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Abstract

This paper proposes a novel and simple adaptive control algo-
rithm for the effective delay control and resource utilization of
EMcast when the traffic load becomes heavy in the multi-group
network with real-time flows constrained by the (σ, ρ) regula-
tors. The control algorithm is implemented at the overlay net-
works, and provides more regulations through a novel (σ, ρ, λ)
regulator at each group end host who suffers from heavy input
traffic. To our knowledge, it is the first work to incorporate
the traffic regulator into the end host multicast to control the
heavy traffic output. Our further contributions include a set
of theoretical analysis and results. We prove the existence and
calculate the value of rate threshold ρ∗ such that for a given
set of K groups, when the average rate of traffic entering the
group end hosts ρ̄ > ρ∗, the ratio of worst-case multicast delay
bound of (σ, ρ, λ) regulator over traditional (σ, ρ) regulator is
O( 1

Kn ) for any integer n. We also use the computer simula-
tions to evaluate our novel algorithm and regulator that have
been proved efficient in decreasing the worst-case delays.

1 INTRODUCTION

End host multicast (EMcast) has emerged as an alternative
to inter-domain IP multicast. A large number of end host
multicast protocols [1-17] has been proposed since NARADA
[1] demonstrated the feasibility of EMcast. Few of these pro-
tocols were designed for the multi-group networks. In the
multigroup network, end hosts may join in several multicast
groups. When one end host belongs to more than one group,
the host is in face of processing multiple simultaneously en-
tering flows. As the group communications usually generate
real-time flows and the real-time flows are characterized with
the high flow rates, the end hosts that join in multiple groups
are apt to suffer from bottleneck that incurs unacceptable
multicast delays and compromised scalability performances.
To release bottleneck, a popular way is to design the capacity-
aware end host multicast protocol [7,16-17] that assigns the
direct child members for each end host based on the end host
output capacity. However, such bottleneck-avoidance per-
formance is achieved at the cost of the increased lengths of
multicast paths from the source to the group receivers (as
illustrated in Figure 1). Suppose each flow in the multicast
network has the uniform rate ρ and each end host has the
same output capacity C = 5ρ. Figure 1 (a) gives the capacity-
aware tree when all of the end hosts only join in one group
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Figure 1. An example of constructing the capacity-aware
multicast tree. (a) for one single-source group, (b) for two
single-source groups.

G1 in which only one transmission flow f1 exists. In this case,
each end host may have at most � 5ρ

ρ � = 5 direct child mem-
bers. End host 0 where the flow enters has the capacity to
output packets to all of other end hosts 1, 2, 3 and 4 simul-
taneously. But when all of the end hosts join in two single-
source groups G1 and G2, they may only connect to at most
� 5ρ

2ρ� = 2 child members directly. The reconstructed multi-
cast tree is shown in Figure 1 (b). End host 0 will not forward
packets to end hosts 3 and 4 who will receive the packets from
end host 1 instead. It can be seen that the height of the mul-
ticast tree increases with the number of groups in which the
end hosts join. Therefore, longer multicast delays are cre-
ated. Such longer multicast delays are partially formed by
the propagation delays of the underlying links that are newly
added into the multicast system, and also include the delays
caused by the way of packet transmission in EMcast where
packets are forwarded by the end hosts and therefore expe-
rience the delays when they transmit between the IP layer
and the application layer. (We analyze such delay in [18].)
Moreover, the end hosts usually take longer latency to repli-
cate and forward packets than the network routers because of
the less capacities (e.g., CPU clock speed) of end hosts. Un-
der the heavy network traffic load, the network transmission
delays are already long. If the paths are increased, the un-
acceptable delay performances occur. Hence, instead of the
capacity-aware scheme, a multicast traffic control mechanism
that controls the output of simultaneously input flows at each
end host is necessary for decreasing multicast delays when the
network traffic becomes heavy.
Traffic control has been studied for the applications with var-
ious constraints in speed, quality and consistency of data de-
livery. But, not many mature researches have been done to
address the multicast traffic control and all of these researches
(e.g., Representative [21], RLA [22], TFMCC [23], MTCP
[24] and Golestani [25]) are designed for IP multicast. Dur-



ing the network communication, different hosts have different
instantaneous capacities. IP multicast distributes packets to
the multicast address instead of each host’s individual IP ad-
dress. It is obvious that enabling IP multicast traffic con-
trol to recognize each individual host and its capacity incurs
complexity. For example, TCP-friendly schemes excessively
employ the benefit of TCP layer. EMcast holds the promise
to implement traffic control in multicast communications. It
is because packets are replicated and forwarded by end hosts
and the control scheme can be carried out by software without
other layers’ support and expensive hardware.
Our motivation in this paper is to decrease the worst-case de-
lay bound (WDB) of EMcast through traffic control when the
traffic load becomes heavy in the multi-group network where
the traffic is usually the high rate real-time flows constrained
by (σ, ρ) regulators [19-20]. By worst-case delay, we refer to
the longest packet delay at the end host who is the last one
to receive the packets. There are two classical traffic control
methods: the leaky-bucket mechanism [28-30] and the (σ, ρ)
regulator. The leaky-bucket mechanism enforces a rigid out-
put pattern at the average rate ρ not matter how bursty the
input traffic is. For real-time applications, a more flexible
mechanism is needed to process large burstiness that allows
the short delay output, preferably one that does not lose data.
Thus, we employ the (σ, ρ) regulator that introduces bursti-
ness into the traffic model to analyze the worst-case delay
bounds for real-time flows. In [19-20], the burstiness con-
straints of (σ, ρ) regulator for a given stream partially char-
acterize the stream in the following way. Given any positive
number ρ, there exists a (possible infinite) number σ such
that if the stream is fed to a server that works at rate ρ while
there is work to be done, the size of the backlog will never
be larger than σ. Based on the regulator control method, we
propose a novel and simple adaptive control algorithm that
is implemented in the overlay network. The algorithm en-
ables each host to adaptively employ the novel (σ, ρ, λ) regu-
lator according to the instantaneous network situation. The
communication bottleneck is released without increasing the
lengths of multicast paths and requiring service reservation
and control feedback. To our knowledge, it is the first work
to incorporate traffic regulator into EMcast traffic control.
Apart from the adaptive control algorithm, we present a set of
theoretic analysis and results on the worst-case delay bound
for the single regulated end host and the regulated EMcast
respectively. More specifically, our contributions include

