
A Stochastic Approach to Measuring the Robustness of Resource Allocations in
Distributed Systems

Vladimir Shestak∗, Jay Smith†∗, H. J. Siegel∗‡, and Anthony A. Maciejewski∗
∗Electrical and Computer Engineering Department

‡Computer Science Department
Colorado State University, Fort Collins, CO 80523–1373

Email: {shestak, hj, aam}@engr.colostate.edu.

†IBM
6300 Diagonal Highway Boulder, CO 80301

Email: bigfun@us.ibm.com

Abstract

Often, parallel and distributed computing systems must
operate in an environment replete with uncertainty. Deter-
mining a resource allocation that accounts for this uncer-
tainty in a way that can provide a probabilistic guarantee
that a given level of quality of service (QoS) is achieved
is an important research problem. This paper defines a
stochastic methodology for quantifiably determining a re-
source allocation’s ability to satisfy QoS constraints in the
midst of uncertainty in system parameters. Uncertainty in
system parameters and its impact on system performance
are modeled stochastically. This stochastic model is then
used to derive a quantitative expression for the robustness
of a resource allocation. The paper investigates the util-
ity of the proposed stochastic robustness metric by applying
the metric to resource allocations in a simulated distributed
system. The simulation results are then compared with de-
terministically defined metrics from the literature.

1. Introduction and Problem Statement

Often, parallel and distributed computing systems must
operate in an environment replete with uncertainty while
providing a required level of quality of service (QoS). This
reality has inspired an increasing interest in robust design.
The following are some examples. The Robust Network
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Infrastructures Group at the Computer Science and Artifi-
cial Intelligence Laboratory at MIT takes the position that
“... a key challenge is to ensure that the network can be ro-
bust in the face of failures, time-varying load, and various
errors.” The research at the User-Centered Robust Mobile
Computing Project at Stanford “concerns the hardening of
the network and software infrastructure to make it highly
robust.” The Workshop on Large-Scale Engineering Net-
works: Robustness, Verifiability, and Convergence (2002)
concluded that the “Issues are ... being able to quantify and
design for robustness ...” There are many other projects of
similar nature at other schools and organizations.

To provide insight into the target systems operating un-
der uncertainty that must maintain a certain level of QoS,
consider the following two examples.

Fig. 1 schematically depicts part of a total ship comput-
ing environment in the Adaptive and Reflective Middleware
Systems (ARMS) program supported by DARPA’s Informa-
tion Exploitation Office [4]. This part of the ARMS exam-
ple represents a large class of systems that operate on peri-
odically updated data sets, e.g., surveillance for homeland
security, monitoring vital signs of medical patients. Typ-
ically, in such systems, sensors (e.g., radar, sonar, video
camera) produce data sets with a constant period of Λ time
units. Periodic data updates imply that the total processing
time for any given data set must not exceed Λ, i.e., Λ is
an imposed timing QoS constraint for the system. Suppose
that each input data set must be processed by a collection of
N independent applications that can be executed in paral-
lel on the available set of M heterogeneous compute nodes.
Due to the changing physical world, the periodic data sets
produced by the system sensors typically vary in such pa-
rameters as the number of observed objects present in the



radar scan and signal-to-noise ratio. Variability in the data
sets results in variability in the execution times of process-
ing applications. Due to an inability to precisely predict
application execution times, they can be considered uncer-
tainty parameters in the system.

Figure 1. Major functional units and data flow for
a class of system that operates on periodically up-
dated data sets. The aij ’s denote applications ex-
ecuting on machine j. Processing of each data set
must be completed within Λ time units.

An important task for a mapper (resource management
system) is to distribute processing applications across com-
pute nodes such that a produced resource allocation is ro-
bust, i.e., it can guarantee (or has a high probability) that the
imposed QoS constraint is satisfied despite uncertainties in
application execution times.

