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Abstract

We present the first parallel algorithm for building a
Hausdorff Voronoi diagram (HVD). Our algorithm is tar-
geted towards cluster computing architectures and com-
putes the Hausdorff Voronoi diagram for non-crossing ob-
jects in time O(n log4 n

p ) for input size n and p processors.
In addition, our parallel algorithm also implies a new

sequential HVD algorithm that constructs HVDs for non-
crossing objects in time O(n log4 n). This improves on pre-
vious sequential results and solves an open problem posed
by Papadopoulou and Lee [18].

1 Introduction

In this paper, we present the first parallel algorithm for
building a Hausdorff Voronoi diagram (HVD). Our parallel
algorithm also implies a new sequential HVD algorithm that
improves on previous sequential results and solves an open
problem stated in [18].

1.1 Background and Motivation

One of the most widely studied structures in Computa-
tional Geometry is the Voronoi diagram (see e.g. [1]). In
its canonical form, a Voronoi diagram is constructed for a
planar set of points (sites). The plane is partitioned into
regions, one for each site, where each region is the set of
points closest to the associated site. In this paper we study
the Hausdorff Voronoi diagram (HVD), a generalization of
standard Voronoi diagrams. Each site is replaced by an ar-
bitrary object (point set in the plane) and the distance of a
point to an object (point set) is defined as the distance to the
farthest point in the object. See Section 2 for a formal HVD
definition. Like the standard Voronoi diagram, a HVD di-
vides the plane into regions. For any point in the plane, the
covering circle centered at that point is the smallest circle

that completely encloses at least one object. Observe that
for any point within a Hausdorff Voronoi region the cover-
ing circle encloses the same object. Hence, a HVD may be
considered as a Voronoi diagram of covering circles.

Due to this covering circle property, the HVD has re-
cently gained considerable attention within the context of
VLSI manufacturing. The use of HVDs for VLSI yield pre-
diction has been pioneered at IBM and is discussed e.g. in
[9, 10, 14, 15, 16, 17, 18, 12, 13]. Part of the design pro-
cess for new VLSI chips is to determine how resilient the
chip’s circuit geometry will be to defects caused during the
manufacturing process. The HVD allows for the efficient
computation of the critical area of a chip which is an im-
portant measure for a VLSI chip’s yield prediction. A chip
defect is typically created by impurities or particles that set-
tle on the chip during the manufacturing process. The ques-
tion is whether or not such an impurity results in a faulty
chip. One type of fault considered is when a component on
the chip, e.g. a contact on the via layer, is disconnected.
For each contact, redundant contact points are placed on
the via layer to improve reliability. To destroy the connec-
tion created by a via block, all its (redundant) contact points
must be destroyed. Hence, a defect (circle) that covers an
entire via block causes a faulty chip. The minimum size
circle that completely covers a via block is efficiently com-
puted through a Hausdorff Voronoi diagram. It represents
the smallest defect that would destroy the chip.

1.2 Previous Work

Voronoi diagrams have been extensively studied and
generalized in a variety of ways (see e.g. [1] for an exten-
sive survey). For the Hausdorff Voronoi diagram, sequen-
tial algorithms have been presented in [14, 13, 18, 17, 6].
A sequential sweepline HVD algorithm is presented in [14]
and a sequential divide-and-conquer method is presented in
[18]. A sequential method based on coordinate transforma-
tion and lower envelope calculation is presented in [6]. The
worst case time complexities are listed in Table ??. The se-



quential sweepline HVD algorithm [14] appears to perform
best in practice.

The parallel construction of standard Voronoi diagrams
has been studied e.g. in [5, 8, 19]. However, there exists
to our knowledge no parallel algorithm for the Hausdorff
Voronoi diagram.

