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Abstract

This paper investigates the use of additional synchro-
nization messages in round-based message-passing syn-
chronous systems. It first presents a synchronous compu-
tation model allowing a process to send such messages.
The difference with respect to the traditional round-based
synchronous model lies in the sending phase, where a pro-
cess can first send a data message to each other process,
and then, without a break, a synchronization message (their
sendings can be pipelined). This model is suited to the class
of local area networks where communication channels are
reliable. (It is not for networks where unreliable communi-
cation requires message retransmission.)

To illustrate the model, the paper presents a uniform
consensus algorithm suited to this model. This algorithm,
based on the rotating coordinator paradigm, allows the
processes to decide in at most ����� rounds where � is the
actual number of processes that crash in the corresponding
run. (This improves the �	��
 lower bound of the tradi-
tional synchronous model.) In addition to its efficiency,
the algorithm enjoys another first class property, namely,
design simplicity. The paper focuses also on lower bound
results, and shows that any uniform consensus algorithm
designed for the proposed model, requires at least �	���
rounds in the worst case. The proposed algorithm is
consequently optimal. In that sense the paper has to be
seen as an investigation of both the power and the limit of
adding synchronization messages to synchronous systems
built on top of local networks with reliable communication.
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1 Introduction

The consensus problem Distributed computing is char-
acterized by individual processors (also called nodes or pro-
cesses) cooperating by exchanging data through a commu-
nication medium, in order to realize a common goal. Fault-
tolerant distributed computing additionally considers that
the processes can suffer failures.

So, the possibility for the processes to agree on a com-
mon decision (or a common value, or the execution of the
same action, etc.) is key to fault-tolerant distributed com-
puting, as if no agreement is ever needed, the application
is actually a set of independent applications. This type of
agreement is exactly what has been abstracted under the
name consensus problem. Each process proposes a value,
and is supposed to decide a value (termination property),
such that there is a single decided value (agreement prop-
erty)1, and that value is a proposed value (validity prop-
erty). From both a theoretical side and a practical side, this
problem has received a considerable interest in the literature
[3, 14].

On distributed computing models Finding right abstrac-
tions and realistic computing models is a main challenge of
computer science. This has been pretty successful in se-
quential computing where the Turing machine model has
become the standard model, and where programming lan-
guages have been designed to provide the programmers
with convenient high level abstractions that allows them to
concentrate on the problem they have to solve without being
bothered by low level implementation details.

Two main models have been proposed for fault-tolerant
distributed computing, namely, the synchronous model, and
the asynchronous model [3, 11, 14, 16]. The synchronous
model is characterized by time bounds on process speed and

1This paper considers uniform agreement: no two processes can decide
differently (be them correct or faulty). See Section 3.1.



message delay, and these bounds are known by the pro-
cesses (that can consequently use them in the algorithm
they execute). The asynchronous model is characterized
by the absence of time bounds on process speed and mes-
sage delays. That is why synchronous systems are some-
times called timely systems, while asynchronous systems
are called time-free systems.

The main point that makes these systems essentially dif-
ferent lies in the use of timeout values. Upper bounds for
timeout values can be computed and safely used in syn-
chronous systems. Differently, there is no upper bound for
timeout values in an asynchronous system. This has a fun-
damental consequence, namely consensus can be solved in
synchronous systems prone to failures while it cannot in
asynchronous systems [11].

In order not to be bothered by the management of time-
out vales, the behavior of synchronous systems is usually
abstracted in the so-called round-based computation model.
The processes progress by executing a sequence of rounds.
In each round, each process first sends messages to the other
processes, then receives messages from the other processes,
and finally executes a local computation.

So, a natural way to determine the time cost of a syn-
chronous algorithm is to count the number of rounds it re-
quires. As far as the consensus problem is concerned we
have the following lower bounds in the synchronous process
crash failure model. Let � ( ����� ) be the maximum number
of processes that are allowed to crash2, and � ( ��������� ),
be the actual number of processes that crash during a run.
We have the following (where a round is a communication
step):

� When considering only � : Any � -resilient consensus
algorithm requires ����� rounds [2, 10].

� When considering � and � : Any � -resilient consensus
algorithm requires ������� �!�"�$#%�&�'
$( rounds [7, 8, 13].