Another example of a distributed computing system that
must accommodate uncertainty under tight timing QoS con-
straints is a web search engine. In the Google search en-
gine [5], the user query response time is required to be at
most 0.5 seconds—including network round trip commu-
nication latency. Query execution in this system consists
of two major phases. The first phase produces an ordered
list of document identifiers (docids). This list is a result
of merging the responses from multiple index servers, each
searching over a particular subset (index shard) of the entire
index database. The second phase uses the list of docids and
computes the actual title and uniform resource locators of
these documents, along with any query-specific document
summary information. Document servers perform this job,
each processing a certain part of the docids list.

Consider the first phase of the system where a fork-join
job [17] must be performed, as shown in Fig. 2 (similar
analysis can be derived for phase 2). To speed up overall ex-
ecution time, each query is split into multiple copies which
are processed in parallel by a subset of the available index
servers—chosen by the cluster manager such that they cover
the entire index database. Each copy queues to a different
index server, and each index server has its own input buffer
where it serves requests in the order of their arrival (for sim-

plicity of analysis, sequential query processing at each in-
dex server is considered in this study). The cluster manager
must be able to accommodate uncertainty in query process-
ing times because the exact time required to process a query
is not known a priori. However, it is possible for the fork
node to use the attributes of an incoming query to identify
a subset of the past queries that have similar attributes and
share a common distribution of execution times. These past
execution times taken from the identified subset of queries
can be used to create a probability density function (pdf)
that describes the possible execution times for the incoming
query.

Figure 2. Fork (F) and Join (J) query processing
in the first phase of Google Web search engine.

In both examples, simple load balancing algorithms
may be sufficient when a distributed system is not over-
subscribed, i.e., the number of queued tasks at each com-
pute node is small. However, more sophisticated stochastic
analysis is required for resource allocation as the system ex-
periences workload surges or loss of resources.

Robust design for such systems involves determining a
resource allocation that can account for uncertainty in a way
that enables the system to provide a probabilistic guarantee
that a given QoS is achieved. This paper defines a stochas-
tic methodology for quantifiably determining a resource al-
location’s ability to satisfy QoS constraints in the midst of
uncertainty in system parameters.

In this work, a new stochastic robustness metric is pre-
sented where the uncertainty in system parameters and its
impact on system performance are modeled stochastically.
This stochastic model is then used to derive a quantitative
evaluation of the robustness of a given resource allocation,
which is interpretable as the likelihood that the resource
allocation will satisfy the expressed QoS constraints. The
problem of deriving a resource allocation represents a large
body of research in the field of parallel and distributed com-
puting (e.g., [1, 8, 9, 11–14, 18, 21, 23, 24]), but lies outside
the scope of this paper. This paper analyzes the utility of the
proposed stochastic robustness metric by applying the met-
ric to resource allocations in a simulated prototype of the



distributed system described in the ARMS Example. The
simulation results of the application are also compared with
a deterministic approach for determining the robustness of
a resource allocation.

The major contribution of this work is a mathematical
model for a stochastic robustness metric that utilizes avail-
able information to quantifiably determine a resource allo-
cation’s ability to satisfy expressed QoS constraints. In ad-
dition, the utility of the proposed metric is demonstrated
by comparison with a common performance measure of re-
source allocations, as well as a comparison with a similar
metric taken from the literature. We show that when the
additional information required by the stochastic model is
available, a better selection among resource allocations is
possible. Further, this work presents two alternative means
for computing the metric that render the required computa-
tion practical in a number of common environments.

The remainder of this work is organized in the following
manner. Section 2 develops the general framework upon
which the stochastic robustness metric is built. Specifically,
in Subsection 2.1 a formal definition of stochastic robust-
ness is given. Subsection 2.2 discusses methods of comput-
ing the stochastic robustness metric given the independence
of input parameters. A bootstrap method for estimating
probabilities in distributed systems is analyzed in Subsec-
tion 2.3. A numerical study is included in Section 3 to fur-
ther validate the utility of the proposed methodology. Sec-
tion 4 presents this work in relation to the published work
from the literature. Section 5 concludes the paper.

