an experiment does not cap-
ture all kinds of load dynamics, it is adequate for the exper-
iments shown in this section where constant load is main-
tained throughout an application execution. Although our
models have provisions for taking into account maximum
available latencies of the links, latency values were not con-
sidered in our models for the results in this paper due to the
negligible impact of latencies on the execution times in the
cluster environment we use for our experiments.

The following subsection describe the model that was
used:

2.2 A Rational Polynomial Model

The model we investigated was a rational polynomial
based model taking into account the computation and com-
munication complexities of the problem. ScaLAPACK par-
allel eigen value problem has cubic computation complexity
and quadratic communication complexity in terms of prob-
lem sizes. If n is the problem or matrix size, the rational

3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
0

2000

4000

6000

8000

10000

12000

14000

Matrix Size

E
xe

cu
tio

n
T

im
e

in
 S

ec
on

ds

Actual
Prediction by ScaLAPACK Analytical Model
Prediction by Rational Polynomial Model

Figure 1. Predictions with Rational Polyno-
mial based Model

polynomial based model can be formulated as:

Pn = a1n
3 + b1n

2 + c1n + d1 (1)

Pcpu =
a2n

3 + b2n
2 + c2n + d2

min avail cpu
(2)

Pbw =
a3n

2 + b3n + c3

min avail band
(3)

tpredicted = Pn + Pcpu + Pbw (4)

Equation 1 calculates the time needed for problem ini-
tializations and synchronizations that happens once at the
beginning of application execution. This time depends on
the problem size and is not impacted significantly by the
external load. Equation 2 calculates the total predicted time
for computation and equation 3 calculates the total pre-
dicted time for communication. The total predicted time
for the application is given by equation 4. The coefficients
in the equations are determined by polynomial fit using data
points in the training samples. The problem of finding the
coefficients is a linear regression problem and is equivalent
to solving a system of linear equations. The determined co-
efficients along with the system and application parameters
are used in the equations to predict the execution time for a
given problem size. Figure 1 shows the predictions of exe-
cution times with the rational polynomial based model. The
curve corresponding to predicted times follows very closely
with the curve corresponding to actual execution times. The
average percentage prediction error is 18% with variance of
0.01 and indicates the reasonableness of the model. Thus
our rational polynomial based model gives good predictions
for non-dedicated environments.

Figure 1 also shows a third curve corresponding to the
parametrized analytical model for the ScaLAPACK eigen
value problem. The parametrized analytical model was

formulated by the ScaLAPACK authors. The formula ex-
presses total execution time in terms of matrix size, number
of processors, latency, bandwidth, and speed of the proces-
sors. We scaled down the theoretical speed of the processors
by the available CPU obtained from NWS to obtain effec-
tive speeds 2 and also used the minimum available band-
width and maximum available latency in the formula. As
can be observed, our model performs much better than the
analytical model for the ScaLAPACK eigen value problem.
This is because the ScaLAPACK analytical model does not
take into account contentions due to external loads while
our curve-fitting model embeds the average contention be-
havior in the coefficients used in its equation.

3 Proposed Model

We propose a general model involving rational poly-
nomials for predicting execution times of generic paral-
lel applications executing in non-dedicated environments
with potential large load dynamics. On systems with large
load dynamics, the amount of external loads on the pro-
cessors involved in application execution can change dras-
tically during the course of application execution. Hence
using min avail cpu and min avail band values, that are
measured once before the application execution, for train-
ing the models and predicting execution times will lead
to large prediction inaccuracies. Instead, during training
of the models, we measure available CPUs and available
bandwidths on all processors and links involved in appli-
cation execution at periodic intervals of time from the be-
ginning to the end of the application execution. We then
calculate for each processor and link, avg avail cpu and
avg avail band, respectively. These are the averages of the
periodic available CPUs and available bandwidths collected
for the processor and the link, respectively, during the appli-
cation execution. Finally, we calculate min avg avail cpu
and min avg avail band values by finding the minimum
of avg avail cpu and avg avail band values, respectively,
on all processors and links. The min avg avail cpu and
min avg avail band values are used along with the problem
sizes and execution times for training the models.