The VLSI application of HVDs discussed above requires
the computation of very large HVDs. In [18] it was posed
as an open problem to speed up HVD construction in the
general case and in particular for the case of non-crossing
objects. Such objects may overlap but not cross com-
pletely, and the geometric objects in VLSI design (e.g. via
blocks) are typically non-crossing [18]. The algorithms in
[6, 14, 18] are not faster for the case of non-crossing ob-
jects. This paper contributes towards solving the problem
posed in [18] by providing a much improved sequential al-
gorithm for non-crossing objects.

1.3 New Results

The primary contribution of this paper is to present
the first parallel algorithm for Hausdorff Voronoi diagram
construction. Our algorithm is coarse grained parallel
[4] and targeted towards cluster computing architectures.
Our coarse grained parallel algorithm computes the Haus-
dorff Voronoi diagram for non-crossing objects in time
O(n log4 n

p ) for input of size n on a coarse grained multi-
processor (CGM) with p processors. We also present a first
experimental evaluation of our parallel algorithm.

Computing Hausdorff Voronoi diagrams in parallel is
a hard problem, and considerably harder than the parallel
construction of standard Voronoi diagrams (e.g. [5, 8, 19]).
Such methods are typically based on a parallel divide-and-
conquer strategy. For canonical Voronoi diagrams, the
merge curve used for “stitching together” two Voronoi di-
agrams is one single monotone chain. Therefore, the task
of merging two canonical diagrams becomes relatively easy.
For Hausdorff Voronoi diagrams this is not case. The merge
curve may be comprised of multiple, disjoint components
that are not necessarily monotone. In fact, some of these
merge components may even be cyclic. An example is
shown in Figure 1. The main contribution of this paper is an
efficient coarse grained parallel method that is able to deal
with multiple merge components that are non-monotone
and possibly cyclic.

In addition, the direct sequential adaptation of our par-
allel algorithm results in a sequential algorithm that con-
structs HVDs for non-crossing objects in time O(n log4 n).
This new sequential algorithm contributes towards an open
problem posed in [18].

2 Preliminaries

A Hausdorff Voronoi Diagram (HVD) is constructed for a
set system with a universe I of n input points in the plane.
A subset of the power set of I , S = {P1, P2, . . . , Pm}, is
given as input, such that

⋃
i Pi = I and Pi

⋂
Pj = ∅, for

all i, j and i �= j. Each set Pi ∈ S is said to be an ob-
ject. For HVD computation, the Hausdorff distance func-
tion from a point z ∈ �2 to an object Pi ∈ S is defined to
be dh(Pi, {z}) = df (Pi, z), where df denotes the farthest
(maximum) Euclidean distance between z and points in Pi

[17]. Observe that since we are dealing with the farthest
distance, vertices in the interior of the convex hull of any
object in S do not participate in the computation of HVDs.
Hence, we can assume that each object Pi ∈ S consists of
points that are on its convex hull. It is known that the size
of the HVD is linear in the number of points defining the
objects.

Definition 1 (Crossing) Two objects, Pi, Pj ∈ S are said
to be crossing iff there exist two points pi, pj on Pi’s convex
hull and qi, qj on Pj’s convex hull such that (1) qiqj inter-
sects pipj and (2) all of pi, pj , qi, qj are on the convex hull
of Pi

⋃
Pj .

In this paper we only deal with objects that are non-crossing
(but may overlap) and hence for the rest of the paper we as-
sume that no two input objects are crossing. Next we define
the vertices, edges and faces of HVDs.

Definition 2 A Hausdorff Voronoi edge, e, is the locus of
points with exactly two closest (under Hausdorff metric)
points in the input objects in S. A Hausdorff Voronoi vertex,
v, is a point with at least three closest (under Hausdorff met-
ric) points in the objects in S. A Hausdorff Voronoi region
for an object Pi ∈ S is HReg(Pi) = {z ∈ �2|dh(z, Pi) <
dh(z, Pj), ∀Pj �= Pi}. We can further subdivide a Haus-
dorff region for an object Pi with respect to points on its
convex hull as follows. A Hausdorff Voronoi region for a
point p ∈ Pi is hreg(p) = {z ∈ �2|d(z, p) = dh(z, Pi),
and dh(z, Pi) < dh(z, Pj), ∀Pj �= Pi}. Given a set S of
objects, the Hausdorff Voronoi Diagram, HV D(S), is the
union of Hausdorff Voronoi edges and vertices. It forms a
planar subdivision of �2.

