
High Performance Block I/O for Global File System (GFS)
with InfiniBand RDMA∗

Shuang Liang Weikuan Yu Dhabaleswar K. Panda

Department of Computer Science and Engineering
The Ohio State University

Columbus, OH 43210
{liangs,yuw,panda}@cse.ohio-state.edu

Abstract

State-of-the-art network technology has evolved to
10Gbps. However, TCP’s high processing overhead and
redundant data copies remain a major bottleneck for ap-
plications to fully benefit from such high speed technology.
Remote Direct Memory Access (RDMA), as an emerging
communication protocol, provides an opportunity for effi-
cient storage system design by virtue of RDMA’s semantics.
Although RDMA based designs have been proposed to im-
prove network file I/O protocols in several previous works,
its benefit for cluster file system block I/O is not clear yet.
We propose a new technique – “buffer management delega-
tion”, which offloads message buffer management to remote
communication party. Using this technique, we design our
zero copy RDMA based block transfer scheme for GNBD
(Global Network Block Device), a block access protocol of
Red Hat Global File System, to optimize cluster file system
performance over 10Gbps InfiniBand network. We evaluate
this new scheme in comparison with our copy based scheme
and TCP over the same InfiniBand hardware. The eval-
uation quantifies the redundant copy impact for both bulk
data transfer and file system meta-data operations. The re-
sults using open source file system benchmarks and widely
used system utilities show that our implementation improves
GFS performance by up to 47% compared with copy based
scheme, and by up to 136% compared with TCP.

∗This research is supported in part by Department of Energy’s Grant
#DE-FC02-01ER25506 and NSF Grants #CNS-0403342 and #CNS-
0509452; grants from Intel, Mellanox, Cisco Systems and Sun Microsys-
tems; and equipment donations from Intel, Mellanox, AMD, Apple, Ap-
pro, Dell, Microway, PathScale, IBM, Silverstorm and Sun Microsystems.

1 Introduction

As current technology trend evolves, computing system
applications continue to be more data intensive than ever,
rendering the throughput of storage systems increasingly
important. For enterprise level data management, a shared
storage model is usually used, where data is resident on a
storage server within a local area network, which supports
file or block based protocols for data accesses. These high
end storage servers are usually equipped with large caches
of several or even tens of gigabytes [3, 18]. Therefore, mov-
ing data efficiently across network interconnects becomes
an important issue.

While contemporary network technology has scaled to
provide 10Gbps for high-end servers, the abundant band-
width can not be fully utilized using the well-known TCP/IP
protocol. Several studies [17, 2, 12, 13] have shown that the
checksum processing and data copy with TCP/IP process-
ing cause high per-byte overhead, leaving high performance
network under-utilized especially for large data movement.

The Remote Direct Memory Access (RDMA) proto-
col [11] provides an opportunity for scalable network based
storage system design. RDMA is widely used in high per-
formance parallel computing area for inter-node communi-
cation [9, 5]. By RDMA protocol, the sender can specify a
memory location in remote communication party’s address
space and present a remote access key; then the underlying
transport is responsible for placing the data without inter-
mediate copies during the protocol stack processing. This
elimination of redundant memory copies promises poten-
tial for system performance improvement, as it decreases
the per byte overhead for data movement. It also reduces
the host CPU involvement in data transfer. Consequently,
it avoids the data-touching effect on processor cache pollu-
tion. Together with OS bypass [16], high performance in-
terconnects such as InfiniBand [5], have been able to scale
up to 10Gbps for memory to memory bandwidth.



While RDMA is widely used in high end parallel com-
puting, the direct placement feature of RDMA also fits well
with storage servers. Several recent works [21, 8, 2, 7] have
studied the benefits of using RDMA capable VIA [4] com-
munication to improve database storage and file I/O proto-
cols for Gigabit networks.