The trained models are used to predict the execution
time of the application when executed with a particular
problem size and for particular values of min avg avail cpu
and min avg avail band of the system. But unlike
min avail cpu and min avail band values that were used for
predicting execution times on systems with small load dy-
namics, min avg avail cpu and min avg avail band values
cannot be measured before the application execution to pre-
dict the execution time. This is because the min avail cpu

2Available CPUs are between 0 and 1. When there is no contention,
available CPU is 1 and the effective speed will be equal to the theoretical
speed

and min avail band values represent the system loads that
exist at the beginning of application execution for which the
execution time is predicted, while the min avg avail cpu
and min avg avail band values represent the system loads
that will exist during the period of the application execu-
tion.

Hence, we forecast the min avg avail cpu and
min avg avail band values based on the history of
previous measured values and use the forecasted values in
our models to predict the execution time of an application.
The history is continuously updated with new measured
values. Thus, we forecast the load dynamics of the
system based on the observed load dynamics. We use the
forecasting tools from NWS to forecast min avg avail cpu
and min avg avail band. NWS uses “mixture of experts”
strategy [15] to forecast a value, where different forecasting
algorithms are used to postcast the previous measured val-
ues. The forecasting algorithm with the minimum postcast
error is then used to forecast the next value. Thus, by
using NWS tools and updating history of measured values
with recent values for forecasting min avg avail cpu and
min avg avail band, our models that use these forecasted
values for predicting execution times are able to “self
correct” based on the prediction errors for previous values.

The resultant model based on rational polynomials for
predicting execution time, tpredicted, is given by:

tpredicted =O(ncomp) +
O(ncomp)

min avg avail cpu
+

O(ncomm)
min avg avail band

(5)

where O(ncomp) is the computational complexity and
O(ncomm) is the communication complexity of the applica-
tion. The min avg avail cpu and min avg avail band used
in Equation 5 are measured values during training the model
and forecasted values for prediction. Equation 5 is a gen-
eralization of Equations 1-4 used for predicting execution
time of ScaLAPACK eigen value problem.

The advantage of the proposed model is that the applica-
tion developer only needs to specify the approximate com-
putational and communication complexities of the parallel
application. The exact parameters are learned by regression
with few trial runs. The experiments in the next section use
this proposed model for predicting execution times.

4 Experiments and Results

Experiments were conducted validating the proposed
model in Section 3 in terms of predictions of execu-
tion times for 3 applications: ScaLAPACK parallel eigen
value problem, parallel Conjugate Gradient (CG) applica-
tion from NAS Parallel Benchmarks (NPB) suite [3], and

parallel FFT application from FFTW [7] package. All the
three applications have significant computation and com-
munication complexities.

The experiments in this Section were conducted both on
the 8-processor Intel Pentium IV system described in Sec-
tion 2 and on a 32-processor IBM P720 system arranged in
8 nodes. Each node of the 32-processor system is a 4-way
IBM Power 5 SMP with hard disk capacity of 146 GB and
running Suse Linux 9.0 sp 1 operating system. Each proces-
sor in a node has 1.65 GHz CPU speed and 1 GB RAM. All
the 8 nodes are connected to each other by Gigabit Ethernet
links through Gigabit Nortel switch.