• The existence of the rate threshold ρ∗ is proved such that
D̂ ≥ D for the real-time flows with the average input rate
ρ̄ ≤ ρ∗ and D̂ ≤ D for ρ̄ ≥ ρ∗, where D̂ and D are the
worst-case delay bounds of real-time flows constrained
by the (σ, ρ, λ) and the (σ, ρ) regulators respectively;

• For a single regulated end host with K input flows,
ρ∗ = 0.73C(0.79C) for the homogeneous (heterogeneous)
flows, respectively, where C is the available output ca-
pacity of the multiplexer;

• For a single regulated end host with K input flows, the
ratio of the worst-case delay bound of (σ, ρ, λ) regulator
over (σ, ρ) regulator is O( 1

Kn ) for any positive integer n
when ρ̄ > ρ∗;

• For a multicast group G with the size n, the height of

DSCT tree [18] is upper bounded by �log[k+(n−j0)(k−1)]
k �,

where k (set as 3 in [11]) is a random positive integer,
and j0 ∈ [0, k − 1];

• For a multi-group network with K groups if each group
Gi(i ∈ [1,K]) has ni members that construct a DSCT
tree, we derive ρ∗ = 0.73C(0.79C) for the homogeneous
(heterogeneous) flows in the multi-group network. The
ratio of the worst-case delay bound with (σ, ρ, λ) regu-
lators over (σ, ρ) regulators is O( 1

Kn ) for any positive
integer n when ρ̄ > ρ∗.

The rest of the paper is organized as follows. Section 2 in-
troduces the adaptive control algorithm. Section 3 presents
the theorems on the single regulated end host’s worst-case
delay bound, input rate threshold and worst-case delay im-
provement. The theoretic analysis for EMcast is presented in
Section 4. Section 5 observes the WDB performances for sin-
gle regulated end host and different EMcast schemes through
simulations. Section 6 concludes the paper.

2 ADAPTIVE CONTROL ALGORITHM

Similar to [19-20], to control the input flows, each end host
in the multi-group network is served with multiplexer (MUX)
that merges the flows arriving at its two or more input links
into the only one output link. In our traffic service disciplines,
the general MUX is considered. A general MUX is such a
MUX that a packet of one flow may have priority over a
packet of another flow for transmission. We define an end host
consisting of a MUX regulated by a (σ, ρ, λ)/(σ, ρ) regulator
on each of its input links as the (σ, ρ, λ)/(σ, ρ)-regulated end
host.
Suppose there are K groups with ni(i ∈ [1,K]) members
each. Denote these groups as Gi = {gi

1, ..., g
i
j , ..., g

i
n}, where

gi
j refers to the j-th (j ∈ [1, ni]) member of Gi. Without loss

of generality, we assume that only one real-time flow with
the rate ρi (under the situation of no burstiness transmit)
in each group. Therefore, there are totally K flows in the
multi-group network. The basic idea of adaptive control al-
gorithm is that each end host adaptively employs the same
traffic control model as the (σ, ρ) regulator under the normal
traffic load situation, but provides more regulations by using
a new (σ, ρ, λ) regulator to control the traffic output in the
overlay network under the heavy traffic load situation. The
(σ, ρ, λ) regulator blocks the simultaneously entering flows a
short period in turn when the average flow input rate is so
large (larger than the end host rate threshold) that the end
host is going to suffer from bottleneck if it outputs all received
flows at the same time. The operations of adaptive control
algorithm are given in Algorithm 1.

——————————————————————————
Algorithm 1 Adaptive Control Algorithm
Input: Multicast group Gi = {gi

1, ..., g
i
j , ..., g

i
ni
}, and the in-

put rate threshold ρj
∗ of gi

j who joins in K groups; // ni is
the size of Gi, i ∈ [1,K], j ∈ [1, ni]
Output: Traffic control model;
1. For j = 1 to ni do {
2. End host gi

j calculates the average input rate ρ̄j of K
real-time flows that come from K groups respectively;
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Figure 2. An example of the (σ, ρ, λ) regulator operations
and λ = 1

(1−ρ)
.