In this paper, we investigate the design issues of RDMA
based network block I/O with 10-Gigabit InfiniBand Re-
liable Connection (RC) transport for Red Hat Global File
System (GFS) – a shared storage cluster file system. The
motivation of our work is twofold. First, previous works
on Gigabit networks were based on network technology
significantly slower than memory speed. As the speed of
network communication approaches current memory band-
width, the impact of RDMA and zero copy on block I/O is
not clear yet. Second, previous works investigated RDMA
capable interconnect’s impacts on file I/O protocol. How-
ever, file protocol is one layer above block protocol, thus
the messages travelling across the network exhibit different
patterns.

The main contributions of this paper are as follows.

1. We propose buffer management delegation, which of-
floads registered buffer management to Global Net-
work Block Device (GNBD) client (the block device
layer for GFS) and eliminates extra control message
overhead for our client-initiated RDMA data transfer
scheme.

2. We design the block I/O transport for Red Hat GFS
with InfiniBand RDMA support. Our experiments
show that our implementation improves performance
up to 136% and 70% for bulk data transfers and
management operations respectively, when comparing
with TCP over the same InfiniBand hardware.

3. Our experimental results indicate that for kernel
based file system, the OS/Filesystem management
constraints the utilization of high performance net-
works, whose bandwidth is approaching current mem-
ory speed. Although the performance impact of re-
dundant copies in the communication stack to block
I/O is considerable, optimization of data copy reduc-
tion alone can not guarantee file system performance
scalability to 10Gbps.

The rest of the paper is organized as follows: Section 2
provides background and related work; Section 3 discusses
the design issues of RDMA based block I/O; Section 4
presents our design for GFS/GNBD; Section 5 illustrates
the evaluation results; finally, we conclude the paper in Sec-
tion 6.

2 Background and Related Work

Global File System (GFS) [14] is a shared storage clus-
ter file system, which provides consistent data access across
the nodes within the cluster. Although a lot of modern high
performance cluster systems are equipped with high per-
formance interconnects such as Quadrics [9], Myrinet [1],
and InfiniBand [5], currently GFS only supports TCP based
communication. With IP emulations, TCP protocol can be
used directly on these interconnects. However, it does not
take full advantage of the RDMA semantics supported by
the native communication protocol. By designing Infini-
Band RDMA based block I/O protocol for GFS, we can
quantify the data copy effects and TCP processing overhead
over the same hardware. In this section, we first provide
an overview of GFS and InfiniBand technology; then we
present a summary of related work.

2.1 Global File System (GFS)

Red Hat GFS supports consistent file access through
locking protocol on a shared storage environment such as
Storage Area Network (SAN). As shown in Figure 1, two
different block access protocols are designed with GFS for
different hardware configurations: a) SCSI with direct at-
tached SAN Fabric; and b) Global Network Block Device
(GNBD) for remote node storage access.

Figure 1. GFS Configurations

Currently, the direct attached SAN configuration re-
quires hardware support, such as Fiber Channel switch and
storage controller, which is still an expensive solution. The
GNBD solution provides a more general and cost effective
way for shared storage access using a server node to per-
form similar functions as a SCSI target.

GNBD server is a user-land program. It processes block
I/O requests from GNBD clients and serves data blocks.
GNBD client is a pseudo block device acting as a SCSI ini-
tiator, which passes block I/O requests from the kernel and
communicate with GNBD server over TCP/IP. In this pa-
per, we use GNBD as the subject for RDMA based block
I/O design and evaluation.



2.2 InfiniBand

InfiniBand [5] is an emerging open standard high per-
formance interconnect, featuring low latency of a few mi-
croseconds and bandwidth up to 10Gbps with current gen-
eration of implementation. It is deployed on several large
clusters on the Top500 list. Several levels of Quality of
Service (QoS) are supported in InfiniBand. The Reliable
Connection (RC) service guarantees reliable transport and
supports RDMA in hardware.