3 CGM Algorithm

In this section we present a novel parallel algorithm for
computing HVD for non-crossing input objects. The input
consists of the set I of n points in the plane and the set
S consisting of objects. Our algorithm is designed for a
Coarse-Grained Multicomputer (CGM)[4] consisting of p-
processors. The processors are connected by an arbitrary in-
terconnection network. Each processor has sufficient mem-
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ory to hold O(n/p) input points from the set I . Further-
more, we assume that the number of points within an ob-
ject in S is at most O(n/p) and this ensures that an object
resides completely on a single processor. This is a natu-
ral assumption and is indeed valid for our VLSI application
discussed above as each object (via block) typically consists
of less than 20 points. The CGM has the ability to realize
h-relations, where in each h-relation, at most h amount of
data is routed to and from each processor. A CGM algo-
rithm is comprised of rounds, where each round consists of
a local computation step followed by a communication step
realizing an h-relation.

3.1 Outline of the Algorithm

Our algorithm follows the divide-and-conquer paradigm.
The set of objects are divided into an ordered sequence of
p vertical slabs. We compute HVDs for objects in each
slab and then merge them to obtain the HVD of S. The
algorithm is sketched in the following.

Algorithm: HVD(S)
Input: A set S consisting of objects. Each object is a subset
of points taken from a set I consisting of n points.
Output: Hausdorff Voronoi diagram of S.

1. Order the objects in S according to their leftmost
points. Divide these objects, using the order and the
number of points within an object, in p vertical slabs
resulting in sets Si, for i = 1, · · · , p. Each set Si con-
sists of O(n

p ) input points and is assigned to the ith
processor.

2. The ith processor computes the Hausdorff Voronoi dia-
gram of objects within Si using a sequential algorithm.

3. Perform �log p� merge phases, where the jth phase
combines p

2j subdiagrams into p
2j−1 diagrams, such

that pairs of adjacent subdiagrams are merged.

The overall top-level divide-and-conquer structure of this
algorithm is similar to the existing CGM algorithm for com-
puting canonical Voronoi diagrams of points [5]. But it
is a completely nontrivial task to extend the algorithm in
[5] to compute HVDs and the main reason is outlined in
the following. Consider the divide-and-conquer algorithm
for canonical Voronoi diagrams and assume that the set of
points are partitioned into two groups according to a verti-
cal line; all points to the left of vertical line are in the group
L and the rest of them are in the group R. Furthermore, as-
sume that recursively we have computed Voronoi diagrams
of the points in L and R. The merge step needs to stitch the
two diagrams. This is done by first finding the merge curve,
i.e., the set of all points in the plane that are equidistant from

a closest point in L and a closest point in R. It turns out
that the merge curve is y-monotone and a simple connected
chain. Stitching is achieved by throwing away the portion
of the Voronoi diagram of L (respectively, R) to the right
(respectively, left) of the merge curve. Unfortunately, in the
case of HVDs the merge curve need not be a simple chain
or y-monotone. In general it is comprised of multiple, dis-
joint components that are not necessarily y-monotone and
may in fact contain cycles (see Figure 1).

Figure 1. Multiple Components In The Merge
Curve For A Hausdorff Voronoi Diagram.