3. If (ρ̄j ∈ (0, ρ∗j )) {
gi

j employs the same traffic control model as the (σi,
ρi) regulator;}
4. Else if (ρ̄j ∈ [ρ∗j ,

1
K )){

gi
j employs (σi, ρi, λi) regulators to control the out-

put of K input flows by two steps alternatively:
(1) On-state: it works in a work-conserving way f-

or Wi = σi

1−ρi
time units and then

(2) Off-state: it takes a vacation of Vi = λiσi

ρi
−

σi

1−ρi
time units by turning off the input flow fi. }}

——————————————————————————

It can be seen that the key problem of adaptive control al-
gorithm is to find the input rate threshold ρ∗j at which the
algorithm should change the traffic control model. We will
prove the existence and address the calculation of ρ∗j through
the theoretic analysis later. For brevity, in the theorems, we
assume that each link in the network has a uniform available
capacity C = 1. (Our theorems are also feasible if such as-
sumption is released.) The inequality

∑K
i=1 ρi ≤ 1 at each

end host who joins in K groups is the stability condition of
the multi-group network. For K homogeneous flows with the
input rate ρ, the stability condition at each group member
can be simplified as Kρ ≤ 1.
Figure 2 shows the operations of (σ, ρ, λ) regulator. In order
to smooth the simultaneous burstiness of K flows, the (σ, ρ, λ)
regulator idles V time units after working each W . Once the
duration of one flow’s vacation expires, the regulator starts
to serve the flow again. The period (V + W ) is called the
regulator period. In our algorithm, we set it as σ

ρ λ. We will
state the physical rationalness of the value of regulator period
shortly later. λ is used to decide the vacation period V . We
now focus on how λ is decided and its impact on the delay
introduced by the regulator. Consider the i-th input flow at
the end host gi

j with the rate function Ri ∼ (σi, ρi), in order
to guarantee that the total number of traffic output at gi

j

should be not greater than the total number of input traffic
in the regulator during the period of m of on and (m − 1) of
off states, we have mWi ≤ σi + [mWi + (m − 1)Vi]ρi. More
specifically, we have mσi

1−ρi
≤ σi + ( (m−1)λiσi

ρi
+ σi

1−ρi
)ρi. That

is, λi ≥ 1
1−ρi

. Obviously, the smaller λi generates the shorter
vacation period. To reduce the worst-case delay, we have

λi =
1

1 − ρi
(1)

Based on the regulator period σi

ρi
λi, equation (1) infers Vi = σi

ρi

that shows how σi affects the vacation interval. Furthermore,
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Figure 3. A concatenation of two network elements.

we consider K homogeneous flows. By the stability condition,
we assume ρ → 1

K in the worst case, then we have V =
σ
ρ ≈ Kσ = (K−1)σ

(1− 1
K )

≈ (K − 1)W . It implies that when the
input rate on each link is very high, the vacation interval
of each regulator is nearly the same as the summation of
working intervals of other (K − 1) regulators. Therefore, the
introduction of regulator period and vacation has its physical
rationalness.

3 Analysis of Worst-Case Delay Bound for
The Single Regulated End Host

The following lemma characterizes the delay of any input flow
with the rate function R ∼ (σ∗, ρ) at the (σ, ρ, λ)-regulated
end host.
Lemma 1 If the input flow’s rate function R satisfies the
burst constraint of (σ∗, ρ) regulator, i.e., R ∼ (σ∗, ρ), the
delay incurred by the (σ, ρ, λ) regulator is upper bounded by

D =
(σ∗ − σ)

ρ
+

2λσ

ρ
. (2)

Proof. As shown in Figure 3, the (σ, ρ, λ) regulator is equiv-
alent to the (σ, ρ) regulator and the λ controller.
In case σ∗ ≤ σ, there exists R̃0 ∼ (σ, ρ). Obviously, the
largest backlog occurs at each end of a vacation. Without
loss of generality, let B(s) (s is an integer) denote the backlog
of the regulator at time sλσ

ρ which is the end of a vacation.
By the burst constraint of R, there is B(0) ≤ σ. We may
infer that B(s) ≤ (1 + λ)σ for all s ≥ 0 by induction on s.
For simplicity, we denote the input flow rate bound without
burstiness as ρ. At time sλσ

ρ the traffic arrived at the (σ, ρ, λ)
regulator is λσ during the period of λσ

ρ . On the other hand,
the amount of traffic output by the regulator is at least λσ.
From this, and based on the induction assumption, we can
infer that B(s) ≤ (1 + λ)σ < 2λσ. Because B(s) may be
output by the regulator at the rate of ρ, the maximum delay
could be as long as 2λσ

ρ .
In case σ∗ > σ, because R̃0 ∼ (σ, ρ), it can be seen that
the regulator may take some additional time to process the
burst traffic (σ∗−σ) originating from the input flow with the
rate ρ. Therefore, the delay is (σ∗−σ)

ρ . Taking the two cases
into consideration, we have the following delay bound for the
(σ, ρ, λ) regulator D = (σ∗−σ)+

ρ + 2λσ
ρ .Q.E.D.

3.1 Worst-Case Delay Bound

Theorem 1 Let the rate function of the input flow fi be Ri ∼
(σi, ρi), 1 ≤ i ≤ K, and σ∗

i = ρi(1−ρi).min1≤j≤K{ σj

ρj(1−ρj)
},

then the maximum delay experienced by a traffic bit in
a general MUX with the (σ∗

i , ρi, λi) regulator is upper
bounded by D̂g =

∑K
i=1

σ∗
i

1−ρi
+ 2min1≤i≤K{ σi

ρi(1−ρi)
} +

max1≤i≤K{σi−σ∗
i

ρi
}.