2. Mathematical Model for a Stochastic Ro-
bustness Metric

2.1. Definition of Stochastic Robustness

The derivation of a stochastic robustness metric for a
given distributed computing environment requires a math-
ematical model that accounts for the existing uncertainty to
reasonably predict the performance of the system. To em-
phasize the distinction between the system and its mathe-
matical model, any new terminology related to the model
will explicitly reference the model.

In the ARMS example, let Sj be the sequence of nj ap-
plications assigned to compute node j in the order they are
to be executed, i.e., Sj = [a1j , a2j , ...., anjj ]. In the Google
example, sequence Sj represents nj queries assigned to in-
dex server j. Let random variable Tij denote the execution
time of each individual application (query) aij on compute
node (index server) j. In a variety of systems, the execution
time Tij represents the time required for aij to process an
individual data set on compute node j. The random vari-
ables Tij serve as the inputs to the mathematical model that
characterize the uncertainty in execution time for each of

the applications in the system. These random variables will
be referred to as the uncertainty parameters of the mathe-
matical model. The performance of the considered distrib-
uted system is measured according to an established per-
formance metric and may be different on a per system ba-
sis [1, 16]. In the mathematical model, the system perfor-
mance ψ referred to as the performance characteristic, is an
output of the mathematical model of the system.

In the ARMS example, the evaluation of system perfor-
mance is based on the makespan value (total time required
for all applications to process a given data set) [8] achieved
by a given resource allocation, i.e., a smaller makespan
equates to better performance. The functional dependence
between the uncertainty parameters and the performance
characteristic in the model can be expressed mathematically
as

ψ = max{
n1∑
i=1

Ti1, ...,

nM∑
i=1

TiM}. (1)

In the Google example, the performance in phase 1 is
measured for each individual query. Unlike the ARMS ex-
ample where the evaluation of makespan values occurs at
each Λ prior to the execution of any application, query per-
formance evaluation in the Google example is performed
while the system is busy processing queries. Assume that
M copies of a query arrive at index servers at wall-clock
time t, and nj is the number of queries pending execution
or being executed by index server j at that time. Let t0j
denote the wall-clock start time of execution for the query
being processed by index server j at time t. In the corre-
sponding mathematical model, the functional dependence
between the uncertainty parameters and the performance
characteristic at time t, denoted as ψ(t), can be stated as

ψ(t) = max{T11 − (t− t01) +
n1∑
i=2

Ti1,

..., T1M − (t− t0M ) +
nM∑
i=2

TiM}. (2)

Due to its functional dependence on the uncertainty parame-
ters Tij , the performance characteristic ψ is itself a random
variable.

Let the QoS constraints be quantitatively described by
the values βmin and βmax limiting the acceptable range
of possible variation in the system performance [2], i.e.,
βmin ≤ ψ ≤ βmax. The stochastic robustness metric
is the probability that the performance characteristic of
the system is confined to the interval [βmin, βmax], i.e.,
P[βmin ≤ ψ ≤ βmax]. For a given resource allocation,
the stochastic robustness quantitatively measures the likeli-
hood that the generated system performance will satisfy the
stipulated QoS constraints. Clearly, unity is the most de-
sirable stochastic robustness metric value, i.e., there is zero



probability that the system will violate the established QoS
constraints.

2.2. Independence Assumption

In the model of compute node j, the functional de-
pendence between the set of local uncertainty parameters
{Tij |1 ≤ i ≤ nj} and the local performance characteristic

ψj can be stated in the ARMS example as ψj =
nj∑
i=1

Tij ; in

the Google example as ψj = T1j − (t− t0j) +
nj∑
i=2

Tij .