Content of the paper This paper proposes a new syn-
chronous computing model that allows solving uniform
consensus in �)��� rounds. The proposed consensus pro-
tocol is coordinator-based and actually solves uniform con-
sensus in one round, when the first coordinator does not
crash during that round. Moreover, it is shown that �*�+� is
a time lower bound for solving consensus in the new model.

There is no miracle. To obtain a uniform consensus al-
gorithm that allows the processes to decide and stop in �,�-�
rounds in the worst case, the notion of round (communica-
tion step) used in the new model is slightly different from
its classic definition. More precisely, the proposed model

2This means that the algorithm is guaranteed to work correctly when
there are no more than . process crashes. It can work correctly in some
scenarios where there are more than . crashes, but there is no guarantee for
these runs.

allows a process to do “more things” during a round. More
specifically, it allows a process to send to other processes
an additional “synchronization message”, after it has sent
them a “data message”. This message carries no data, and
is sent in the send phase of a round, which means that its
content does not depend on the messages received during
the current round. Differently, the content of a data mes-
sage can depend on the data messages received during the
previous rounds.

Moreover, when a process crashes while sending a data
message to the other processes, it is possible that only an ar-
bitrary subset of the destination processes actually receive
the message (this is the usual assumption in the crash prone
synchronous model [14]). Differently, a sending order is
associated with synchronization messages. This means that
if a process / sends such a message to 0 and 1 (in that or-
der) and crashes during the sending, it is possible that both
0 and 1 receive the message, or only 0 receives the mes-
sage, or none of them receives the message (it is not pos-
sible for the “second” process 1 to be the only one that re-
ceives the message). It is nevertheless important to observe
that, despite this “additional synchronization power”, the
new model and the traditional synchronous model have the
same power from a computational point of view: we show
that any of them can simulate the other model (of course,
simulating the new synchronous model on top of the tradi-
tional one has some cost in terms of additional rounds).

This synchronous computing model is envisaged for
(and seems suited to) the class of synchronous systems built
on top of local area networks with reliable communication.
It is not designed for systems built on top of networks with
unreliable communication, as then message retransmission
would make unrealistic an efficient implementation of the
two-sending step.

Another interesting feature of the proposed model lies in
the fact it allows designing algorithms that are simple and
have a simple proof. This is important as design simplicity
is a first class property. As we will see in Section 4, from
an algorithm design point of view, this model allows es-
tablishing a bridge from synchronous agreement protocols
to asynchronous agreement protocols. More precisely, the
sending of synchronization messages during a round, does
correspond to the second communication step used in each
round of asynchronous consensus protocols. This bridge re-
lating synchronous and asynchronous agreement is new (as
far consensus is concerned), and helps understand the basic
machinery of rotating coordinator-based distributed consen-
sus algorithms.

Related work As far as distributed computing models are
concerned, several models lying between fully synchronous
and fully asynchronous systems have been proposed (e.g.,



[9]). Models where the sending order is relevant are in [8]
(to state a lower bound result for simultaneous Byzantine
agreement in synchronous systems).

To prove lower bound results related to uniform consen-
sus in synchronous systems, [13] considers runs where a
process that crashes during a round does not send messages
to an orderly subset of processes. This allows to know
which processes have received a given message during a
round, and to use this additional knowledge to obtain proofs
simpler than previous proofs of the same results.

Synchronization messages are very popular in fault-free
distributed computing. Maybe, one of the most known
example is the distributed snapshot algorithm by Chandy
and Lamport [6]. In this algorithm, when a process takes
a local snapshot, it atomically sends a special message
(called marker) on each of its outgoing channels. This
synchronization message has two meanings: it informs the
destination process that it has to take its local snapshot
(if not already done), and it cleanly separates the data
messages that have been sent on the same channel before
it from the ones that are sent after it (this allows a process
to safely determine the set of messages that were in transit
on the corresponding incoming channel with respect to the
global snapshot that is computed). A marker message de-
fines a “synchronization point” that allows the destination
process to learn consistent global information.