Proof. Without loss of generality, the delay experienced
by any traffic bit of fj(j ∈ [1,K]) is upper bounded by
D̂g ≤ D1 + D2, where D1 is the bit delay as it passes through
the corresponding regulator, and D2 is the delay bound of
the multiplexer. By Lemma 1 and λi = 1

1−ρi
, there exists

D1 ≤ 2λiσ
∗
i

ρi
+ max1≤i≤K{σi−σ∗

i

ρi
} = 2min1≤i≤K{ σi

ρi(1−ρi)
} +

max1≤i≤K{σi−σ∗
i

ρi
}. It can be seen that the amount of data

bits from any flow fi arriving at the multiplexer in any pe-
riod of min1≤i≤K{ σi

ρi(1−ρi)
} time units is upper bounded by

P (i) = σ∗
i

1−ρi
, hence, the total amount of data bits arriving

at the multiplexer in any period of min1≤i≤K{ σi

ρi(1−ρi)
} time

units is no more than
∑K

i=1 P (i) =
∑K

i=1
σ∗

i

1−ρi
.

Since the multiplexer is work-conserving with service rate
C = 1, the above inequality means that each backlog at
the multiplexer at any time is upper bounded by D2 =∑

i=1 K
σ∗

i

1−ρi
. In other words, it is the upper bound on de-

lay for any bit passing through the multiplexer. Thus, the
theorem is proved. Q.E.D.
Theorem 2 gives the WDBs of K homogeneous real-time flows
passing through the (σ, ρ, λ)-regulated general MUX.
Theorem 2 For a regulated general MUX with K homo-
geneous input flows, let the input traffic rate functions be
Ri ∼ (σ0, ρ), 1 ≤ i ≤ K, and ρ ≤ 1

K . Then, the maxi-
mum delay experienced by any data bit in a (σ, ρ, λ)-regulated
general MUX is upper bounded by D̂g = Kσ

1−ρ + (σ0−σ)+

ρ + 2λσ
ρ .

The proof of Theorem 2 is similar to the one of Theorem 1
and thus is omitted here.

3.2 Input Rate Threshold ρ∗

Now we are going to derive the rate threshold ρ∗ for our
adaptive control algorithm to distinguish the high rate real-
time traffic from the normal rate traffic. We give the following
notations,

ξmax = max
1≤i≤K

{ρi(1 − ρi)}, ξmin = min
1≤i≤K

{ρi(1 − ρi)},

ρmin = min
1≤i≤K

{ρi}, ρ̄ = (
K∑

i=1

ρi)/K, (3)

and introduce a condition that will be employed by the fol-
lowing inference

ξmax − ξmin

ξmax
≤ ρmin

ρ̄
. (4)

Theorem 3 Assume that a (σ, ρ, λ)-regulated MUX with the
general service displine has K input links with the rate func-
tion for each link given by Ri ∼ (σ, ρi), 1 ≤ i ≤ K, and∑K

i=1 ρi ≤ 1. If K ≥ 2 and condition (6) are satisfied, there
exists a rate threshold 0 < ρ∗ < 1

K such that
(i) if ρ∗ ≤ ρ̄ < 1

K , D̂g ≤ Dg, and if 0 < ρ̄ ≤ ρ∗, Dg ≤ D̂g,
where D̂g(Dg) are the worst-case delay bounds of real-time
flows constrained by the (σ, ρ, λ)-regulated ((σ, ρ)-regulated)
general MUX respectively, and ρ̄ is the average input rate of
K flows;
(ii) when K is large enough, the ratio of the ranges [ρ∗, 1

K )
to the total range (0, 1

K ) is approximately given by 1/K−ρ∗

1/K ≈
5−√

21
1 ≈ 0.21.

Proof. (i) By condition (6), Dg in Theorem 1 can be rewrit-

ten as D̂g ≤ (
∑K

i=1
ρi)σ

ξmax
+ 2σ

ξmax
+ ξmax−ξmin

ξmax

σ
ρmin

.1

Noting that h(x) = x(1 − x) is an increasing function in the
interval [0, 1/K) when K ≥ 2. For ρi ∈ [0, 1/K), we have
ξmax = max1≤i≤K{ρi(1 − ρi)} ≥ ρ̄(1 − ρ̄).
With (5), condition (6) and inequality (7), we have

D̂g =
Kσ

1 − ρ̄
+

2σ

ρ̄(1 − ρ̄)
+

σ

ρ̄
. (5)

On the other hand, Dg in (3) can be represented as Dg =
Kσ

1−Kρ̄ .
Let

g1(ρ̄) =
K

1 − ρ̄
+

2
ρ̄(1 − ρ̄)

+
1
ρ̄
, g2(ρ̄) =

K

1 − Kρ̄
. (6)

Considering the equation g′1(ρ̄) = K
(1−ρ̄)2 − 2(1−2ρ̄)

ρ̄2(1−ρ̄)2 − 1
ρ̄2 =

0,with the positive solution by ρ̄0 = −3+
√

9+3(K−1)