0

100

200

300

400

500

600

700

800

900

1 4 16 64 25
6

10
24

40
96

16
38

4

65
53

6

Message size(Bytes)

B
an

dw
id

th
(M

B
/s

)

Gen2 Verb
TCP/IPoIB

0

100

200

300

400

500

600

700

800

900

1 4 16 64 25
6

10
24

40
96

16
38

4

65
53

6

Message size(Bytes)

La
te

nc
y(

m
ic

ro
se

co
nd

)

(a) Bandwidth (b) Latency

Figure 2. InfiniBand Gen2 Verb and TCP/IPoIB
Stack Performance Comparison

InfiniBand software stack recently has been incorporated
into the Linux kernel distribution. Several transport inter-
faces are supported with different performance and compat-
ibility features. The Verb based API is the native commu-
nication software interface with high performance, which
provides both memory semantics interface, such as RDMA
read and RDMA write, and channel semantics interface such
as send/receive. IPoIB is an IP emulation for InfiniBand,
which enables IP based application to run over InfiniBand
without any modification. Figure 2 shows the user level
memory to memory bandwidth on IA-32 PCI-X systems us-
ing Verb API and TCP/IPoIB.

2.3 Related Work

In this paper, we investigate the design issues of RDMA
based block I/O for GNBD using InfiniBand. The related
work falls into two categories: networked file/storage pro-
tocol and InfiniBand based design.

Networked File/Storage Protocol: DAFS [8] pro-
posed a user space network file system client to take advan-
tage of high performance user-level network [16]. NFSv4
over RDMA [2] proposed to use RDMA for NFS’s kernel
RPC transport. However, both work are high performance
network optimizations for file I/O protocols with Gigabit
VIA [4] network. Zhou et al. [21] studied different Di-
rect Storage Access (DSA) implementations with VIA for
database storage.

Sarkar et al. [13] evaluated storage protocols using
software approach, as well as two hardware approaches:

TCP Offloaded Engine(TOE) and Host Bus Adapter(HBA),
where the former offloads TCP/IP processing to the network
interface and the latter offloads the whole storage proto-
col. Radkov et al. [10] compared the performance between
NFS and iSCSI for IP networked storage and showed iSCSI
based storage protocol’s performance benefits from its bet-
ter aggregation and caching capability. Both works target
for IP based network storage.

Recent industry efforts proposed iSER and SRP [15],
which attempt to define standard interface for SCSI trans-
port over RDMA. But these work are still in prototyping
stage. And in this paper, we propose different RDMA
schemes for GNBD compared with these efforts.

InfiniBand Based Design: Wu et al. [20] designed an
InfiniBand based transport for Parallel Virtual File System
(PVFS). Recently, Liang et al. [6] proposed to use Infini-
Band RDMA based network block device for remote swap-
ping, where a copy based RDMA transfer scheme was de-
signed. In this paper, we extend that work with a new zero
copy based RDMA design and integrate both designs in
GFS for performance study with file system benchmarks.
Our work quantifies TCP/IP’s processing overhead and the
data copy impact on InfiniBand RDMA transport for shared
storage file system block I/O.

3 Issues for RDMA based Block I/O

Block I/O is different from file I/O in terms of the size of
an I/O request. File I/O requests can be variable in length as
defined by the file system protocol, while block I/O requests
always demand data in units of multiple blocks (e.g. 4K or
8K). Operating system organizes the block buffers and pass
them to the appropriate block devices for actual I/O transfer.
The aggregate nature of block I/O allows it to benefit from
network bandwidth by larger data transfers. To optimize
block I/O with RDMA, the design must consider the spe-
cific characteristics of RDMA capable interconnects such
memory registration and RDMA transfer schemes, and en-
hance the performance with features such as hardware sup-
ported scatter/gather I/O to reduce the number of request
messages. In the section, we discuss the design issues for
RDMA based block I/O.

3.1 Message Buffer Registration

To achieve zero copy RDMA, high performance inter-
connects depend on Network Interface (NI) aware DMA-
able message buffers. Therefore, message buffers must be
registered with the NI before any transmissions. The reg-
istration makes sure that the buffers are locked in memory.
It also creates an address translation entry for the NI to ad-
dress these buffers.



0%

20%

40%

60%

80%

100%

120%

1 4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

Message size(Bytes)

P
er

ce
nt

ag
e

Kernel Buffer 
User Buffer

Figure 3. Buffer Registration vs. Message La-
tency

Memory registration operation is a costly operation. Fig-
ure 3 shows the ratio of memory registration overhead over
the message latency for different message sizes. To min-
imize this impact, several solutions such as pre-registered
buffer pool, Fast Memory Registration (FMR) [20], and reg-
istration cache have been proposed with various trade-offs.