3.2 Merging HVDs

In this section we outline our solution to the merging prob-
lem of two HVDs. Assume that S is split into two sub-
sets Sl and Sr, where all objects in Sl have their leftmost
points to the left of all the points in objects in Sr. As-
sume that we have already computed HVDs of Sl and Sr

and our objective is to merge them to obtain the HVD of
S. The task of the merge is to determine the new edges and
vertices added to the merged diagram, and then determine
which edges are removed partially or completely from the
merged diagram. The new merge edges and merge vertices
form both unbounded acyclic merge components and cyclic
merge components. Together, all these edge-disjoint com-
ponents form the merge curve. The merge curve partitions
the plane into two portions, that which retains edges from
the HVD of Sl and that which retains edges from the HVD
of Sr. The main idea is to use point location to locate the
endpoints of Voronoi edges of one subdiagram in the other
subdiagram and determine whether the subdiagram’s edge
is a part of a merge chain or not. The main steps are as
follows:

1. Use point location to find the subset of Voronoi Edges
crossing the merge chain. Let these subsets be, El

m ⊂
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El of edges from HVD of Sl and Er
m ⊂ Er of edges

from HVD of Sr.

2. Find vertices of the merge chain on edges in El
m and

Er
m.

3. Remove edges (or portions of edges) in Sl and Sr

which are not present in the merged Voronoi diagram.

4. Create a set of edge endpoints, two for each merge
chain vertex. Globally sort endpoints. Connect adja-
cent endpoints to form edges and regions of the HVD.

For point location each edge is treated independently. By
performing point location of edges’ endpoints in the oppo-
site subdiagram, we can determine, for each edge endpoint,
which subdiagram is closer. Determining the closer sub-
diagram is equivalent to determining on which side of the
merge curve an endpoint lies. Thus, this enables us to de-
termine, independently for each edge, those edges which
cross the merge curve (edges to be cropped), those which
lie on the far side of the merge chain (edges to be removed),
and those which lie on the close side (edges to be kept).

Once we have identified the set of edges involved in the
merge chain, we must determine where the merge vertices
occur on these edges. Again, this can be performed inde-
pendently for each edge. Determining the merge vertex is
equivalent to determining the input point from the oppo-
site subdiagram inducing the merge vertex. However, we
devise a variant of red blue line intersection algorithm to
determine the opposite subdiagram’s edges which cross an
edge. Conceptually, a parallel binary search through these
edge intersections can then be used to determine the region
of an input point inducing the merge vertex (See Figure 2).

After we have determined the merge vertices, it is suf-
ficient to determine also the merge edges (on the merge
curve) connecting these vertices. A merge vertex, v, is
associated with two input points from the same side, say
l1, l2 ∈ Sl, and the third input point is associated with the
oppose site, say r ∈ Sr. We create two copies of v, one
associate with the key (l1, r), and the other with the key
(l2, r). By globally sorting the vertices using these keys,
merge vertices sharing a merge edge will be adjacent, and
a simple walk will complete the construction of the merge
edges to form the merge curve.

3.3 Algorithm for finding merge vertices

Critical to the HVD algorithm is finding merge vertices.
Before searching for merge vertices, we have already used
point location to find a subset of edges from the left and
right subdiagrams on which these vertices may occur. We
also know whether the edges’ endpoints are closer to Sl or
Sr. In other words, we know the side of the merge curve on
which an edge’s endpoint lie. By searching an edge el from

the HVD of Sl through the regions in the HVD of Sr, we
can find the region of the HVD of Sr in which the merge
vertex occurs. Since the intersection of the HVD of Sr’s
edges with el provides the boundaries of these regions, we
can do binary search among these intersections to find the
merge vertices.

In other words the above problem transforms to the fol-
lowing problem. Input to the problem is a set of non-
intersecting red segments (edges of the HVD of objects in
Sl) and a set of non-intersecting blue segments (edges of
HVD of objects in Sr). Let the set of red segments be
our queries. That is, for any red segment, er, we wish to
search for some blue segment eb which intersects er directly
above (or to the left of) some point. We assume that there is
some aboveness relation on a red query segment’s intersec-
tion with a blue segments, which allow us to perform binary
search. We call this problem the batched red-blue segment
search problem. One way to solve this search problem is
to compute all intersections between red and blue segments
and then perform the binary search. Obviously we want
to avoid this as the total number of intersections could be
quadratic in the number of segments.