K−1 ,it is clear
that ρ̄0 is the minimum point of the function g1(ρ̄). Thus,
the function g1(ρ̄) increases in [ρ̄0, 1) such that limρ̄→1g1(ρ̄) =
+∞, and decreases in (0, ρ̄0] such that limρ̄→0 g1(ρ̄) = +∞.
Since g′2(ρ̄) ≥ g′1(ρ̄), 0 < ρ̄ < 1

K ,it can be inferred that the
equation g1(ρ̄) = g2(ρ̄) has an unique positive solution ρ∗

such that 0 < ρ∗ < 1/K. Consequently, g1(ρ̄) ≤ g2(ρ̄) when
ρ̄ ∈ [ρ∗, 1/K), and g1(ρ̄) ≥ g2(ρ̄) when ρ̄ ∈ (0, ρ∗]. Thus (i) is
proved.
(ii) By (i), ρ∗ is the unique positive solution of the equa-
tion g1(ρ̄) = g2(ρ̄), which can be deduced to the equation
(K2 − 2K)ρ̄2 + (3K + 1)ρ̄ − 3 = 0.Solving this equation, we

have ρ∗ = −(3K+1)+
√

(3K+1)2+12(K2−2K)

2(K2−2K) .It is easy to see that

limK→∞
1/K−ρ∗

1/K = limK→∞(1 − Kρ∗) = 5−√
21

2 .Since it has
been assumed that C = 1, thus (ii) holds. Q.E.D.
Theorem 4 gives the rate threshold ρ∗ for K homogeneous
flows entering single regulated end host.
Theorem 4 Assume that a (σ, ρ, λ)-regulated MUX with the
general service discipline has K input links with rate function
for each link given by Ri ∼ (σ0, ρ), 1 ≤ i ≤ K and ρ ≤ 1/K.
When K ≥ 2, there exists a 0 < ρ∗ < 1/K such that
(i) if ρ∗ ≤ ρ < 1

K , D̂g ≤ Dg, and if 0 < ρ ≤ ρ∗, Dg ≤ D̂g,
where D̂g(Dg) is the worst-case delay bound of real-time flows
constrained by the (σ, ρ, λ)-regulated ((σ, ρ)-regulated) general
MUX respectively;
(ii) when K is large enough, the ratio of the range [ρ∗, 1/K)
with respect to the overall range (0, 1/K) is about

1
K −ρ∗

1
K

≈
2 −√

3 ≈ 0.27.
The proof of Theorem 4 can be similarly established as the
proof of Theorem 3 and thus is omitted here.

1For each part of the expression of Dg in Theorem 1, we have

K∑

i=1

σ∗
i

1 − ρi
=

K∑

i=1

ρi min
1≤j≤K

{ σj

ρj(1 − ρj)
} ≤ (

∑K

i=1
ρi)σ

ξmax
,

min
1≤i≤K

{ σi

ρi(1 − ρi)
} ≤ 2

σ

ξmax
,

max
1≤i≤K

{σi − σ∗
i

ρi
} = max

1≤i≤K
{

σ − σρi(1 − ρi)
1

ξmax

ρi
}

≤
σ(1 − ξmin

ξmax
)

ρmin
=

ξmax − ξmin

ξmax

σ

ρmin
.

.



3.3 Improvement of Worst-Case Delay Bound

We now analyze the WDB improvement of (σ, ρ, λ) regulator
over (σ, ρ) regulator for the heterogeneous (Theorem 5) and
the homogeneous (Theorem 6) real-time flows respectively.
Theorem 5 Let the input rate functions be Ri ∼ (σ, ρi), (1 ≤
i ≤ K) with

∑
1≤i≤K ρi ≤ 1, and Dg (D̂g) be the worst-

case delay bounds for a general MUX regulated by the (σi, ρi)
((σi, ρi, λi)) regulators respectively. When the number of
input links K ≥ 2, for any positive integer n such that
1
K − 1

Kn+1 ≥ ρ∗, we have Dg

D̂g
≥ O(Kn), whenever ρ̄ ∈

[ 1
K − 1

K(n+1) ,
1
K ).

Proof. By Theorem 1, we know the worst-case delay
of (σi, ρi, λi) regulator is bounded by D̂g =

∑K
i=1

σ∗
i

1−ρi
+

2min1≤i≤K{ σi

ρi(1−ρi)
} + max1≤i≤K{σi−σ∗

i

ρi
}. By [19], the

worst-case delay of (σi, ρi) regulator is bounded by Dg =∑
1≤i≤K

σi

1−
∑

1≤i≤K
ρi

. When K is large enough, Theorem 3 proves

that ρ∗ ≈
√

21−3
2K . Thus, when n is chosen properly, the

inequality 1
K − 1

Kn+1 ≥ ρ∗ holds. Then, for any ρ̄ ∈
[ 1
K − 1

Kn+1 , 1
K ), it is easy to infer that ρ̄ ∈ [ρ∗, 1

K ), we have
Dg

D̂g
≥ Kρ̄(1−ρ̄)

(1−Kρ̄)[3+(K−1)ρ̄] ≥
(1− 1

Kn )(1− 1
K )Kn

4 = O(Kn). Q.E.D.
For K homogeneous flows, we give the worst-case delay im-
provement in Theorem 6.
Theorem 6 Let the input rate function Ri of homogeneous
flows be the same as the above theorem, Dg(D̂g) be the
worst-case delay bounds for a general MUX regulated by the
(σ, ρ)((σ, ρ, λ)) regulators, respectively. When the number of
input links K ≥ 2, there exists 0 < ρ∗ < 1/K, for any n

such that 1
K − 1

Kn+1 ≥ ρ∗, we have Dg

D̂g
= O(Kn), whenever

ρ ∈ [ 1
K − 1

Kn+1 , 1
K ).