Another approach (and the only we are aware of) to cir-
cumvent the �2��
 lower bound associated with the tradi-
tional synchronous model has been recently proposed in [1]
where is introduced the notion of fast failure detector. The
idea is to enrich a traditional synchronous system with a de-
vice that informs each process about which processes have
crashed. Each process / is provided with a read-only lo-
cal variable 354637/98;:<�=�>/?( that is (1) safe: it contains only ids
of processes that have crashed, and (2) live: if a process 0
crashes at time � , its id is added to 354?3@/A8;:<�=�B/9( at the latest at
time �$�-C . Let D be the duration of a round. The failure de-
tectors are assumed to be fast in the sense that CE�F��D . The
authors present a consensus algorithm, based on a fast fail-
ure detector, that decides in DG���?C (they also show that this
is optimal in the fast failure detector synchronous model).

While the fast failure detector-based model extends the
classical synchronous model in allowing processes to ob-
tain “early” information on failures, the proposed model ex-
tends the synchronous model in allowing a process to send
additional control messages. These two approaches can be
seen as complementary. Both enrich the classical round-
based synchronous model with an additional mechanism
(and both can be implemented with appropriate hardware
or “urgent” messages).

Roadmap The paper is made up of 5 sections. Sec-
tion 2 presents the computation model. Then Section 3
presents a consensus algorithm based on the round coordi-
nator paradigm that requires �H�"� rounds in the worst case,
and a single round if the first coordinator does not crash
during that round (so, when there is no crash, both our pro-
tocol and the fast failure detector-based protocol decide in
a single round). Section 4 discusses the algorithm. Section
5 shows that �*�+� rounds is a lower bound in the proposed
model, and consequently the proposed algorithm is optimal
in this computation model.

2 Distributed Synchronous Model

2.1 The Extended Synchronous Model

The system consists of a set I of � sequential processes,
IKJML%/?NO#5PQP5PR# /9S!T , that communicate and synchronize by
sending and receiving messages through channels. Every
ordered pair of processes /?U and /WV is connected by a di-
rected channel denoted �>/?U@# /XVO( . The underlying communi-
cation system is assumed to be failure-free: there is no cre-
ation, alteration, loss or duplication of message. The only
failure a process can experience is a crash: it stops prema-
turely. Moreover, once crashed, a process remains crashed
forever. A process is correct in a run if it does not crash
during that run; otherwise it is faulty. As already indicated,
� ( �Y� ) denotes the maximum number of processes that are
allowed to crash, and � ( ���Z�[�K� ) the number of pro-
cesses that crash in a given run (so, there are �)\"� correct
processes in the corresponding run).

The system is synchronous. This means that the pro-
cesses execute in lockstep: a run is partitioned in a sequence
of rounds. There is a global variable 1 , provided by the
model, that takes the successive integer values �]#^
X#5PQPQP , etc.
( 1 can be seen as a global logical clock that progresses au-
tomatically, i.e., independently of the processes). A process
/ U can only read it. A round 1 is made up of three consecu-
tive phases:

� A send phase divided into two steps executed se-
quentially:

– A data sending step: During that step, each pro-
cess /9U (that has not crashed) can send a data
message to a set of processes D�8_35�<�$� 1_#7`a(�J
L@/XV7bO#Qc5cQc6#d/XVfegT . (It is possible that different des-
tination processes be sent different messages by
/ U . Moreover, D�8_3Q�<�h�i1_#@`f( is not statically de-
fined: it can be defined according to the sending
process / U and the round number.) If / U crashes
during that sending step, an arbitrary subset of
the messages it was assumed to send are actually
received by their destination processes.



– A control data sending step: During that step, /6U
can send a control message to other processes,
say D�8_35�7
W� 1_#7`a(HJj�k/?l=b;#5cQc5c6# /9l%m�n . This is an
ordered sequence of processes. If / U crashes dur-
ing that step, the control message is sent to an ar-
bitrary prefix of the sequence �'/6l=bO#5cQcQc�# /9l m n .

It is important to notice that no local computation is
allowed to take place between the two sending steps.
The second sending step is executed just after the first
one, without break.

