
Data Sharing Pattern Aware Scheduling on Grids

Young Choon Lee and Albert Y. Zomaya
Advanced Networks Research Group, School of Information Technologies,

The University of Sydney,
NSW 2006, Australia

{yclee,zomaya}@it.usyd.edu.au

Abstract

These days an increasing number of applications,

especially in science and engineering, are dealing with
a massive amount of data; hence they are data-
intensive. Bioinformatics, data-mining and image
processing are some typical areas of data-intensive
applications. Such applications tend to be deployed on
grids that provide powerful processing capabilities at
reasonable cost. One fundamental scheduling issue,
that arises when exploiting grids with these types of
applications, is the minimization of data transfer.
Therefore, the use of an efficient scheduling scheme
that takes into account data transfers is rather
essential in order to achieve both a shorter application
completion time and efficient system utilization. In this
paper, a novel scheduling algorithm, called the Shared
Input data based Listing (SIL) algorithm for data-
intensive bag-of-tasks (DBoT) applications in grid
environments is proposed. The algorithm uses a set of
task lists that are constructed taking the data sharing
pattern into account and that are reorganized
dynamically, based on performance of resources,
during the execution of the application. The primary
goal of this dynamic listing is to minimize data
transfer, thus leading to shortening the overall
completion time of DBoT applications. SIL further
attempts to reduce serious schedule increases by
adopting task duplication. In our evaluation study
extensive simulation tests with three different types of
the DBoT application model have been conducted.
Based on the experimental results, SIL noticeably
outperforms two previously proposed algorithms in
schedule length.

1. Introduction

As the grid has emerged as a promising platform to
tackle large-scale problems, an increasing number of
applications in various areas, including bioinformatics,

high energy physics, image processing and data
mining, have been developed and ported for grid
environments. In general, these applications are
designed with parallel and/or distributed processing in
mind. Two typical application models found among
them are bag-of-tasks and workflow. A bag-of-tasks
application consists of independent tasks and thus no
specific order of task execution, whereas an application
in the workflow model is composed of interdependent
tasks. Bag-of-tasks applications can be further
classified into compute-intensive and data-intensive. In
the case of running applications in the former category,
the performance of computing resources is the most
influential factor. However, the management of data
transfers plays a crucial role with applications in the
latter category.

In this paper, data-intensive bag-of-tasks
applications are of particular interest. The DBoT
application model can be found in many scientific,
engineering and enterprise applications, such as
BLAST [1], MCell [2], INS2D [3] and data mining
applications. Since tasks in a DBoT application are
able to run independently and simultaneously,
distributed computing systems, such as grids are
indeed suitable for DBoT applications [4]. Although
the tasks do not have any dependencies, they may
share input data. This particular characteristic of DBoT
applications (i.e. data sharing) raises one fundamental
scheduling issue, namely the minimization of data
transfer. Therefore, it is essential to use an efficient
scheduling scheme that takes into account data
transfers in order to achieve both shorter application
completion time and efficient system utilization.
However, designing such grid scheduling schemes
involves a number of challenging issues mainly due to
the dynamic nature of the grid. These issues include
searching for resources in collections of geographically
distributed heterogeneous computing systems and
making scheduling decisions taking into consideration
quality of service.

In recent years a number of grid scheduling
algorithms for various application models including the
DBoT application model have been proposed [5] [6]
[7] [8] [9]. Despite efforts that these existing
scheduling algorithms have been designed to provide
good performance, they have difficulty guaranteeing
the quality of schedules they produce. It can be said
that performance prediction information on resources
obtained using NWS [10] can be incorporated with
scheduling algorithms as in XSufferage [5] to ensure
the quality of scheduling. However, it is impractical to
assume that perfect performance information on
underlying resources in a grid is readily able to be
obtained.

In this paper, a novel scheduling algorithm, called
the Shared Input data based Listing (SIL) algorithm for
DBoT applications on grids is proposed. The algorithm
uses a set of task lists that are constructed taking the
data sharing pattern into account and that are
reorganized dynamically, based on performance of
resources, during the execution of the application. The
primary goal of this dynamic listing is to minimize
data transfer thus leading to shortening the overall
completion time of DBoT applications. SIL further
attempts to reduce serious schedule increases, that
occur because of inefficient task/host assignments, by
adopting task duplication.