Theorem 6 can be proved in the similar way as we prove
Theorem 5 and thus we omit it here.

4 Analysis of Worst-Case Delay Bound for
The End Host Multicast

In our analysis, we use DSCT tree [18] as the model of EMcast
architecture. Lemma 2 gives the height bound H of DSCT
tree.
Lemma 2 For a multicast group with n members, the height
of the constructed DSCT tree is upper bounded by

H = �log[k+(n−j0)(k−1)]
k �, (7)

where k is a random integer that is set as 3 in [11], j0(0 ≤
j0 ≤ k − 1) is the number of the last unassigned members in
the lowest layer L1 of DSCT tree.
Proof. According to (1) and (2) in [18], the n members
construct the highest DSCT tree when the size of each cluster
equals to k.
Suppose DSCT tree has l layers. We use i1 to denote the
number of clusters with the size k in the lowest layer L1, and
j1 to denote the remaining members who haven’t joined in
any of the i1 clusters. It can be inferred that i1 = �n

k � and
0 ≤ j1 ≤ k − 1. The j1 members will form a new cluster
in L1. Hence, there are at most (i1 + 1) clusters in L1. We
have n = i1k+j1. Because the core of each cluster joins in the
immediate upper layer L2, we can infer i1+1 = i2k+j2,where

i2 = � i1+1
k � is the number of clusters with the size k in L2

and j2 ∈ [0, k − 1] is the number of members who haven’t
joined in any of the i2 clusters. Similarly, in the layer Ll, we
can derive

il−1 + 1 = ilk + jl, (8)

where il = � il−1+1
k � is the number of clusters with the size

k and jl ∈ [0, k − 1] is the number of members who haven’t
joined in the il clusters. Based on the above equations, using
the iteration, we have

n = j1 + i1k = j1 + (j2 − 1)k + i2k
2 = ... = j1 + (j2 − 1)k

+(j3 − 1)k2 + ... + (jl − 1)kl + ilk
l+1. (9)

Because there is only one member in the highest layer Ll,
we have il = 0 and jl = 1. (9) shows that the tree has the
highest height when j2 = j3 = ... = jl−1 = 2. Thus, we can
infer from (9)

n = j0 + k + k2 + ... + kl−1 = j0 +
k − kl

1 − k
. (10)

It can be achieved from (10) that l = �log[k+(n−j0)(k−1)]
k �.

Q.E.D.
Theorem 7 Suppose there are K groups in the regulated
multi-group network and each group has ni(i ∈ [1,K]) end
hosts that construct a DSCT tree. If one group has one
real-time flow and the flow is constrained by the rate func-
tion Ri ∼ (σi, ρi), with the stability condition at each end
host joining in K groups

∑K
i=1 ρi < 1, let λi = 1

1−ρi
, and

σ∗
i = ρi(1 − ρi)min1≤j≤K{ σj

ρj(1−ρj)
},

(i) the maximum multicast delays experienced by any bit pass-
ing through the multi-group network regulated with (σ∗

i , ρi, λi)
regulators are upper bounded by

ˆDmg = (Ĥ − 1)[
K∑

i=1

σ∗
i

1 − ρi
+ 2 min

1≤i≤K
{ σi

ρi(1 − ρi)
}

+ max
1≤i≤K

{ (σi − σ∗
i )

ρi
}],

where Ĥ = max1≤i≤K{Hi} and Hi is the height bound of Gi;
(ii) if K ≥ 2 and condition (6) are satisfied, there exists
0 < ρ∗ < 1

K such that ˆDmg ≤ Dmg if ρ∗ ≤ ρ < 1
K , and

Dmg ≤ ˆDmg if 0 < ρ ≤ ρ∗, where Dmg is the worst-case delay
bound of DSCT with the (σi, ρi)-regulated general MUX;
(iii) when K is large enough, the ratio of the range [ρ∗, 1

K )

to (0, 1
K ) is approximately given by

1
K −ρ∗

1
K

≈ 5−√
21

2 ≈ 0.21;

(iv) for any positive integer n such that 1
K − 1

Kn+1 ≥ ρ∗, we
have Dmg

ˆDmg
≥ O(Kn),whenever ρ̄ ∈ [ 1

K − 1
Kn+1 , 1

K ).