Large load dynamics was ensured on both the systems by
continuously running synthetic CPU and network loading
programs on the processors in the background. For load-
ing the CPUs of a system at a given point of time, a set of
processors was randomly chosen out of the available pro-
cessors in the system and synthetic loading programs were
run on the processors in the set. The amount of loading on
each processor was randomly varied such that the available
CPU value of the processor is varied between 6.5%-72% of
the total CPU. Small available CPU percentages imply large
loading of the processor. The duration of the load is also
randomly varied between 3-8 minutes. This process of ran-
dom selection of processors, introducing random amounts
of loads on the processors, and maintaining the loads for
random durations of time, is repeated continuously on the
system. For network loading, we used a loading program
to introduce synthetic network loads on the links of the sys-
tem and to reduce the available bandwidths of the links. The
amount and duration of the load can be specified to the load-
ing program. The loading program takes as input a source
and destination host. It then continuously sends packets of
fixed sizes from the source to the destination thereby reduc-
ing the end-to-end bandwidth from the source to the des-
tination host. At a given point of time, a random number
(between 1-8) of source-destination pairs is chosen out of
all possible source-destination pairs in the system. Random
amounts of network loads are introduced on the links be-
tween the source-destination pairs by running the synthetic
network program so as to vary the available bandwidths
of the links between the hosts from 2% to 80% of the to-
tal bandwidth capacities of the links. The network loads
are maintained for random durations between 3-8 minutes.
Similar to CPU loading, the network loading process is re-
peated continuously.

During the course of an application execution, available
CPUs of the nodes and available bandwidths of the inter-
node links are collected every 2 minutes. Due to the restric-
tions of NWS tool on the 4-way SMP system, we were able
to collect the available CPU values only on a per-node basis
and not on a per-processor basis in the 32-processor system.
This introduces some measurement inaccuracies and hence

3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
0

50

100

150

200

250

300

350

Matrix Size

E
xe

cu
tio

n
T

im
e

in
 M

in
.

Actual
Prediction: Our Model
Prediction: Prophesy’s Model
Prediction: Type 1 Multi−variate Model
Prediction: Type 2 Multi−variate Model

Figure 2. Predictions for Eigen Value Problem
on 8 Intel Processors

leads to modeling errors as will be shown in the subsequent
subsections. The following subsections report the results
for the three applications.

4.1 ScaLAPACK Eigen Value

As mentioned in the previous section, cubic computa-
tion complexity and quadratic communication complexity
in terms of problem size were used in the rational poly-
nomial based models for ScaLAPACK parallel eigen value
problem. On the Intel system, problem sizes from 3000 to
7000 were used for training the model and problem sizes
from 7500 to 12000 were used for predictions. On the IBM
system, problem sizes from 5000 to 12000 were used for
training and problem sizes from 12500 to 20000 were used
for predictions. Figures 2 and 3 show the predictions by the
model on 8 Intel Pentium IV processors and 32 IBM Power
5 processors respectively. The average percentage predic-
tion errors were 11.86% on the Intel system and 15% on the
IBM system.

Figure 2 also shows 3 other results corresponding to
3 different models. Prophesy [13, 14] and many other
previous curve-fitting approaches follow a simple one-
dimensional polynomial model of degree n for curve fitting
when the complexities of the application are polynomials
of degree n. For the ScaLAPACK eigen value problem, the
model that will be used by Prophesy is ax3 + bx2 + cx + d.
This model, as Prophesy recognizes, does not separate sys-
tem and application parameters and encapsulates all kinds
of system dynamics in the coefficients. As can be seen
in the result, even though the average percentage predic-
tion error is 16.42%, the execution times predicted by the
model do not match with the actual results as closely as
our rational polynomial-based model. The other two results
correspond to two simple generic multi-variate models in-

5000 7500 10000 12500 15000 17500 20000
0

50

100

150

200

250

300

350

Matrix Size

E
xe

cu
tio

n
T

im
e

in
 M

in
ut

es

Actual
Prediction

Figure 3. Predictions for Eigen Value Problem
on 32 IBM Processors

volving 3 variables of problem size, min avg avail cpu and
min avg avail band. For these two models, we used the
following generic 3-dimensional equation for the models.