� A receive phase in which each process receives mes-
sages. The fundamental property of the synchronous
model lies in the fact that a message sent by a process
/AU to a process /WV at round 1 , is received by /!V at the
same round 1 . 3

� A computation phase during which each process
processes the messages it has received during that
round and executes local computation. (This is the
only place where a process executes local computa-
tion.)

2.2 Short Discussion

Computability power It is easy to see that if we suppress
the second sending step (no control message is ever sent)
we obtain the traditional synchronous model [3, 14, 16].

Sending each control message in separate consecutive
rounds provides a (non-efficient) simulation in the other di-
rection. (Using additional separate rounds allows ensuring
that the control messages are sent in the prescribed order.) It
follows that the proposed model and the basic synchronous
model have the same computability power.

Cost of a round In a message-passing distributed system,
it is usually considered that message transfer delays take
time while local computation do not. (In some papers, the
processing time associated with messages is ”integrated” in
their transfer delays.)

Let D be the time duration of a round in the traditional
synchronous model. This means that D is an upper bound
on message transfer delay + local processing time. The
extended model adds the second sending step to each
round. This sending step has to be done after the first
sending step, and its control messages have to be sent in
a specified order. This may require an additional timeo
. It is important to notice that a process cannot receive

and process messages between these two communication
steps; this means that there is no waiting period before the
second sending step. So, the the duration of a round in the

3This means that a channel never contain more than two messages,
namely, a data message and a one-bit control message.

extended model is DM� o
with

o �F�pD (as, differently
from D ,

o
has not to capture message transfer delay4).

Let us consider an algorithm that requires �q��
 rounds in
the classic synchronous model, and an algorithm that solves
the same problem in �-��� rounds in the extended model.
(Let us notice that �-��
 and �)�[� are the lower bounds
for solving consensus in the classic model and the extended
model, respectively.) Although failures are possible they
are rare in practice, which means that � and � are the most
common values for � .

The algorithm in the extended model performs better
than the algorithm in the classic model when �d���r�;(=� Ds�o (2�t�d�u�r
$(aD , i.e., when �-�v���xw y , which is always
satisfied for realistic values of � . This means that the ex-
tended model is practically relevant for systems built on top
local area networks whose communication is reliable. (As
noticed in the introduction, this advantage disappears -and
the model is no longer interesting- when, due to message
losses, retransmission is required to obtain upper layer reli-
able channels.)

3 A Consensus protocol

This section presents a uniform consensus protocol
suited to the proposed synchronous model. As a notewor-
thy side effect, as we will see in Section 4, this protocol, es-
tablishes a bridge between synchronous and asynchronous
consensus.

3.1 The Consensus Problem

The consensus problem has been sketched in the intro-
duction: every process /9U proposes a value z]U and all cor-
rect processes have to decide on some value z , in relation to
the set of proposed values. More precisely, the consensus
problem is defined by the following three properties:

� Termination: Every correct process eventually de-
cides.

� Validity: If a process decides z , then z was proposed
by some process.

� Agreement: No two correct processes decide differ-
ent values.

Let us observe that the agreement property is only on
correct processes: it allows a faulty process to decide dif-
ferently from the correct processes. Such a property can be
too weak for some applications that require a single decision

4If {}| sends a data message and a control message to {O~ during a round� , these two messages are pipelined in the channel � {$|���{5~Q� , and conse-
quently �q����� .



Function Consensus ���<|�� :
(1) �%�7.i|!���<| ;
(2) when ���'� �d�O�7�7�7�h� .$� � do
(3) begin round
(4) case ��� �2� � then for each {5~��F��{}|��?�^�7�a�7�$��{}�h� do send DATA ���^�a. |d� to {5~ end do;
(5) for {5~ from { � until {]|��?� do send COMMIT ��� to {5~ end do;
(6) return ���^�a. | �
(7) ���?� � � then if (DATA ���5� received from {]� ) then �^�a. |!��� end if;
(8) if (COMMIT ��� received from {]� ) then return ���^�a.i|d� end if
(9) ���?� � � then % cannot happen %
(10) end case
(11) end round

Figure 1. Uniform consensus in at most ���k� rounds (code for process /9U )

whatever the deciding process be faulty or correct. Uniform
agreement is a strengthened form of agreement that pre-
vents such scenarios. More precisely, uniform consensus
is defined by the previous Termination and Validity require-
ments plus the following Agreement property:

� Uniform Agreement: No two (correct or not) pro-
cesses decide different values.