An interesting observation for kernel block I/O buffers is
that they are locked down when the block device layer re-
ceives them. Therefore, we can utilize the physical memory
descriptor of InfiniBand stack to avoid expensive on-the-fly
registration, if unrestricted RDMA operations to this node
can be effectively managed to prevent remote party from
corrupting irrelevant memory regions. One simple solution
is to avoid being the passive side of RDMA operations; the
other one is to use memory windows, which allow dynamic
memory access control on registered buffers.

3.2 RDMA Transfer Alternatives

Several RDMA transfer schemes are possible for block
I/O. Based on the active side of the operation, they can be
classified into: (i) Target based RDMA, (ii) Initiator Based
RDMA, and (iii) Hybrid RDMA.

Target Based RDMA: As illustrated in Figure 4(a), ini-
tiator sends block I/O requests to remote target. For block
read requests, the target prepares the blocks and RDMA
writes the blocks back to the initiator followed by a reply
message. For block write requests, the target obtains the
blocks using RDMA read from the initiator and sends a re-
ply message for acknowledgment.

In this scheme, the target needs to cope with both re-
quest/reply control messages and RDMA based data trans-
fer processing, while the initiator needs to send the exposed
block buffer addresses to the target in the requests. This
transfer scheme is used in iSCSI/iSER and SRP protocol.

Initiator Based RDMA: As illustrated in Figure 4(b), the
target offloads the RDMA transfer processing to the initia-
tor by sending the target side RDMA buffer address in the
reply. Extra control messages are required for completion
notification to the target for resource management. To re-
duce the overhead, completion acknowledgment can be pig-
gybacked with the next request when appropriate.

Hybrid RDMA: The above two schemes use RDMA
read and RDMA write for data transfer. A potential problem
with such schemes is that RDMA read is a round trip oper-
ation involving higher latencies. More importantly, RDMA
read may not follow the ordering rules according to Infini-
Band specification and can complete out of order with re-
spect to later send or RDMA write operations.

Assuming initiator knows the remote message buffer ad-
dress beforehand, a hybrid scheme can be used. Thus both
sides use only RDMA write for data transfer, as illustrated
in Figure 4(c).

3.3 Scatter/Gather I/O and RDMA

InfiniBand scatter/gather operation allows non-
contiguous message buffers to be posted in a single
operation, thus reduces bus transactions and additional
overhead needed for multiple message processing. The
benefit of scatter/gather I/O for PVFS file I/O is studied
in [19]. For block I/O, even a single request may be
composed of multiple blocks that reside in non-contiguous
memory. Aggregating them in a single message posting
transaction promises further performance improvements.

InfiniBand architecture has one constraint for RDMA
based scatter/gather I/O: non-contiguous message buffers
can only be on the active side of RDMA operation, which
means it only supports gather for RDMA write and scatter
for RDMA read. However, it is possible that both sides have
the block buffers in non-contiguous memory, while the file
system blocks in kernel buffer cache are getting fragmented
over time. So the trade-off here is either we can reduce the
message number by a copy to a contiguous buffer or use
separate messages for each non-contiguous buffer.

4 The Design of GFS/GNBD

In Section 3, we discussed major issues for RDMA based
block I/O. In this section, we present our design choices for
GFS/GNBD implementation. Based on the software archi-
tecture of GNBD protocol and InfiniBand performance fea-
tures, we propose our new zero copy RDMA based block
I/O scheme and discuss related issues such as message or-
dering, memory management, and flow control.



(a) Target Based RDMA (b) Initiator Based RDMA (c) Hybrid

Figure 4. RDMA Transfer Schemes

4.1 Zero Copy RDMA with Buffer Management
Delegation

Three RDMA transfer schemes are possible, as dis-
cussed in Section 3.2. Although the server based RDMA
is adopted in current proposals for SRP and iSCSI/iSER,
it has its limitations for GNBD design. First, to achieve
zero copy RDMA for the GNBD client under such scheme,
the client has to send a list of scatter/gather entries to the
server, which may potentially be very long. Second, for
block reads, the server may end up with multiple RDMA
write operations for a single request if the block buffers are
non-contiguous. Third, to avoid memory registration, con-
trolled memory access has to be dealt with.