Independence of the local performance characteristics
implies that the random variables ψ1, ψ2, ..., ψM are mu-
tually independent. If such independence is established,
the stochastic robustness in a distributed system can be ex-
pressed as the product of the probabilities of each compute
node meeting the imposed QoS constraints. Mathemati-
cally, this is given as

P[βmin ≤ ψ ≤ βmax] =
M∏
j=1

P[βmin ≤ ψj ≤ βmax]. (3)

Specifically in (3), βmax = Λ in the ARMS example and
βmax � 0.5 sec. in the Google example. In both exam-
ples βmin is set to zero because there is no minimum time
constraint on execution.

If the execution times Tij of applications mapped on
a compute node j are mutually independent (e.g., this
assumption is valid for non-multitasking execution mode
commonly considered in the literature [8, 11, 17, 21, 24]),
then P[βmin ≤ ψ ≤ βmax] can be computed using an
nj-fold convolution of probability density functions (pdfs)
fTij

(ti) [19]

P[βmin ≤ ψj ≤ βmax] =
∫ βmax

βmin

[fTij
(t1)∗

... ∗ fTnjj
(tnj

)]dt. (4)

An nj-fold convolution of (4) requires nj −1 computations
of the convolution integral [19]; thus, a direct numerical in-
tegration may become a formidable task when nj is a rela-
tively large number. However, a high quality approximation
to the nj-fold convolution can be obtained, at a low compu-
tational expense, by applying Fourier transforms. Thus, if
ΦTij

(ω) denotes the characteristic function [22] of Tij , then
(4) can be computed as follows

P[βmin ≤ ψj ≤ βmax] =
∫ βmax

βmin

Φ−1
ψj
{ΦT1j (ω)×

...× ΦTnjj (ω)}. (5)

From this point on we assume that each pdf fTij(ti) is
expressed as a discrete probability mass function (pmf) uti-
lizing Ω points—this is common in practical implementa-
tions. As such, the calculation can be performed in the
frequency domain using a Fast Fourier Transform (FFT)
that reduces the computational cost of finding the corre-
sponding characteristic functions ΦTij . The FFT method
is a discrete Fourier transform algorithm that reduces the
number of computations needed for Ω points from 2Ω2 to
2Ω log Ω [22]. Thus, the computational complexity of de-
termining the local performance characteristic can be drasti-
cally reduced, making the approach reasonable to compute.

Table I shows the empirical computation times required
to execute n-fold convolution with respect to two differ-
ent levels of n and four different levels of Ω. The table
demonstrates that, as the number of sequential convolution
operations grows, the corresponding computation time in-
creases at a reasonable rate. This result reflects a poten-
tial applicability of the stochastic robustness metric for a
broad spectrum of distributed systems where the imposed
QoS constraints are either substantially longer than the total
time needed for a mapper to execute a required number of
convolutions, or a mapping is generated in off-line fashion,
i.e., this time is not an issue.

Table 1. Computation times (sec.) required to
achieve different levels of n-fold convolution com-
puted with the Fast Fourier Transform method.

n in n-fold
convolution

number of points Ω in Tij’s pmf

62 128 256 512
10 0.0216 0.0462 0.0953 0.2059

100 1.2 1.79 3.57 7.28

In dynamic systems, processing a continuous stream of
tasks (e.g., in the Google example), the number of convolu-
tions required at each mapping event is relatively low. For
example, evaluating a potential allocation of a given task
on a particular compute node requires only one convolu-
tion of the execution time distribution for the task with the
completion time distribution of the the task assigned last to
the considered compute node. Once the assignment of a
given task is finalized, its computed completion time distri-
bution will be used for future assignment assessments.

2.3. Bootstrap Approximation

This subsection presents an alternative method of evalu-
ating P[βmin ≤ ψj ≤ βmax] known in the literature as the
bootstrap method [25]. In contrast to convolution that is ap-

plicable only when ψj =
nj∑
i=1

Tij , the bootstrap procedure



can be applied to various forms of functional dependence
between local uncertainty parameters Tij and the local per-
formance characteristic ψj , making it very useful in prac-
tical implementations. For example, processing of queries
by a Web server is typically done in a parallel multitasking
environment, and there exists a complex functional depen-
dence [3] between the time required to process the query
and a number of currently executing threads, amount of data
cached, types of requests, etc.