All the lower bounds that have been previously cited con-
cern uniform consensus. Moreover, as the paper considers
only the uniform consensus problem, the word ”uniform” is
sometimes omitted.

3.2 The Protocol

A consensus protocol suited to the extended model is de-
scribed in Figure 1. Each process / U invokes the function
Consensus �iz U ) where z U is the value it proposes. It termi-
nates either when it crashes or when it invokes the statement
return �izX( that provides it with the decided value z (line 6 or
8). The local variable 8;35�7U (initialized to z]U , line 1) contains
/AU ’s current estimate of the decision value.

The protocol is surprisingly simple. It is based on the ro-
tating coordinator principle5 and uses the synchronization
power provided by the second sending step executed with-
out a break just after the first one. The first coordinator is /�N ,
then /A� , etc. There are at most �g� � processes that will play
the coordinator role. For a process /?U , there are two cases,
according to the fact that /9U is (or is not) the coordinator of
the current round 1 .

� / U is the coordinator ( `¡J¢1 ): in that case, / U tries to
impose its current estimate value 8_35� U as the decision
value. To attain this goal, it sends 8_3Q�@U (data message)

5Several coordinator-based consensus algorithms have been designed
for asynchronous systems equipped with unreliable failure detectors (e.g.,
[5, 12, 15]). All the consensus algorithms for synchronous systems that we
are aware of are based on the flooding strategy [3, 14, 16]: at every round,
each process sends to all the other processes the new values it has received
during the previous round.

to all the processes that have a higher identity (line 4).
It is important to notice that, if /9U succeeds in executing
line 4 without crashing, all the non-crashed processes
will have their estimates equal to 8_35�7U by the end of
the round (that property will be used to prove uniform
agreement).

Then, /9U sends a synchronization message (commit) in
the following order: first to /?S , then to /9Sg£6N , etc., until
/AU�¤¥N (line 5). This synchr message is to inform the
processes that all of them know the estimate value of
the current coordinator. Finally, (if it has not crashed
before) / U decides its current estimate value (line 6).

� /AU is not the coordinator ( `*¦J§1 ): in that case we nec-
essarily have `¨n�1 . (This is due to the following rea-
son. As the successive values of the round number are
the consecutive positive integers (line 2), `©��1 would
mean that / U has already been the coordinator of the
round 1_ª�J�`©�k1 . But then, when it has executed that
round, / U has either decided at line 6 or crashed.)

So, when / U executes a round 1��¢` , it waits for the
value z that the coordinator of 1 tries to impose. If it
receives it, it adopts it (line 7). If additionally it re-
ceives the synchronization message, it knows that all
the estimates values are equal to z . It then decides it
(line 8).

It is easy to see that if the first coordinator (/RN ) does not
crash, the decision is obtained in one round, whatever the
number of faulty processes. If it crashes while /6� does
not, the decision is obtained in at most two rounds, etc.
This shows that the extended synchronous model allows de-
signing algorithms that are both simple and efficient (each
property ”simplicity zg3 efficiency” not being obtained at the
detriment of the other).

3.3 Proof and Complexity

This section proves that the protocol described in Figure
1 solves the (uniform) consensus problem in at most ���r�



rounds (of the extended model). Let 8_35�@U7« 15¬ denote the value
of 8_35�aU at the end of the round 1 .

Lemma 1 [Validity] A decided value is a proposed value.

Due to page limitation, the proof is given in [4].

Lemma 2 [Agreement] No two different values are de-
cided.

Proof We first claim that there is a round ( �	�1 ��,�
� ) such that the corresponding coordinator process executes
entirely line 4 (Claim C1). Let 1 be the first of these rounds.
From the fact that /9® executes entirely line 4, it follows that
8;35� V « 15¬�J�z , ¯W°-±�1 , where z is the estimate value of /9® at
the beginning of round 1 (A). We also claim (Claim C2) that
no process /WV has decided before 1 , and all the processes /!V
such that �¡�Y°2�k1 have crashed before 1 . It follows from
C2 that no process decides before 1 , and the processes that
decide are a subset of L@/ ® # / ® ¤¥N_#QPQP5P6# /9S9T .