Figure 5. Management Delegation based
RDMA Scheme
To avoid the problems discussed above, we propose to

use client based RDMA design with a technique called
server buffer management delegation (MD) to achieve zero
copy. With MD, the server allocates a block buffer pool
exclusively for each client and delegates the management
of the buffer to the client, so the client can issue RDMA
operations immediately to the server without extra message
exchanges for address information. This technique enables
the implementation of a hybrid design, as discussed in Sec-
tion 3.2. However, due to RDMA write’s inability of scat-
ter operations and performance features of the InfiniBand

hardware, we choose to use RDMA read for block read op-
erations as shown in Figure 5. With such a design, the
client remains safe from exposing its physical memory ad-
dress space. At the same time, the server is safe from client
failures by the exclusiveness of these buffers.

4.2 Handling Request Ordering

Although InfiniBand RC service is a reliable connection
service, request ordering needs to be handled when both
RDMA read and RDMA write operations are used. Ac-
cording to InfiniBand specification, RDMA read operation
does not preserve the normal ordering semantics as send
and RDMA write. In particular, RDMA read may complete
after later send/RDMA write completes due to its round trip
nature, though multiple RDMA read operations are ensured
to maintain ordering among themselves. Therefore, our de-
sign needs to address this problem to maintain ordering con-
straints that block I/O requires.

In our design, a simple algorithm is used to fence
send/RDMA write requests immediately following the
RDMA read to maintain proper ordering. A fence flag is
used to notify send or RDMA write operations if there is
an outstanding RDMA read. When the following order-
preserving operation arrives, the flag is canceled. Then
when a RDMA read request completes, it checks if it is still
the owner of the flag it has set. If the result is positive, the
flag is canceled. Our experiments show that the impact of
fencing on performance is negligible.

4.3 Memory Management and Flow Control

In GNBD protocol, two types of messages are involved:
control message and data block message. Control messages
are small messages of fixed length holding request and re-
ply information implemented using normal send/recv se-
mantics. Data messages are actual blocks from/to storage
systems with variable length implemented using RDMA se-
mantics. Although the GNBD client can avoid managing
data buffers for block I/O transfer with pre-registered phys-



ical address space, it still needs to manage the delegated
buffer pool from the server. In addition, the server also
needs registered buffer for control messages.

In face of the high registration cost for InfiniBand com-
munication, we choose to use pre-registered buffer pools
for the server. For control messages, a static ring buffer is
implemented; and for data messages, a first fit algorithm is
implemented to manage buffers dynamically. On the client,
we use the same ring buffer management mechanism for
control message buffer. Although it is possible to use dy-
namic memory management interface provided by kernel,
the simple ring buffer scheme is more efficient.

For client/server based service, the server always needs
to deal with unexpected requests from clients with limited
resources, thus flow control must be considered. In partic-
ular, for InfiniBand RC transport, receive buffers for send
operations are expected to be pre-posted.

In our current implementation, we use a similar water-
mark based flow control scheme as in [6]. We tune the
threshold to over-provision the credits, thus excluding the
performance impact in our experiments. Although the cur-
rent scheme is static, a dynamic scheme with client/server
negotiation and on-line adjustment is certainly possible
within the design framework. More issues such as fairness
among multiple clients, strategies for bandwidth allocation
deserve further discussion, which are out of the scope of
this paper.

5 Performance Evaluation

To evaluate the impact of RDMA transport on GFS, we
compare our zero copy based RDMA scheme with TCP
over IPoIB, an IP emulation on the same InfiniBand hard-
ware. We also implement a server based buffer copy RDMA
scheme for GNBD to quantify the data copy impact. In this
section, we present the experimental performance results.