Chazelle et al [3] describe a sequential algorithm for
solving the red-blue intersection counting and reporting
problem that uses a hereditary segment tree. We will review
this data structure and present modifications to show how it
can used for solving our search problem. First we present a
sequential algorithm and then outline a CGM algorithm.

3.3.1 Sequential algorithm for the search problem

The hereditary segment tree is defined for a set of red and
blue line segments [3]. The x-coordinates of the end-points
of red and blue segments are ordered, forming a partition-
ing of x-intervals. Each interval is associated, in order, with
the leaves of a balanced binary tree. Inner nodes are as-
signed the interval which is the union of the interval associ-
ated to its two children. Along with the interval, each node
stores four catalogs, two red and two blue. A red segment
is in a node ni’s long red catalog iff the segment completely
spans ni’s x-interval, but not the x-interval of ni’s parent.
The same segment is stored in the short red catalog of every
node nj that is a proper ancestor of ni. Long and short blue
catalogs are populated similarly. We compare a node’s two
long catalogs, as well as short catalog with a long catalog.
Note that segments within a long catalog are ordered verti-
cally and whenever we make a comparison, we ensure that
at least one of the catalogs is long. This enables us to do
the binary search without actually computing all the inter-
sections and the actual mechanics is detailed next.

Let the set of red segments be our queries. For a red seg-
ment, er, we wish to search for some blue segment eb which
intersects er directly above some point. We must search er
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against the long blue catalog at nodes where er is short. We
must also search er against the long and short blue catalogs
at nodes where er is long. Unfortunately, we cannot just
order a node’s short blue catalog, making it difficult to effi-
ciently search er against a short blue catalog. However, we
use a secondary structure to extend the hereditary segment
tree. The purpose of the secondary structure is to arrange a
node’s catalog lists into pairs of sublists such that all red and
blue segments in a pair intersect. Specifically, we create this
secondary structure for long red and short blue segments at
each node.

Taking the (vertically ordered) long red segments in the
node’s vertical slab, we construct another balanced tree
where the long red segments are assigned, in order, to the
secondary tree’s leaves. Each inner node receives the union
of its subtree’s long red segments. These intervals of red
segments are analogous to the x-intervals of the main seg-
ment tree. This secondary tree’s catalogs are populated with
short blue segments. For each blue segment, we locate its
endpoints in the long red sequence, with which we may de-
termine the interval of nodes that the short blue segment
intersects. A short blue segment is placed in a secondary
node exactly when the blue segment intersects all of long
red segments associated to that node, but not all of the red
segments at that nodes parent. Note that each blue segment
is stored in at most O(log k) of the k nodes in the secondary
tree. Finally, once all short blue segments are stored, we or-
der the short blue catalog at each node by the order in which
they cross the long red segments.

The query for a red segment er proceeds as follows. We
traverse the segment tree, looking at the O(log n) nodes
where er is stored in red catalogs. Regardless of whether er

is short or long, we locate its endpoints in the long blue list.
When er is long, we also traverse the secondary structure,
searching the secondary nodes’ blue catalogs along the path
where er is stored. For every ordered catalog of blue seg-
ments that we find, we perform the required binary search.
The running time of the search algorithm is dominated by
the time spent in searching the secondary trees. The sec-
ondary trees are of total size O(n log2 n), so both the sort-
ing and querying of the secondary trees’ short red catalogs
requires a total of O(n log3 n) time.

Lemma 1 The batched red-blue segment search problem
for a set of n segments can be solved in O(n log3 n) time
using O(n log2 n) space.

3.3.2 CGM Algorithm for the search problem

Our data structure is composed of a main segment tree and
at each node of this tree we have associated a secondary
segment tree. We distribute the trees in this structure across
processors. The main segment tree is divided into a top por-
tion, T0, comprising of the top O(log p) levels of the main

tree. What remains of the main segment tree after removing
T0 is its p subtrees, T1, T2, . . . , Ti, . . . , Tp. Each Ti portion
is small enough to reside at a processor and is treated as a
sequential subproblem. The skeleton of the tree T0 is stored
at each processor, as it of size O(p), and it facilitates the
queries. However, the catalogs associated with T0’s nodes
must be distributed across processors. We sort the entries in
the catalogs globally across processors (first by the node of
T0 and then by the rank in the catalog). As a result, the cat-
alogs which are shared, each processor stores only contigu-
ous portions of catalogs. Boundaries of these O(p) catalog
portions are copied to all processors.