Proof. (i) Suppose the longest multicast path (denoted as
< si → ri >) in Gi is the one connecting the source si and
the receiver ri, where si, ri ∈ Gi, si �= ri. Assume that
the path contains F forwarders that are denoted as the set
{γi

1, ..., γ
i
m, ..., γi

F }(m ∈ [1, F ]) and γi
m ∈ Gi. The worst-

case multicast delay in Gi with the (σ∗
i , ρi, λi)-regulated gen-

eral MUX is the worst-case delay of any bit passing through
< si → ri > when si and all γi

m join in all the K groups.
Then, the worst-case multicast delay bound ˆDi

mg in Gi is cal-
culated by ˆDi

mg = D̂i
g(< si → γi

1 >) + D̂i
g(< γi

F → ri >) +



∑F−1
m=1 D̂i

g(< γi
m → γi

m+1 >),where D̂i
g(< si → γi

1 >), D̂i
g(<

γi
F → ri >) and

∑F−1
m=1 D̂i

g(< γi
m → γi

m+1 >) refer to the
worst-case delay bounds between si and γi

1, γi
F and ri, and γi

m

and γi
m+1 respectively. According to Theorem 1, they equal

to
∑K

i=1
σ∗

i

1−ρi
+ 2min1≤i≤K{ σi

ρi(1−ρi)
}+ max1≤i≤K{ (σi−σ∗

i )
ρi

}.
Hence, the worst-case delay ˆDi

mg of any bit passing through

the DSCT tree in Gi is ˆDi
mg = (Hi − 1)[

∑
i=1 K

σ∗
i

1−ρi
+

2min1≤i≤K{ σi

ρi(1−ρi)
}+max1≤i≤K{ (σi−σ∗

i )
ρi

}],where Hi is the
height bound of DSCT tree in Gi.
Considering the whole multi-group network, the worst-
case multicast delay occurs in the group with the high-
est DSCT tree. We have ˆDmg = max1≤i≤K{ ˆDi

mg} =
(Ĥ − 1)[

∑K
i=1

σ∗
i

1−ρi
+ 2min1≤i≤K{ σi

ρi(1−ρi)
} +

max1≤i≤K{ (σ−σ∗
i )

ρi
}],where Ĥ = max1≤i≤K{Hi}. Q.E.D.

The proof of (ii), (iii) and (iv) can be similarly established
as the proof of Theorems 3 and 5. Theorem 8 considers the
homogeneous flows.
Theorem 8 Suppose there are K groups denoted as Gi(i ∈
[1,K]) in the regulated multi-group network and each group
has ni end hosts that construct a DSCT tree. If each group
has one real-time flow that is constrained by the rate function
Ri ∼ (σi, ρi), with the stability condition ρ ≤ 1

K at each end
host joining in K groups,
(i) the maximum worst-case delay experienced by any bit pass-
ing through the DSCT tree with the (σ, ρ, λ)-regulated general
MUX is upper bounded by ˆDmg = (Ĥ−1)Kσ

1−ρ + (Ĥ−1)(σ0−σ)+

ρ +
2(Ĥ−1)λσ

ρ ,where Ĥ = max1≤i≤K{Hi} and Hi is the height
bound of DSCT tree in Gi that can be derived by Lemma 2;
(ii) if K ≥ 2 is satisfied, there exists a rate threshold 0 < ρ∗ <
1
K such that ˆDmg ≤ Dmg if ρ∗ ≤ ρ̄ < 1

K , and Dmg ≤ ˆDmg if
0 < ρ̄ ≤ ρ∗, where Dmg is the worst-case delay bound of any
bit passing through the DSCT tree with the (σ, ρ) regulator;
(iii) when K is large enough, the ratio of the range [ρ∗, 1

K )

to the total range (0, 1
K ) is approximately given by

1
K −ρ∗

1
K

≈
2 −√

3 ≈ 0.27;
(iv) for any positive integer n such that 1

K − 1
Kn+1 ≥ ρ∗, we

have Dmg

ˆDmg
≥ O(Kn),whenever ρ̄ ∈ [ 1

K − 1
Kn+1 , 1

K ).

5 Simulation Evaluation

We have done two groups of simulations in ns-2 [27] on a
group of SUN SOLARIS workstations.

5.1 Simulation I

Flow 1

Flow 2

Flow 3

),/(),,( -regulator

Source Sink

Figure 4. The simulation topology with only one
(σ, ρ, λ)/(σ, ρ)-regulated end host.

In the first group of simulations, we observe the WDB per-
formances of single (σ, ρ, λ)/(σ, ρ)-regulated end host. Fig-
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Figure 5. The worst-case delay performances. (a) for three
audio streams, (b) for three video streams and (c) for one
video stream and two audio streams.

ure 4 shows the simulation topology. The source is fed with
three real-time flows that are going to transmit to the sink.
The intermediate node is equipped with the (σ, ρ, λ)/(σ, ρ)-
regulated general MUXs respectively. Two types of real-time
streams are employed: 64Kbps audio streams and 1.5Mbps
MPEG-1 video streams. The regulator parameter σ is decided
by the employed streams themselves. And, We compare the
WDB performances of (σ, ρ, λ) regulator and (σ, ρ) regula-
tor with 3 video streams, 3 audio streams and heterogeneous
streams (one video and two audio streams) respectively when
the average input rate ρ increases from 0.35 to 0.95.
Figure 5 (a) illustrates the worst-case delay performances
when three 64Kbps audio steams pass through the network
in Figure 4. The cross point of the two curves is 0.66, i.e.,
the input rate threshold in this simulation is 0.66. When
ρ < 0.66, the worst-case delays with the (σ, ρ, λ) regulator
are longer than the ones with the (σ, ρ) regulator. Otherwise,
the worst-case delays with the (σ, ρ, λ) regulator are shorter
than the ones with the (σ, ρ) regulator. The rate thresh-
old difference between the simulation result and the theoretic
analysis is because our theoretic analysis does not take into
account of fluctuation of network throughput in the prac-
tical network. Also, it can be seen from the figure that the
maximum worst-case delay improvement of (σ, ρ, λ) regulator
over (σ, ρ) regulator is 0.72