5.1 Experiment Setup

The experiments are conducted on an Intel Xeon 2.4GHz
cluster. Each node has 1GB memory and 64 bit PCI-X 133
MHz bus. All nodes are connected to InfiniBand network
using InfiniScale MT43132 eight port switch and Mellanox
MT23108 HCA. One node is set up as the GNBD server,
which exposes the direct attached hard disk as block device.

The workload in our experiment ensures that most of the
GNBD server I/O happens within the buffer cache. This
simulates the case of storage servers with large cache and
high storage I/O bandwidth of several hundred Megabytes.
We create GFS file system using the default 4K block size.
Multiple runs are conducted for each test; and the average
performance numbers are reported.

Several open source file system benchmarks and system
utility are used for our evaluation:

a) IOZone is a file system benchmark, which tests a va-
riety of file operations such as read/re-read, write/re-write
with different I/O mode. We use it for file read/write band-
width test under different modes.

b) Fileop stresses file system meta-data operations such
as link, unlink, create, and delete.

c) Postmark is designed to measure the transaction rate
for a pool of small files. Each transaction is either a
read/append pair or create/delete pair. It creates a workload
similar to Internet email server.

d) Tar is a widely used utility program to pack/unpack
small files. A lot of file operations are involved using this
tool.

In the following, we refer to our zero copy based RDMA
scheme as IB Zcopy, server based buffer copy RDMA
scheme as IB Bcopy, and TCP over IPoIB as TCP/IPoIB.

5.2 Results

IOZone Write Bandwidth: In Figure 6, we show write
bandwidth test results with 128M files using three different
modes. In “buffer write” mode, data is written back to the
file system buffer cache with dirty block flushing happening
in background asynchronously. In “flush write” mode, dirty
block flushing from buffer cache happens synchronously
within the benchmark timing. In “direct write” mode, file
system buffer cache is bypassed and data is flushed directly
to remote server; however, in this mode the benchmark re-
ports blocking I/O interface results, which only allows one
I/O system call outstanding.

0

50

100

150

200

250

300

350

400

Buffer Write Flush Write Direct Write

M
B

/s IB Zcopy
IB Bcopy
TCP/IPoIB

Figure 6. IOZone Write

The numbers shown in Figure 6 reveal that using TCP
as block I/O transport for GFS cannot provide satisfac-
tory performance. As shown by the performance differ-
ence between TCP/IPoIB and IB Bcopy schemes, IB Bcopy
performs up to 65% better than TCP/IPoIB among these



three modes. This indicates that the processing overhead
other than data copy contributes significantly to the network
under-utilization problem for 10Gbps interconnect. For IB
Bcopy, protocol offloading to InfiniBand hardware reduces
such influence.

Comparing the performance of IB Zcopy and IB Bcopy,
we see that data copy degrades the bandwidth by up to
47% among these cases. The impact is both on latency and
CPU utilization. In “direct mode”, the main latency im-
pact causes IB Zcopy to perform 17% better than IB Bcopy.
In “buffer write” mode and “flush write” mode, where the
background flushing thread (performing write behind) com-
petes CPU with the main thread, IB Zcopy performs 36%
and 47% better than IB Bcopy respectively. This indicates
the data copy’s CPU utilization impact on performance is
more significant.

IOZone Read Bandwidth: Figure 7 shows the read per-
formance with 128M files. In “buffer read” mode, data is
read from buffer cache with processor cache effects on. In
“purge read” mode, data is read from buffer cache with pro-
cessor cache effects for the target data buffer off. In “direct
read” mode, reading bypasses buffer cache and data is de-
livered from remote server directly.

0

500

1000

1500

2000

2500

Buffer Read Purge Read Direct Read

M
B

/s IB Zcopy
IB Bcopy
TCP/IPoIB

Figure 7. IOZone Read

Compared with the write results, the performance dif-
ference among IB Zcopy, IB Bcopy and TCP is minor be-
cause in the first two test modes most operations happen
locally. The difference between “buffer read” and “purge
read” exhibits the processor cache effects, which is as large
as 165%. However in “dircet read” mode, TCP’s high pro-
cessing overhead repeats itself, where our IB Zcopy scheme
is 87% better. For IB Zcopy and IB Bcopy, the copy elimi-
nation improves performance by 7%.