an3 + bn2 + cn + d

g(min avg avail cpu,min avg avail band)
(6)

where g is a function of 2 variables. For simplicity, we used
the following two functions, involving variables of degree
1, found in popular curve-fitting packages [5]:

g = 1+(e×min avg avail cpu)+(f×min avg avail band)
(7)

g = 1 + e × min avg avail cpu × min avg avail band
(8)

e and f are the coefficients of the variables used in the
calculation of g. The substitution of functions 7 and 8 in
Equation 6 result in 2 models referred to as type 1 multi-
variate and type 2 multi-variate. The presence of 1 in the
functions help avoid homogeneity in Equation 6. As seen in
Figure 2, the execution times predicted by the generic multi-
dimensional models don’t match with the actual results as
closely as our model. The average percentage prediction er-
rors of Type 1 Multi-variate and Type 2 Multi-variate mod-
els are 20.15% and 13.84% respectively. By careful seggre-
gation of initiation, computation and complexities and as-
sociating min avg avail cpu and min avg avail band sys-
tem related terms with computation and communication
complexities, respectively, our model is able to give bet-
ter predictions than the multi-dimensional models where the
system related terms are encapsulated in generic functions
without specific associations. In future, we plan to compare
our model with more multi-variate models.

Comparing the predictions on the Intel and the IBM sys-
tems, we find that the model gave better predictions on
the Intel system than on the IBM system. This is be-
cause the periodic available CPU values used for calculating

Problem Size B Problem Size C
0

200

400

600

800

1000

1200

1400

1600

1800

2000

E
xe

cu
tio

n
T

im
e

in
 S

ec
on

ds

Actual
Prediction

Figure 4. Predictions for Conjugate Gradient
Problem on 8 Intel Processors

min avg avail cpu were collected on a per-processor basis
on the Intel system whereas they were collected on a per-
node basis on the 32-processor IBM system. Thus, the
available CPU of a node in the IBM system represents an
approximation for 4 processors and hence lead to inaccu-
racies in the min avg avail cpu values. Since the model is
parametrized by the min avg avail cpu, the model results in
more prediction errors on the IBM system than on the Intel
system.

4.2 NPB CG

For the NPB’s parallel CG application, the complexities
that were used for the model are linear in terms of prob-
lem size for both communication and computation. The CG
application has different classes corresponding to different
problem sizes. We used classes S, W, A for training the
model and used classes B and C for validating the predic-
tions of execution times. The bar chart in Figure 4 shows
predicted and actual execution times for classes B and C
for 8 Intel processors. Similar to the parallel eigen value
problem, we observe good predictions for the CG applica-
tion with the rational polynomial based model. The average
percentage prediction error was 7%.

The bar chart shows that as the problem size was in-
creased, the model gave large prediction error. This is be-
cause the problem sizes used in training, namely classes S,
W and A, were able to complete under less than 2 min-
utes even in the presence of external loads. Hence, only
one set of available CPU and available bandwidth values
were collected for each processor at the beginning of appli-
cation execution. In this case, the avg min avail cpu and
avg min avail band values degenerate to min avail cpu
and min avail band, respectively, collected at the beginning
of application execution. Thus the model trained with these
measurement values gave large prediction inaccuracies for
large problem sizes where the loads on the system vary dras-
tically during the application execution.

4 4.5 5 5.5 6 6.5 7

x 10
8

0

10

20

30

40

50

60

70

80

90

Problem Size

E
xe

cu
tio

n
T

im
e

in
 M

in
ut

es

Actual
Prediction

Figure 5. Predictions for FFT Problem on 32
IBM Processors

4.3 FFTW’s Parallel FFT

Computation complexity of O(NlogN) and communica-
tion complexity of O(N) were used for the model for par-
allel FFT application. On the IBM system, problem sizes
from 400 million to 550 million were used for training the
model and problem sizes from 575 million to 700 million
were used for predictions. Figure 5 shows predicted and
actual execution times for 32 processors in the IBM system.

The average percentage prediction error for FFT appli-
cation was 11%. Although the prediction error is low, we
find that the predictions differ from actual values by large
amounts for 650 million and 675 million problem sizes.
This is due to the errors in forecasting of min avg avail cpu
and min avg avail band values by NWS. Although the
forecasting algorithms used in NWS give good predic-
tions, accurate forecasting is difficult to achieve for dras-
tic changes in measured values as is evident for 650 mil-
lion and 675 million problem sizes shown in Figure 5.
Also, during such drastic load changes, our method of av-
eraging used in the calculation of min avg avail cpu and
min avg avail band values does not adequately capture the
drastic load dynamics.