0.26 ≈ 2.8 when ρ = 0.8. According
to Theorem 6 and K = 3, we can derive n ≈ 1. Figure
5 (b) illustrates the WDB performances of 3 homogeneous
video streams. The rate threshold is 0.67 that is a little less
than the theoretic result 0.73 for the fluctuation of network
throughput. The maximum improvement of worst-case delays
of the (σ, ρ, λ) regulator over the (σ, ρ) regulator is 0.72

0.26 ≈ 2.82
when ρ = 0.8. With Theorem 6 and K = 3, we can also de-
rive n ≈ 1. Figure 5 (c) gives the comparison of worst-case
delay performance of heterogeneous real-time streams in the
network. It can be seen that the input rate threshold is 0.74
that is a little less than the theoretic value 0.79 in Theorem
3. When ρ ≥ 0.74, the worst-case delays with the (σ, ρ, λ)
regulator are much shorter than the ones with the (σ, ρ) reg-
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Figure 6. The backbone network topology in the simula-
tions.
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Figure 7. The worst-case delay performances when each of
the three groups is fed with (a) the audio stream, (b) the
video streams and (c) the video stream or the audio streams.

ulator. The maximum improvement of the worst-case delay
is 0.85

0.27 ≈ 3.15 when ρ = 0.85. Such improvement meets the
theoretic results in Theorem 5 when n = 1.

5.2 Simulation II

In the second group of simulations, we observe the worst-case
delay performances of real-time streams in the multi-group
network. There are 665 end hosts in the network who join
in 3 groups. Figure 6 shows the backbone network topology.
The 665 group members are with the (σ, ρ, λ)/(σ, ρ)-regulated
general MUXs and attach to the routers in the backbone net-
work directly or indirectly through some intermediate net-
work components (e.g., the hubs). Each group has one real-
time flow. Namely, each host needs to serve 3 real-time flows.
Also, there are two types of simulation streams: 64Mbps au-
dio streams and 1.5Mbps MPEG-1 video streams in the multi-
group network. And,we compare the WDB performances of
three EMcast schemes: the capacity-aware DSCT tree, DSCT
tree with (σ, ρ) regulator and DSCT tree with (σ, ρ, λ) regu-
lator. The traffic pattern is the same as the first group of
simulations.
Figure 7 (a) illustrates the worst-case delay performances of
the capacity-aware DSCT, DSCT with (σ, ρ) regulator and
DSCT with (σ, ρ, λ) regulator when each of the three groups
is fed with the same 64Kbps audio stream. From the figure,
we can see that the capacity-aware DSCT achieves shorter

delay performances than DSCT with (σ, ρ) regulator. And,
when ρ ≥ 0.7, DSCT with (σ, ρ, λ) regulator achieves the best
delay performances in the three multicast schemes. Com-
pared to DSCT with (σ, ρ) regulator, the rate threshold in
the simulation is 0.65 that is a little less than the theoretic
value 0.73 in Theorem 8. And, the maximum improvement
of the worst-case delays of DSCT with (σ, ρ, λ) regulator over
DSCT with (σ, ρ) regulator is 0.95

0.27 ≈ 3.52 when ρ = 0.75. It
meets the theoretic results in Theorem 8 when n = 1. Figure
7 (b) shows the worst-case multicast delay performances of
video streams. The capacity-aware DSCT achieves shorter de-
lay performances than DSCT with (σ, ρ) regulator, and when
ρ ≥ 0.7, DSCT with (σ, ρ, λ) regulator achieves the short-
est delay performances in the three multicast schemes. As
for the comparison of DSCT with (σ, ρ, λ) regulator to DSCT
with (σ, ρ) regulator, the simulation rate threshold of 3 flows is
0.65, and the maximum worst-case multicast delay improve-
ment of DSCT with (σ, ρ, λ) regulator over DSCT with (σ, ρ)
regulator is 1.18

0.32 = 3.69 when ρ = 0.8. Figure 7 (c) gives the
worst-case delay performance comparison when one group is
fed with the video stream and each of other two groups is fed
with the audio stream. The simulation results also tell us that
the rate threshold is 0.735 that is a little less than the theo-
retic result 0.79 in Theorem 7 because of the network through-
put fluctuation in the practical network. And the maximum
worst-case delay improvement of DSCT with (σ, ρ, λ) regu-
lator over DSCT with (σ, ρ) regulator is 1.15

0.27 ≈ 4.26 when
ρ = 0.8.

6 Conclusion

In this paper, we addressed the problem of decreasing the
worst-case delay bound for EMcast when the group mem-
bers are in face of having no enough capacities to output
the simultaneous input traffic. We presented a novel adap-
tive control algorithm. Based on the instantaneous network
situations, the algorithm adaptively employs the (σ, ρ) regu-
lator under the normal traffic load situation and the (σ, ρ, λ)
regulator under the heavy traffic load situation to control the
traffic output at each end host. The (σ, ρ, λ) regulator adopts
two states: on and off to assign the output of the simulta-
neous heavy input flows in turn. By our new algorithm and
regulator, proved by our theoretic analysis and simulation
evaluation, the possible bottleneck can be avoided without
increasing the lengths of multicast paths.
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