We have an interesting observation from the bandwidth
test: Although our 10Gbps InfiniBand can achieve band-
width of 834MB/s (as shown in Figure 2), our zero copy
RDMA based GFS can only achieve a fraction of that band-

width for bulk data read/write. Two factors possibly con-
tribute to this effect in our experiments. One is kernel re-
quests issuing rate; the other is server requests serving rate.
To narrow down the problem, we hacked our implementa-
tion to nullify bulk data RDMA and server side data flushes
operations for the write bandwidth test to see the impact.
The result shows that the performance improvement is still
minor. This indicates that management layers between ap-
plication and zero copy RDMA based block I/O restrict
the potential of high performance interconnects. Therefore,
kernel based file system needs to provide more efficient ser-
vices to scale with next generation interconnects.

0

5000

10000

15000

20000

25000

30000

create readdir link unlink delete

O
pe

ra
tio

ns
/s

IB Zcopy
IB Bcopy
TCP/IPoIB

Figure 8. Fileop

Fileop Meta Data Operations: Figure 8 shows the re-
sults of Fileop. The benchmark creates a 20-ary directory
tree of height two, each leaf is a one byte file. Fileop stresses
the file system meta-data operations. Although RDMA is
not significantly beneficial to small messages than copy
based send, this graph shows that the trend among differ-
ent network protocols still persists for most cases due to the
aggregate nature of meta-data operations using block I/O
based storage architecture.

Postmark and Tar: Table 1 shows the performance of
postmark with 2000 file pool and 2000 transactions as pa-
rameters. Table 2 shows the performance of extracting a
zipped tarball of around 52M. Both benchmarks involve file
creation and small write operations. The result shows that
the trend is consistent with those reported by IOZone and
Fileop. In particular, the extraction test shows that zero
copy based RDMA performs 21% better than copy based
RDMA and 47% better than TCP/IPoIB.

Table 1. Postmark Performance
Postmark IBZcopy IBBcopy TCP/IPoIB
Transactions/s 666 666 500



Table 2. Extracting Zipped Tarball

tar -zxf IBZcopy IBBcopy TCP/IPoIB
Seconds 13.18 16.621 20.518

In summary, the results show that TCP based processing
entails a high overhead for GFS block I/O besides data copy.
Data copy reduction is more beneficial for less CPU utiliza-
tion rather than latency optimization in the conducted tests.
The experiments also show that as network bandwidth ap-
proaches memory bandwidth, the OS/Filesystem manage-
ment layer is required to provide more efficient services in
order to scale with next generation high performance inter-
connects.

6 Conclusions and Future Work

InfiniBand’s hardware support for RDMA allows effi-
cient data transfer for storage block I/O. We apply this fea-
ture in the design of the block I/O access protocol of GFS, a
shared storage cluster file system. We propose a new tech-
nique, buffer management delegation, to implement zero
copy RDMA block transfer from client buffer cache to re-
mote GNBD server. The evaluation using several bench-
marks and frequently used system utilities shows that zero
copy RDMA can improve block I/O performance for up to
47% compared with our copy based RDMA implementa-
tion and 136% compared with TCP over the same Infini-
Band hardware. Our results also indicate that more efficient
and scalable management infrastructure is needed for kernel
based file system to scale with next generation high perfor-
mance Interconnects.

In the future, we intend to investigate further the per-
formance bottlenecks for GFS bandwidth scaling and study
buffer caching related issues for GNBD server design. We
also would like to evaluate our block I/O design together
with upcoming iSCSI/iSER implementations.

References

[1] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz,
J. Seizovic, and W. Su. Myrinet: A Gigabit-per-Second Lo-
cal Area Network. IEEE Micro, 15(1):29–36, 1995.

[2] B. Callaghan, T. Lingutla-Raj, and A. Chiu. NFS over
RDMA. In ACM SIGCOMM 2003 Workshops, 2003.