To complete a description of our distributed structure, it
remains to divide the T0 nodes’ secondary trees. Let the jth
node, nj , in T0 have a secondary tree τ j . We repeat the
previous technique and split the secondary tree into a top
piece, τ j

0 of depth at most log p. The remaining pieces of
this secondary tree, τ j

1 , . . . , τ j
k , . . . τ j

p are small enough to

be treated sequentially. Again, the catalogs for the upper τ j
0

portion are distributed among processors.
Next we describe how we query this distributed data

structure. Each query follows a path down the main segment
tree. For each node nj in this path, the query segment also
follows a path through the node’s associated secondary seg-
ment tree. Let us focus our discussion on the top (shared)
τ j
0 portions of the secondary trees. These trees’ catalogs

can be concatenated into a global sequence, sorted by key
(nj , sk, eb), where nj is a segment tree node, sk is a sec-
ondary node in nj’s secondary tree, and eb is a short blue
catalog entry at sk. Then we determine for each long red
segment er, the O(log2 p) secondary catalogs (sk, in a seg-
ment tree at node nj) that need to be searched. A copy of
er with the key (nj , sk, er) is created, and then the query
for the tree τ j

0 is completed by performing parallel binary
search.

Now, let us briefly discuss the lower τ j
k portions of the

secondary trees. Each processor stores a set of these lower
secondary subtree portions. We can first load balance these
subtrees across processors and the short blue segments des-
tined for each subtree, and then solve each search problem
sequentially. This load balancing is done using similar tech-
niques as in other CGM algorithms using distributed seg-
ment trees [7].

Queries against long blue catalogs in the main segment
tree do not require use of the secondary trees. These queries
in T0 are treated similarly to the queries performed in the
secondary trees. Note, however, that the main segment
tree’s subtrees do not require load balancing, since the
nodes’ intervals are based on red and blue segment end-
points. Hence, O(n

p ) queries are distributed to each Ti sub-
tree.

Now we analyze the complexity of our algorithm. The
most complex portion of T0 is the secondary catalog query-
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ing. The upper τ i
0 portions of the secondary trees reduce

to sequential batch binary search subproblems of total size
O(n log2 p

p ), which require O(n log n log2 p
p ) local computa-

tion time. The lower τ i
k portions of the secondary trees and

the subtrees in Ti reduce to sequential subproblems of to-
tal size O(n log2 n

p ) per processor, which require O(n log3 n
p )

local computation time. Hence,

Lemma 2 The batched red-blue segment search prob-
lem can be solved on a CGM in O(n log2 n

p ) space and

O(n log3 n
p ) local computation time, with O(1) rounds, and

the restriction that n ≥ p3.

3.3.3 Finding merge vertices

We now return to the CGM algorithm for Hausdorff Voronoi
diagrams. To complete this algorithm’s description, what
remains is to describe how to find the merge vertices using
the batched red-blue segment search problem. Recall that
we have already computed HVDs of objects in Sl and Sr

and our problem is to merge them to obtain HVD of objects
in S. First, for simplicity, we restrict our attention to find-
ing merge vertices on edges from the HVD of Sl since the
operation is symmetric for the edge in HVD of Sr. Recall
that we have determined a set, El

m, of edges to search for
such merge vertices. Furthermore, we can assume that the
set El

m is partitioned into two classes, the set El
1 of edges

intersecting the merge chain once, and El
2, the set of edges

possibly intersecting the merge twice (or not at all). Here
are the main steps:

1. Construct the extended hereditary segment tree data
structure for the edges in the HVD of objects in Sr.

2. Query the edges in the sets El
1 and El

2 in the segment
tree to find merge vertices on these edges.