Let /AU be a process that decides (so, 1²�Y`���� ) at round
15U2±t1 . If 15U�J³1 , /AU decides z (the current estimate of
the coordinator of 1 ) as, during 1 , it has received (at line
7) and committed (at line 8) that value. (If /?U is / ® , it de-
cides “quicker” at line 6.) If 1;U©n�1 , due to the property A
(from the end of 1 , no estimate value present in the system
is different from z ), /9U cannot decide a value different from
z .

It follows that a single value can be decided, namely,
the current estimate value z of the first coordinator that
successfully executes entirely line 46.

Proof of the claim C1. If /6N does not crash before having
executed entirely line 4, the claim follows. If /�N crashes
while /A� does not, the claim follows too. So, let us assume
that none of the processes / N #5PQP5P6# /!´ ¤µN executes entirely
line 4. This is impossible as there at most � faulty processes.
(Let us notice that it is possible that the first process /?® that
executes entirely line 4 crashes just after that line.) End of
the proof of the claim C1.

Proof of the claim C2. If a process / V decides during a
round 1_ª¶�[1 , either it is the coordinator of 1}ª ( 1_ªqJ�° ), or
it received a data message and a commit message from the
coordinator / ®%· during that round. In both cases, this means
that / ®@· has entirely executed line 4. But this contradicts the
fact that 1²n�1}ª is the first round during which a coordinator
executes entirely line 4.

We now show that each process /!V (with °��p1 ) has
crashed. This follows from the fact that, if /!V was not
crashed by the end of the round ° , it would have coordinated

6Some authors say that the value � is then locked [5, 12]: even if it is
not known by some or all the processes, no value different from � can be
decided. Line 4 is consequently a value locking mechanism.

that round and decided. As /!V has not decided (as shown by
the previous observation), it has necessarily crashed. End
of the proof of the claim C2. ¸�¹!ºf»�»©¼ �

Lemma 3 [Termination] Let � be the number of processes
that crash during a given run. During that run, every cor-
rect process decides, and no process decides after the round
�²��� .

Proof If / N does not crash, it executes entirely the lines
4-6 during the first round. Consequently, each non-crashed
process /9U receives both the data and the commit message.
It follows that each non-crashed process /?U decides at line 8
(/6N decides quicker at line 6). (If /6N crashes, while /9� does
not, etc.)

So, let us assume that the first � processes are faulty,
each having crashed before executing the line 6 of the round
it coordinates. Due to the definition of � , and the fact that
/?N_#QPQP5P6# /?½ have crashed, the process /6½5¤µN is correct. We
consider two cases.

� The first case is when / ½O¤¥N decides before the round
�,�-� . In that case, it decided during a round 1j�k�q�-� .
Before deciding it received a data and a commit mes-
sage during round 1 . Moreover, as /?® sent the commit
message starting from /9S , then /ASX£6N , etc., until / ® ¤¥N
(line 5), we can conclude that all the processes / l such
that ���²�&�+¾2�¿� have received both messages. It fol-
lows that all these processes / l that have not crashed
decide during the round 1-�v����� . As the processes
/XV such that °'������� are faulty, the termination re-
quirement does not apply to them.

� The second case is when /?½O¤¥N does not decide before
the round �À��� . In that case, as the round number
progresses, we eventually have 1	JÁ�2�v� . Then, as
/ ½O¤¥N is correct, during that round, it executes the lines
4-6. Consequently, all the non-crashed processes / V
(that by assumption are such that ° ±s�2��� ) receive
the data and the commit message sent by /?U and decide
accordingly.

¸ ¹!ºf»�»©¼�Â

Theorem 1 The protocol solves the (uniform) consensus
problem, and no process decides after the round �"�Ã�
(where � is the number of actual failures).

Proof Follows from the Lemmas 1, 2 and 3. ¸�Ä?Å º7Æ7®^ºf» N

Theorem 2 Let Ç z6Ç be the bit size of a proposed value ( Ç z?Çg±

 ). The bit complexity varies between �i��\��O(Q�@Ç z?Ç����O( (best),
and �d���k�;(=�i�)\¿�©\ ½ � (5Ç z6Ç5�r�d�����O(=� �2\ �6( (worst).