Suppose that for each Tij , there are k sample observa-
tions obtained as a result of past executions of application i
on compute node j. As k grows, new sample observations
are added, and the sample pmf f̂(k)Tij

(ti), constructed from
these observations, converges in probability to fTij

(ti), i.e.,

f̂(k)Tij
(ti)

P→ fTij (ti). Let T̂ ∗(k)ij denote one draw from

the sample distribution f̂(k)Tij
(ti). Let ψ̂∗(k)j be a bootstrap

replication whose computation is based on a known func-
tional dependence between the set of drawn T̂ ∗ij and ψj , i.e.,
ψ̂∗(k)j = g(T̂ ∗(k)1j , ..., T̂

∗
(k)njj

). In the bootstrap simulation

step [25], B bootstrap replications of ψ̂∗(k)j are computed:

ψ̂∗(k)j,1, ..., ψ̂
∗
(k)j,B . If F̂(B)ψj

(t) represents a sample cumu-
lative density function (cdf) of ψj derived from these boot-
strap replications, then the probability for the local charac-
teristic function ψj can be approximated as

P[βmin ≤ ψj ≤ βmax] ≈

F̂(B)ψj
(βmax)− F̂(B)ψj

(βmin). (6)

Equation (6) assumes the existence of a monotone nor-
malizing transformation for the ψj distribution, and it is
based on a proof of bootstrap percentile confidence inter-
val [25]. An exact normalizing transformation will rarely
exist, but approximate normalizing transformations may
exist—the latter causes the probability that ψj is in the
interval [βmin, βmax] to be not exactly F̂(B)ψj

(βmax) −
F̂(B)ψj

(βmin).
The pseudocode for the bootstrap analysis is as follows:

1. B ← number of bootstrap replications

2. Vboot← vector of length B

3. Vsample← vector of length nj

4. for(b in 1 : B) {

5. for(i in 1 : nj) {

6. Vsample← sample with replacement f̂(b)Tij
(ti)

7. }

8. Vboot← g(Vsample)

9. nullify Vsample

10. }

11. construct F̂(B)ψj
(t) from Vboot

12. Nsamples ← number of samples in Vboot ∈
[βmin, βmax]

13. P[βmin ≤ ψj ≤ βmax] ≈ Nsamples/B

Table 2 presents the empirical data for an experiment
conducted to illustrate the accuracy of the bootstrap approx-
imation for the case where the functional dependence be-
tween Tij and ψj was a summation. Table 2 captures the
percent error of the achieved approximations based on equa-
tion 6 with respect to the exact convolution results. In the
experiment, βmin was set to 0, βmax was set to the mean
value of t from F̂(B)ψj

, and all Tij distributions were mod-
eled by randomly assigning a probability associated with
each of Ω data points with final normalizations. Each value
in Table 2 represents the average across 100 different trials.
As the results show, (1) relative accuracy remains insensi-
tive to the number of applications assigned to compute node
j, (2) tighter approximations were obtained by increasing
the number of bootstrap replications. If distributions of un-
certainty parameters were closer to normal—which occurs
often in practice—the resultant bootstrap approximations
would be more precise as described in the proof of equa-
tion 6 [25]. There are other bootstrap approximations that
may be more accurate, especially when the nature of the
expected cdf of the performance metric is known. How-
ever, some bootstrap methods require a significant amount
of computation and might be prohibitively expensive in cer-
tain distributed systems.