[3] Z. Chen, Y. Zhou, and K. Li. Eviction-based Cache Place-
ment for Storage Caches. In Proceedings of USENIX Annual
Technical Conference, General Track, pages 269–281, 2003.

[4] D. Dunning and G. Regnier. The Virtual Interface Architec-
ture. In Proceedings of Hot Interconnects, 1997.

[5] InfiniBand Trade Association. The InfiniBand Architecture.
http://www.infinibandta.org/specs.

[6] S. Liang, R. M. Noronha, and D. K. Panda. Swapping
to Remote Memory over InfiniBand: An Approach us-
ing a High Performance Network Block Device. In Pro-

ceedings of International Conference on Cluster Comput-
ing(CLUSTER’05), 2005.

[7] K. Magoutis, S. Addetia, A. Fedorova, and M. I. Seltzer.
Making the Most Out of Direct-Access Network Attached
Storage. In Proceedings of the 2nd USENIX Conference on
File and Storage Technologies, 2003.

[8] K. Magoutis, S. Addetia, A. Fedorova, M. I. Seltzer, J. S.
Chase, A. J. Gallatin, R. Kisley, R. Wickremesinghe, and
E. Gabber. Structure and Performance of the Direct Access
File System. In Proceedings of USENIX Annual Technical
Conference,General Track, pages 1–14, 2002.

[9] F. Petrini, E. Frachtenberg, A. Hoisie, and S. Coll. Perfor-
mance Evaluation of the Quadrics Interconnection Network.
Journal of Cluster Computing, 6(2):125–142, April 2003.

[10] P. Radkov, L. Yin, P. Goyal, P. Sarkar, and P. Shenoy. A Per-
formance Comparison of NFS and iSCSI for IP-Networked
Storage. In Proceedings of the 3rd USENIX Conference on
File and Storage Technologies, 2004.

[11] RDMA Consortium. An RDMA Protocol Specification.
http://www.rdmaconsortium.org.

[12] G. Regnier, S. Makineni, R. Illikkal, R. Iyer, D. Minturn,
R. Huggahalli, D. Newell, L. Cline, and A. Foong. TCP
Onloading for Data Center Servers. IEEE Computer,
37(11):48–58, 2004.

[13] P. Sarkar, S. Uttamchandani, and K. Voruganti. Storage Over
IP: When does Hardware Support Help? In Proceedings of
the 2rd USENIX Conference on File and Storage Technolo-
gies, 2003.

[14] S. R. Soltis, T. M. Ruwart, and M. T. O’Keefe. The Global
File System. In Proceedings of the Fifth NASA Goddard Con-
ference on Mass Storage Systems, pages 319–342, College
Park, MD, 1996. IEEE Computer Society Press.

[15] Storage Networking Industry Association. iSCSI/iSER and
SRP Protocols. http://www.snia.org.

[16] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net:
A User-Level Network Interface for Parallel and Distributed
Computing. In Proceedings of the 14th ACM Symposium on
Operating Systems Principles, pages 40–53, 1995.

[17] K. Voruganti and P. Sarkar. An Analysis of Three Gigabit
Networking Protocols for Stroage Area Networks. In Pro-
ceedings of International Conference on Performance, Com-
puting, and Communications, 2001.

[18] T. M. Wong and J. Wilkes. My Cache or Yours? Making
Storage More Exclusive. In Proceedings of USENIX Annual
Technical Conference,General Track, pages 161–175, 2002.

[19] J. Wu, P. Wyckoff, and D. Panda. Supporting Efficient Non-
contiguous Access in PVFS over InfiniBand. In Proceedings
of International Conference on Cluster Computing (CLUS-
TER’03), 2003.

[20] J. Wu, P. Wyckoff, and D. K. Panda. PVFS over InfiniBand:
Design and Performance Evaluation. In Proceedings of the
International Conference on Parallel Processing (ICPP’03)
, pages 125–132, 2003.

[21] Y. Zhou, A. Bilas, S. Jagannathan, C. Dubnicki, J. F. Philbin,
and K. Li. Experiences with VI communication for database
storage. In Proceedings of the 29th annual international
symposium on Computer architecture(ISCA’02), pages 257–
268, 2002.