3. For edges in El
2, remove those for which no merge ver-

tices were found. For all other queried edges, remove
the appropriate portion of the edges.

4. Repeat the above steps for the finding merge vertices
on edges in HVD of Sr.

Each merge chain crossing point is a vertex in the merged
diagram. Hence, it has exactly three input points associated
with it. Two of these points are from the same side (they
induce the Voronoi edge, e ∈ El

m, which was crossed), say
pi, pj from objects in Sl. The third input point is from the
other side, say r from Sr. We need to determine r.

To determine r, we only need to find the Voronoi region
of r. Let us suppose that we could determine the intersec-
tions of edges in HVD of Sr with e. If these intersecting
edges are ordered along e, then adjacent edges will define

the boundary of Voronoi regions in the HVD of Sr. We can
compute the Hausdorff distance from each intersection to
objects in Sl and to objects in Sr (we only need the dis-
tance from the intersection to the input points associated
with each edge). The boundary of hreg(r) will have one
edge intersecting e closer to Sr and the other edge inter-
secting it closer to Sl.

pj

pi r

Closer
to Sl

Closer
to Sr

vl

vr

q

e

v

Figure 2. Searching an edge q in El
1 for the

merge vertex v. It is equidistant from r, pi, and
pj . Points on the segment vlv are closer to an
object in Sl, whereas points on segment vvr

are closer to an object in Sr.

For a singly-intersected edge q = (vlvr) ∈ El
1, we have

determined an endpoint closer to Sl, say vl, and an end-
point closer to Sr, say vr, and we are looking for a merge
vertex, say v on q (see Figure 2 for an illustration). We
note that the red blue line intersection search, will search
the intersection of edges between red lines (edges in El

1)
and blue lines (edges in Er) using an aboveness relation.
For a singly-intersected edge, q, and a blue edge e, we de-
fine this relation as follows. Given an intersection point, say
vqe, between q and e, we determine the Hausdorff distance
between vqe and points defining the edges q (i.e., pi) and e.
If the distance to pi is smaller then we perform the search
on the segment vqevr, otherwise we search on the segment
vlvqe. Notice that at the merge vertex v the distance to pi is
same as the distance to r.

For an edge q ∈ El
2 there may or may not be two merge

vertices on q. We know that q’s two endpoints, say v1 and
v2, are both farther from Sl than Sr. Hence, if there ex-
ist two merge vertices, they partition q into three parts, the
middle part is closer to Sl, and the two end parts closest to
Sr. For this case, we make use of a lemma from [14, 18].

Lemma 3 ([14, 18]) Let T (Pi) be the tree formed by the
edges of the farthest point Voronoi diagram of points in an
object Pi ∈ S. Let there be a point a ∈ T (Pi). The point a
splits T (Pi) into two subtrees. If an object Pj ∈ S is closer
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to a than Pi is to a, then all the points in one of the two
subtrees are closer to Pj than to Pi.

We must perform two red blue line intersection searches
on q, one for each potential merge vertex. Let us describe
the search for the merge vertex which is closer to v1, and
let us call this merge vertex as v. The search for the other
merge vertex is analogous. Here, we define a slightly dif-
ferent aboveness relation on the edge q. For the intersection
point vqe between the edges q and e, if vqe is closer to Sl

than Sr then we are in the middle region and need to search
towards v1. Otherwise, we are closer to Sr and we need
to determine whether we are above or below v. By using
Lemma 3 and the knowledge about which object in Sr is
closest to vqe, we can determine whether to search towards
v1 or v2.

3.4 Summary

Theorem 1 On a p-processor CGM, the Hausdorff Voronoi
diagram of non-crossing objects defined by n-points in the
plane can be constructed in O(n log4 n

p ) local computation

time, in O(log p) rounds with O(n log2 n
p ) space per proces-

sor, where n ≥ p3.