Table 2. Percent error achieved with bootstrap ap-
proximations.

nj
number of bootstrap replications

100 1000 10000
10 5.63 5.61 2.16

100 8.35 3.23 2.13
1000 6.52 2.84 1.04

3. Example Application of Stochastic
Robustness

The experiments in this section seek to establish the util-
ity of the stochastic robustness metric in distinguishing be-
tween resource allocations that perform similarly in terms



of the deterministic robustness metric from [2] and a com-
monly used metric, such as makespan. The simulation of
the system outlined in the ARMS example of Section 1 in-
cluded 1000 randomly generated resource allocations where
128 independent applications (N = 128) were allocated to
eight machines (M = 8). Each of the application execu-
tion time distributions, specific to each application-machine
pair, was modeled with a discrete pdf randomly constructed
on the range [0, 40] seconds, inclusive. To construct each
discrete pdf, ten randomly selected values spread across the
range of the distribution were assigned probabilities sam-
pled uniformly on the range (0, 1). All application execu-
tion time distributions were subsequently normalized. Let
meanav be the average value computed across the means
of all constructed application execution time distributions.
In the conducted simulation, the QoS constraint Λ was set
as follows Λ = 1.5 × N × meanav/M . Recall, for the
ARMS example Λ is a QoS constraint on system processing
time that is used in the definition of the stochastic robust-
ness metric given in equation (3). In Fig. 3, the “stochastic
robustness” vertical axes correspond to the probability that
the makespan will be ≤ Λ. In this simulation, the deter-
ministic robustness metric and makespan were calculated
using the mean of the execution time distribution for each
application-machine pair in the given allocation.

In Fig. 3(a), a comparison between the stochastic robust-
ness metric and makespan is presented for 1000 randomly
generated resource allocations. Fig. 3(a) demonstrates that,
as can be expected, resource allocations that produce a very
large makespan also tend to have a very small stochastic ro-
bustness metric value. However, as can also be seen in the
figure, there can be a large discrepancy between the pre-
dicted performance as found using the expected makespan
and the predicted performance using the stochastic robust-
ness metric. For example, in the figure, compare the two
resource allocations labeled A and B. If the comparison of
these two resource allocations is made using the expected
makespan, allocation A appears to be slightly superior to
allocation B. However, resource allocation B presents a
99.8% probability of meeting the imposed QoS constraints,
where as allocationA has only a 75% probability of meeting
it. In this case, using only the expected makespan to com-
pare the two resource allocations leads to a sizable increase
in risk for a modest (≈ 5%) improvement in the expected
makespan. Any of the approximately 100 resource alloca-
tions above and to the right of allocation A, delineated by
the dashed lines in the figure, will have a higher robustness
value yet higher (worse) makespan value than A.

In Fig. 3(b), a comparison of the stochastic robustness
metric and the deterministic robustness metric is presented
for 1000 randomly generated resource allocations. In Fig.
3(b), compare the two resource allocations C and D. Based
on using deterministic robustness measures as in [2], allo-

(a)

(b)

Figure 3. A plot of stochastic robustness met-
ric versus (a) makespan and (b) deterministic ro-
bustness, for 1000 randomly generated resource
allocations. The stochastic robustness metric val-
ues for allocations A and B exemplify the con-
flict between the stochastic robustness metric and
makespan. Similarly, the stochastic robustness
metric values for allocations C and D exemplify
the conflict with the deterministic robustness met-
ric.

cation D (with a deterministic measure of 6.13 sec.) is pre-
ferred over C (with a deterministic measure of 3.25 sec.).
However, under the new stochastic model, allocation C
(with a stochastic measure of 99.9%) is preferred over D
(with a stochastic measure of 75%). Thus in this case, us-
ing only the deterministic robustness metric to select a re-
source allocation, D appears to be more robust than C. In
contrast, the stochastic robustness metric, which accounts
for the distribution of makespan outcomes, shows that allo-
cation C has a 99.9% probability of meeting the QoS con-
straint while allocation D has only a 75% probability of
meeting the QoS constraint.

Consider the sub-region identified in Fig. 3(b) with dot-



ted lines originating from the point D, containing all of the
points above and to the left of D. Each of the identified
points in the sub-region has a higher stochastic robustness
metric value than D but a lower deterministic robustness
metric value than D.

The results also show a number of resource allocations
that have a negative deterministic robustness value. For the
data used in this simulation study, a negative value for the
deterministic robustness correlates with a low stochastic ro-
bustness value.