5 Related Work

Some modeling strategies including PACE [8] and
POEM [1] depend on the availability of the source codes
for applications for dynamic instrumentation and task graph
construction and analysis. Our modeling strategy works
with the executable binaries for the applications. Most of
the curve-fitting models [13] assume uniform loading con-
ditions when experiments for modeling are conducted and
when predicting execution times. Prophesy’s [13,14] curve-
fitting model utilizes both experimental results and the com-
plexities of the applications to predict execution times of ap-
plications for larger problem sizes. The curve-fitting models
based on linear and non-linear regression techniques have
the disadvantages mentioned earlier. Prophesy also uses

parametrized analytical models to address the Parametrized
analytical models have several drawbacks when compared
to our approach. The biggest drawback is that it assumes
that the model developer has detailed knowledge about the
components of the application while our model only needs
computation and communication complexities. Secondly,
benchmark experiments have to be conducted for various
application specific subcomponents including broadcasts,
floating-point additions, multiplications etc. The number of
such benchmarks increase as more applications are added
since different applications have different subcomponents.
Our model uses only generic benchmarks relating to CPU
loads, and latencies and bandwidths of network links for all
applications. These benchmarks are integral to many paral-
lel, distributed and Grid systems.

The only efforts regarding predicting execution times on
non-dedicated systems that we are aware of are the efforts
by Dinda [6] and Schopf et. al. [9–11]. The work by
Dinda analyzes the impact of system loads on predicted ex-
ecution times. Their experimental results, where they an-
alyze the confidence intervals of their predictions, are re-
ported only for sequential application traces. The work that
is most closely related to our work is the one by Schopf
and Berman [9–11]. Their structural prediction modeling
approach builds a model for an application in terms of the
models for the components of the applications. The motiva-
tion and the scope of their work is similar to ours in that they
try to predict execution times in dynamic non-dedicated en-
vironments where the load can vary at different times. They
utilize arithmetic operations based on stochastic values to
obtain stochastic prediction execution times. Unlike our
work, their work requires profiling tools for determining the
communication and computation requirements of the appli-
cation. Their component models are also based on detailed
parametrized analytical models requiring user intervention
for conveying the complexities of the application in terms
of system and application characteristics and hence have
the same drawbacks as Prophesy’s parametrized analytical
models. The biggest advantage of our model is that it gives
predicted execution times in non-dedicated environments as
point values rather than stochastic values. For large load
dynamics, stochastic techniques give large ranges of pre-
dicted execution times and hence the usefulness of such
large ranges are unclear.

6 Conclusions

Modeling parallel applications using curve fitting mod-
els based on experiments to predict execution times has
been found to be an attractive approach. In this paper, we
evaluated a rational polynomial based strategy for model-
ing. We find that the models based on rational polynomi-
als satisfy the desirable properties of modeling, namely, ac-

curacy, simplicity and less time consuming than the other
models. We evaluated the rational polynomial based mod-
els based on experimental results for 3 applications on small
and large parallel systems with both small and large load
dynamics. We used the approximate complexities of the
applications and novel forecasting approach to predict the
system load dynamics for parameterizing the model for the
applications. Overall, the rational polynomial based models
gave less than 20% average percentage prediction errors in
most cases.

7 Future Work

Techniques will be developed to predict execution times
for different types of load dynamics in the environment and
for varying number of processors. In our current approach,
we expect that approximate complexities of the application
are provided to our models by the user. We plan to develop
systematic methods to determine the approximate complex-
ities of any application automatically. Specifically, we plan
to include a preprocessing step to our modeling where light-
weight curve-fitting of the execution times collected during
the training phase will be employed. The execution times
will be curve-fitted with a list of popular polynomial, loga-
rithmic and exponential functions. The set of functions that
closely fit the execution times data will then be used for
approximate complexities in our model. The approximate
curve-fitting will be first employed on data collected for
single processor executions to determine computation com-
plexities. Having fixed the computational complexities, the
model data collected on sample multi-processor executions
will be curve-fitted with the popular functions to determine
approximate communication complexities.