Proof Let us first observe that Ç z?Ç;��� is the total size of a
data message ( Ç z6Ç bits) plus a commit message (one bit)7.

� Best case. This case is when there is no crash. In that
case a single round, coordinated by /RN , is executed, and
no other process sends messages. That process sends
a data message and a control message to each other
process. Hence, the bit complexity � �)\��;(=�@Ç z6Ç5���O( .

� Worst case. In that case, � processes are faulty, and
those are the first � coordinators. We look for an upper
bound on the messages transmitted, by considering the
following worst case scenario.

The first coordinator sends � �²\G�;( data messages, and
sends commit messages from /?S until ½O¤¥N and then
crashes. Then, the second coordinator sends �i��\+
$(
data messages, and sends commit messages from / S
until ½O¤¥N and then crashes. Etc. until / ½5¤µN that sends
�À\��d�2���O( data messages plus �u\r�������O( commit
messages. Summing up for the data messages, we ob-
tain:

� �-\¿�O(R� � �2\ 
](È��cQcQc;��� �-\+�d�����O(7(
J � �)\��;(R��� �-\¿�O(µ\¿����cQcQc;��� �-\¿�O(µ\ �6(
J � �2\¿�O(Q�d�E���O(µ\"É ½ÊOË NAÌ
J � �)\��;(=�d�����O(µ\ ½}Í�½5¤µNaÎ�
J �d�E�k�;(=� �2\¿�©\ ½ � (=P

So, we have ���,�-�;(=�i�Ï\��A\ ½ � (QÇ z6Ç bits for the data mes-
sages. Summing up for the commit messages, we ob-
tain: �d�q�2�;(=�i�©\*�6( bits. The total number of messages
is upper bounded by �d�����O(=� ��\²�!\ ½� (Q�2�d�����O(=� ��\F�6(
messages, i.e., ���²���O(Q�d
}�2\¿�©\�Ðh�RÑ}
$( .

¸¶Ä9Å ºaÆ@®^ºf» �

4 Discussion

It is interesting to compare the proposed rotating
coordinator-based synchronous algorithm and the algorithm
proposed in [15] (let us call it MR99) designed for asyn-
chronous systems equipped with a failure detector of the
class ÒÔÓ (this class of failure detectors is the weakest that
allows solving consensus in asynchronous systems prone to
process failures). Differently from synchronous systems,
each message in an asynchronous system has to carry its
round number in order the receivers do not confuse mes-
sages sent at different rounds.

In MR99, each (asynchronous) round is coordinated by a
process, and is made up of two consecutive communication
steps. More precisely, during a MR99 round we have:

7When a process receives a message whose size is one bit (this is a pure
signal carrying no value), it knows the message is a commit message. If
the size is at least two bits, it knows that the message is a data message.

� During the first communication step, the current coor-
dinator /?Õ sends its current estimate z to all the pro-
cesses. For each process / U , that communication step
ends when it receives the current coordinator’s esti-
mate z or suspects / Õ . When it terminates that step,
/ U sets a local variable Öh4 Ì U to z if it received it, or×

if it suspects / Õ . That variable represents its local
knowledge of the estimate of the current round coordi-
nator (/9Õ ).

� After it has determined the value of Ö$4 Ì U , every pro-
cess /AU executes a second communication step during
which it sends its local knowledge Öh4 Ì U to all the pro-
cesses. After that sending, /9U waits until it has received
“enough” corresponding messages from the other pro-
cesses. “Enough” means here “from �)\'� processes”,
in order to get as many messages as possible while pre-
venting deadlock.

Then, /9U decides z if it has received that value from a
majority of processes. The “majority of correct pro-
cesses” requirement is needed to guarantee the con-
sensus agreement property (this is a necessary re-
quirement in asynchronous message-passing systems
equipped with a Ò&Ó failure detector [5]). If / U has
not received enough messages displaying z , it adopts
z as its new estimate and proceeds to the next round.
If all the Öh4 Ì V values it has received are such that
Öh4 Ì VÏJ ×

, /AU proceeds to the next round without mod-
ifying its estimate.