It is shown in [2] that the deterministic robustness metric
provides better information than just makespan. However,
when execution time distributions are available, the stochas-
tic robustness metric is even better.

Differences between the stochastic robustness metric and
the deterministic robustness metric can be explained by the
fact that the stochastic robustness metric uses information
about the distribution of outcomes for the resource alloca-
tion to determine robustness. In contrast, the determinis-
tic robustness metric uses a scalar estimate of each appli-
cation’s execution time on each machine to determine a re-
source allocation’s robustness. In this study, there were a
significant number of resource allocations where the sto-
chastic robustness metric’s use of the distribution of out-
comes caused the metric to produce a robustness value for
the allocation that failed to correlate well with the determin-
istic robustness metric. Thus, if the information needed for
using the stochastic model is available, or can be obtained,
then a better selection among resource allocations is possi-
ble.

4. Related Work

Prior work [2] in this area has referred to a resource allo-
cation’s tolerance to uncertainty as the robustness of that
resource allocation. That work also defines a set of cri-
teria for definitively claiming that a resource allocation is
robust given a deterministic estimate for each considered
system parameter. This determination of robustness begins
by asking the claimant to define the behavior of the system
that makes it robust, i.e., differentiate between acceptable
performance and unacceptable performance of the system.
Given this definition of acceptable performance, the uncer-
tainty in system parameters must be identified along with its
impact on the system’s ability to deliver acceptable perfor-
mance.

In [2], a four-step procedure is defined for deriving a de-
terministic robustness metric. The authors proposed proce-
dure was used here to motivate the derivation of a stochastic
robustness metric. According to [2], the first step in defin-
ing a robustness metric requires quantitatively describing
what makes the system robust. This description establishes
the required QoS level that must be delivered to refer to the

system as robust—essentially bounding the acceptable vari-
ation in system performance. A pair of values, βmin and
βmax that bound each performance feature must be identi-
fied, quantitatively defining the tolerable variation in each
of the performance features.

In the second step, all modeled system and environmen-
tal parameters that may impact the system’s ability to de-
liver acceptable QoS are identified. These parameters are
referred to as the perturbation parameters of the system. In
our new stochastic approach, each perturbation parameter,
or uncertainty parameter, is modeled as a random variable
fully described with a pmf. In this way, all possible values
of the considered perturbation parameters, and their associ-
ated probabilities, are included in the calculation of the sto-
chastic robustness metric. Our new approach differs from
that in [2], where a single deterministic estimated value for
each of the identified perturbation parameters is used.

In the third step, the impact of the identified perturbation
parameters on the system’s performance features is defined.
This requires identifying a function that maps a given vector
of perturbation parameters to a value for the performance
feature of the system. Similarly in our new stochastic envi-
ronment, this involves defining the functional dependence
between the input random variables and the given perfor-
mance feature. However, in our new model this involves
more complex computations to combine random variables.

Finally, in the fourth step, the previously identified rela-
tion is evaluated to quantify the robustness. As a measure of
robustness, the authors in [2] use the ”minimum robustness
radius” that relies on a deterministic performance charac-
teristic. Furthermore, it assumes there is no a priori infor-
mation available about the relative likelihood or magnitude
of change for each perturbation parameter. Thus, the mini-
mum robustness radius is used in a deterministic worst-case
analysis. In our new stochastic model, more information
regarding the variation in the perturbation parameters is as-
sumed known. Representing the uncertainty parameters of
the system as stochastic variables enables the robustness
metric in the stochastic model to account for all possible
outcomes for the performance of the system. This added
knowledge comes at a computational cost. The stochastic
robustness metric requires more information and is far more
complex to calculate than its deterministic counterpart. To
handle the computational complexity, we considered an ap-
proximation scheme that greatly simplifies the required cal-
culations.