We plan to augment our techniques for predicting execu-
tion times for complex multi-phase and multi-component
applications where the computation and communication
complexities can drastically change between different
phases of application execution. Techniques will be devel-
oped to determine the number and nature of different phases
using change in execution patterns. We also plan to extend
our model to include I/O related parameters for predicting
the behavior of I/O intensive scientific applications dealing
with large datasets.

References

[1] V. Adve and M. Vernon. Parallel Program Performance
Prediction using Deterministic Task Graph Analysis. ACM
Transactions on Computer Systems, 22(1):94–136, 2004.

[2] R. Badia, J. Labarta, J. Gimenez, and F. Escale. DIMEMAS:
Predicting MPI Applications Behavior in Grid Environ-
ments. In Workshop on Grid Applications and Programming
Tools (GGF8), Seattle York, U.S.A., June 2003.

[3] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart,
A. Woo, and M. Yarrow. The NAS Parallel Benchmarks
2.0. Technical Report NAS-95-020, Nasa Ames Research
Center, December 1995.

[4] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Dem-
mel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLA-
PACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1997.

[5] DataFit. http://www.curvefitting.com/
datafit.htm.

[6] P. Dinda. Online Prediction of the Running Time of
Tasks. In Proceedings of the 10th IEEE International
Symposium on High Performance Distributed Computing
(HPDC-10’01), pages 383–394, San Francisco, U.S.A., Au-
gust 2001.

[7] M. Frigo and S. Johnson. The Design and Implementa-
tion of FFTW3. Proceedings of the IEEE, 93(2):216–231,
2005. Special issue on Program Generation, Optimization,
and Platform Adaptation.

[8] G. Nudd, D. Kerbysin, E. Papaefstathiou, S. Perry, J. Harper,
and D. Wilcox. PACE - A Toolset for the Performance
Prediction of Parallel and Distributed Systems. The Inter-
national Journal of High Performance Computing Applica-
tions, 14(3):228–251, 2000.

[9] J. Schopf. Structural Prediction Models for High-
Performance Distributed Applications. In Proceedings of the
Cluster Computing Conference (CCC ’97), Atlanta, U.S.A.,
March 1997.

[10] J. Schopf and F. Berman. Performance Prediction in Produc-
tion Environments. In Proceedings of the 12th. International
Parallel Processing Symposium, page 647, Orlando, U.S.A.,
March 1998.

[11] J. Schopf and F. Berman. Using Stochastic Information
to Predict Application Behavior on Contended Resources.
International Journal on Foundation in Computer Science,
12(3):341–364, June 2001.

[12] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Ba-
dia, and A. Purkayastha. A Framework for Performance
Modeling and Prediction. In Proceedings of the 2002
ACM/IEEE conference on Supercomputing, pages 1–17,
Baltimore, U.S.A., November 2002.

[13] V. Taylor, X. Wu, J. Geisler, X. Li, Z. Lan, M. Hereld, I. Jud-
son, and R. Stevens. Prophesy: Automating the Model-
ing Process. In Proceedings of the Third Annual Interna-
tional Workshop on Active Middleware Services, pages 3–
11, Tokyo, Japan, August 2001.

[14] V. Taylor, X. Wu, and R. Stevens. Prophesy: An Infrastruc-
ture for Performance Analysis and Modeling of Parallel and
Grid Applications. ACM SIGMETRICS Performance Eval-
uation Review, 30(4):13–18, March 2003.

[15] R. Wolski. Dynamically Forecasting Network Performance
using the Network Weather Service. Journal of Cluster
Computing, 1(1):119–132, 1998.

[16] R. Wolski, N. Spring, and J. Hayes. The Network Weather
Service: A Distributed Resource Performance Forecasting
Service for Metacomputing. Journal of Future Generation
Computing Systems, 15(5-6):757–768, October 1999.