4 Improved Sequential Algorithm

The existing divide and conquer (Papadopoulou [18])
and sweepline (Papadopoulou and Lee [14]) algorithms
have worst-case running times of O(n2 log n) for the non-
crossing case and are not optimal. In fact, Papadopoulou
and Lee poses this as an open problem. For our par-
allel algorithm, we have restricted input to non-crossing
shapes, and our parallel algorithm immediately presents an
improved sequential algorithm compared to these recent
sweepline and divide-and-conquer algorithms.

Our sequential algorithm is derived as follows. We re-
peat the same divide and conquer technique as in the exist-
ing Hausdorff Voronoi divide-and conquer algorithm [18],
except we improve the merge step by doing a sequential
version of the CGM algorithm’s merge. For this, a se-
quential O(n log n) batch point location algorithm and the
O(n log3 n) batched red blue line search algorithm from
above is used. By performing O(log n) merge steps, we
obtain the following result.

Theorem 2 A Hausdorff Voronoi diagram for non-crossing
objects defined on n-points in the plane can be constructed
in O(n log4 n) time.

5 Preliminary Experimental Results

In this section we discusses some preliminary experi-
mental results from a “first draft” implementation of our

parallel algorithm in Section 3. We stress that our paral-
lel implementation is still a work in progress and requires
considerably more fine tuning before a speedup consistent
with the theoretical analysis can be measured. We are still
working on an improved version of our code but decided to
include these preliminary results in order to meet the con-
ference deadline.

Our code includes a sequential sweepline algorithm for
HVDs, segment trees for parallel point location, segment
trees for red blue line intersection search, and a distributed
HVD data structure. We make use of two libraries: CGM-
Lib [2] and LEDA [11]. CGMLib builds on MPI to pro-
vide efficient algorithms and memory management methods
in C++ that are particularly well suited for coarse grained
parallel algorithms. All communication between proces-
sors occurs using CGMLib, and we make use of CGM-
Lib’s parallel sorting algorithms. The Library of Efficient
Data Structures and Algorithms (LEDA) implements many
fundamental algorithms, including some computational ge-
ometry methods. Our code relies on LEDA geometric
primitives (orientation, incircle/distance tests) and geomet-
ric datatypes (points, segments, rays, circles, etc.). We use
LEDA’s farthest Voronoi diagram construction algorithm.
We also make use of LEDA’s data structures for graphs, pri-
ority queues and hash tables. The current implementation
of our new methods and data structures in Section 3 is still
rather straightforward and still needs a lot of optimization
work. In particular, our current implementation of the seg-
ment tree with secondary segment trees still incurs a lot of
overhead. We also discovered considerable redundancies in
our current implementation of the data movements required
for load balancing. During the merge phase, the parallel
point location and red blue line intersection modules con-
struct large trees and perform many queries on these trees.
These computations, along with the initial sequential phase
are the main contributors to running time in this preliminary
implementation. They need a better implementation with
more attention to detail. We are working on a new “version
2” of our code.

Figures 3 and 4 show speedups and wall clock run-
ning times, respectively, for our current preliminary im-
plementation. These tests were performed on a Beowulf
cluster in the High Performance Virtual Computing Lab-
oratory (www.HPCVL.org). The cluster consists of dual-
processor Xeon nodes (2.0GHz and 1.5GB RAM per node)
with LINUX Redhat and LAM MPI 7.1.1. For our tests,
we used only one processor per node to avoid artifacts in
our measurements from intra-node communication. For our
input data, we wrote a data generator which creates pseudo
random patterns that mimic via blocks placed on a VLSI
chip. Preliminary relative speedup results are shown in Fig-
ure 3. The speedups themselves are still far too low due
to our non optimized implementation. However, the shape
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Figure 3. Preliminary Implementation: Rela-
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of the speedup curves is encouraging since the curves are
close to linear shape for up to 16 processors. That is, they
do not “drop off” at some point within this range which in-
dicates good scalability. This is consistent with the prelim-
inary wall clock times shown in Figure 4. We observe that
the communication time decreases with increasing number
of processors which indicates good scalability.
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