In [7], the robustness of a resource allocation is defined
in terms of the schedule’s ability to tolerate an increase in
application execution time without increasing the total ex-
ecution time of the resource allocation. In this formula-
tion, the authors define a resource allocation’s robustness in
terms of system slack thereby focusing their metric on a sin-
gle very important uncertainty parameter, i.e., variations in



application execution times. Our stochastic robustness met-
ric is more generally applicable, allowing for any definition
of QoS and able to incorporate any identified uncertainty
parameters.

Our presented methodology relies heavily on an ability
to model the uncertainty parameters as stochastic variables.
Several previous efforts have established a variety of tech-
niques for modeling the stochastic behavior of application
execution times [6, 10, 20]. In [6], three methods for ob-
taining probability distributions for task execution times are
presented. The authors also present a means for combin-
ing stochastic task representations to determine task com-
pletion time distributions. Our work leverages this method
of combining independent task execution time distributions
and extends it by defining a means for measuring the ro-
bustness of a resource allocation against an expressed set of
QoS constraints under uncertainty.

In [15], a statistical algorithm for predicting task execu-
tion times is presented. The authors present a methodol-
ogy for defining data driven estimates of uncertainty para-
meters in a heterogeneous computing environment. In that
work, the method is applied to the problem of generating an
application execution time prediction given a set of obser-
vations of that application’s execution times. Their model
defines an application execution time random variable as
the combination of two elements. The first element corre-
sponds to a vector of known factors that have an impact on
the execution time of the application and is considered to
be a deterministic component of the execution time random
variable. A second element accounts for all unmodeled fac-
tors that may impact the execution time of an application
and represents the stochastic component of the execution
time approximation. This method for predicting application
execution times can be used to determine probability den-
sity functions describing the input random variables in our
framework.

In [11], the authors present a derivation of the makespan
problem that relies on a stochastic representation of task ex-
ecution times. The authors also demonstrate that their pre-
sented stochastic approach to scheduling can significantly
reduce the actual simulated system makespan as compared
to some well known scheduling heuristics that are founded
in a deterministic approach to modeling task execution
times. The heuristics presented in that study were adapted
to the stochastic model and used to minimize the expected
system makespan given a stochastic model of task execution
times. In our research, the emphasis is on quantitatively
comparing one resource allocation to another by deriving
a metric for the resource allocation’s robustness, i.e., the
probability to deliver on expressed QoS constraints. Thus,
[11] is focused on designing a heuristic for the makespan
problem in a stochastic environment, while this paper is fo-
cused on the evaluation of the robustness of a resource allo-

cation given a modeled stochastic environment.

5. Conclusion

This paper presents a stochastic robustness metric suit-
able for evaluating the likelihood that a resource alloca-
tion will perform acceptably, i.e., satisfy identified QoS
constraints, in an uncertain environment. In addition to
the general statement of the stochastic robustness metric,
the derivation, mathematical description, and computational
methods of the stochastic robustness metric were also pre-
sented. The stochastic robustness metric was then applied
to an example class of systems operating with periodic data
sets to demonstrate its utility in evaluating the robustness of
a resource allocation.

Given the raw volume of computation required to eval-
uate such a stochastic metric, a developed approximation
scheme based on the bootstrap technique and the FFT
method were tested to aid the practitioner in the actual ap-
plication of the metric in different real world scenarios. A
conducted simulation study demonstrates the accuracy of
the bootstrap approximation and a baseline timing analysis
for FFT.

There are many ways that this research on stochastic ro-
bustness may be built upon in future work. The results of
this work can be leveraged to develop methods for calcu-
lating the stochastic robustness metric given system para-
meters that include dependencies, as was discussed earlier.
Another extension of this research involves applying the
stochastic robustness metric to resource allocations in a dy-
namic environment, where the mix of tasks to be executed
is not known in advance and system feedback about com-
pleted tasks is available. This research also can be applied
to the design of resource allocation techniques that utilize
the stochastic robustness metric to generate allocations that
are more robust [23].

References

[1] S. Ali, T. D. Braun, H. J. Siegel, A. A. Maciejewski,
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