So, in MR99, the second communication step of a round
involves all the processes and is strongly synchronized with
respect to the first as the value sent by a process during that
step depends on the value it has (or not) received during the
previous step. If / U receives a majority of Ö$4 Ì V J�zu¦J ×

, it
knows that, by the end of the current round, z is eventually
known by all the processes, and is consequently locked. In
the algorithm presented in Figure 1, this information is pro-
vided by the commit message. Due to the additional syn-
chrony assumption of the extended model, (1) that message
can safely be sent by a single process, namely the coordi-
nator /9Õ of the current round itself, and (2) this sending can
be issued just after /?Õ has broadcast its estimate z to all the
processes (i.e., without additional synchronization requiring
message exchange).

This shows that the proposed synchronous algorithm and
MR99 can be seen as two implementations in different set-
tings of the very same basic principle. From an algorithm
design point of view, this displays a deep unity in the prin-
ciples that underlie the design of a family of simple and
efficient consensus algorithms suited to (a)synchronous dis-
tributed computing models.



5 Lower Bound in the Extended Model

The previous protocol requires �-��� rounds of the ex-
tended model, which means that, when �À���Y� w y (see
the discussion in Section 2.2), it is more efficient than an
�d�Ø�*
$( -round algorithm executed in the classic synchronous
model. This section shows that �u�§� is actually a lower
bound in the extended model. It follows that the proposed
protocol is optimal for that distributed computing model.

The proof is as follows. First we extend a result from
Aguilera and Toueg [2] to show that � -resilient uniform con-
sensus requires at least �R�r� rounds in the extended model
(Theorem 3). Then we use this result to show that �)�§�
is a lower bound in the extended model (Theorem 4). This
section assumes �2�Á� \�� (this is because, some proofs
requires at least two correct processes in order to compare
their view of the computation).

5.1 Lower Bound for � -Resilient Consensus

Aguilera and Toueg have shown that any � -resilient con-
sensus algorithm requires at least �W� � rounds in the classic
synchronous model [2]. Their proof is simpler than previ-
ous proofs devoted to the same result. It is based on a biva-
lency argument (initially introduced to prove the impossibil-
ity of asynchronous consensus despite one crash) [11]. Our
proof is nearly the same as Aguilera and Toueg’s proof8.
Due to page limitation, the proofs can be found in [4].

Theorem 3 [4] Let us consider the extended synchronous
model where ���¿��\"� , and at most one process crashes in
each round. There is no algorithm that solves consensus in
� rounds in this model9.

5.2 Lower Bound for Early-Stopping

Theorem 4 Let �Ï�k�u\+� . Uniform consensus requires at
least �²��� rounds in the extended synchronous model.

Proof Claim: Let Ù be a uniform consensus algorithm that
tolerates up to � crashes in the extended synchronous model
( �©�k�)\+� ). Then, ¯6��Ú����r���k� , there is a run of Ù in
which at least one process does not decide by the end of � .
End of the claim.

That claim is an immediate consequence of Theorem 3
obtained by replacing � by the number � of actual crashes.
The theorem follows directly from it. ¸�Ä9Å ºaÆ@®^ºf»GÛ

8The fact that the proof of Aguilera and Toueg can be easily extended
to a new model, shows that (1) the valency notion introduced in [11] is a
central concept to understand and master distributed agreement problems,
and (2) the proof of [2] captures the essence of the impossibility to solve
consensus in less than .A� � rounds. (In that sense, this section can be
considered as an exercise whose aim is to generalize a previous result.)

9As there is no algorithm that solves consensus, there is no algorithm
that solves uniform consensus either.

Theorem 5 Let ���Ü�Y\s� . The uniform consensus al-
gorithm described in Figure 1 is round optimal for the ex-
tended failure model.

Proof Immediate consequence of Theorem 4 (that states
“the best that can be done in the worst case is �E�r� ”), and
Theorem 1 (that states “the algorithm requires at most �¨�'�
rounds”). ¸¶Ä?Å º7Æ7®^ºf» Ý

This theorem states the power and fixes the limit of the
additional synchronization provided by the extended syn-
chronous model defined in Section 2.
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