The evaluation study in this paper is conducted with
three different types of DBoT applications in various
grid environments simulated using a grid simulator
built with SimGrid [11], [12]. The characteristics of
resources in the simulated grid environments are
random and uniformly distributed among a predefined
set of resource properties, such as processing speed,
latency and bandwidth. In addition, the workload on
each grid resource is simulated by workload traces
obtained from actual systems deployed as the GrADS
testbed at University of California, Santa Barbara [13].

The remainder of this paper is organized as follows.
Section 2 introduces the scheduling model used for the
algorithm. The proposed algorithm along with other
algorithms used for comparative purposes is described
in detail in Section 3. In Section 4, the evaluation
results are presented and explained with conclusions
following in Section 5.

2. Models

2.1. Grid Model

The grid G in our study consists of a number of sites in
each of which a set of m computational hosts is
participating in a grid. More formally,

G = {S1, S2,…,Sr}, and Si, 1 ≤ i ≤ r, = {Hi,1, Hi,2,…,
Hi,m} U Di

where Si is the ith site participating in G, and Hi and
Di are a set of host machines and data
repository/storage at Si, respectively. Let H = {H1,
H2,…, Hr} denote a set of all hosts in G.

Each site is an autonomous administrative domain
that has its own local users who use the resources in it.
These sites are connected with each other through
WAN. Hosts are composed of both space-shared and
time-shared machines with various processing speeds,
i.e., CPU speed. These resources are not entirely
dedicated to the grid. In other words, they are used for
both local and grid jobs. Each of these hosts has one or
more processors, memory, disk, etc. We assume that
hosts in the same site are able to access each other’s
data repository as if they are accessing their own, i.e., a
set of data repositories in a site can be represented as a
single data repository. This assumption is made
because a site connects its hosts through a high
bandwidth LAN, in general.

The availability and capability of resources, e.g.,
hosts and network links, fluctuates over time.
Therefore, the accurate completion time of a task on a
particular host is difficult, if not impossible, to
determine a priori. Moreover, the task may fail to
complete due to a failure of the resource on which it is
running. However, resource failures are not considered
in the study.

2.2. Application Model

Bag-of-tasks applications are typically
embarrassingly parallel type of applications that exist
in many scientific and engineering fields. An
application J of this model consists of a number of n
heterogeneous independent tasks {T1, T2,…, Tn}
without inter-task communications or dependencies
and thus it is suitable for grids. A task Ti in J is
associated with a set I i of input data objects {Ii,1, I i,2,…,
I i,d}.

In our model, tasks are data-intensive; that is, the
input data transfer for each task is a more influential
factor than its computation for task execution. A bunch
of tasks in an application may share one or more input
data objects. This data sharing pattern varies between
applications. Three typical data sharing patterns found
in DBoT applications are shown in Figure 1.

It is assumed that all input data are initially stored
on the host on which scheduling takes place.
Therefore, input data required by a task need to be
transferred from the scheduling host to the site on
which the task is scheduled if not existing on the

Data

objects

Tasks

 (a) One-Many (b) Disjointed (c) Random

Figure 1. Data Sharing Patterns of DBoT applications

scheduled site. We also assume that there are no inter-
site data exchanges.

The amount of output data produced by DBoT
applications considered in this study is assumed to be
much smaller and negligible compared to input data.

Hereafter, application and job are used
interchangeably.

2.3. Grid Scheduling Problem

The grid scheduling problem addressed in this study
is task scheduling of a set J of n independent tasks,
comprising a bag-of-tasks application, onto │H│
heterogeneous hosts dispersed across multiple sites in a
grid. The primary goal of this scheduling is to make as
many appropriate task-host matches as possible, so that
the makespan, also called schedule length, of a bag-of-
tasks application can be minimized. The makespan in
this study is defined as the amount of time taken from
the time the first input data transfer starts to the time
the last task completes its execution.

3. Scheduling Algorithms

In this section, some existing scheduling algorithms
are described first and then the proposed algorithm is
presented.

3.1. Storage Affinity (SA)

The Storage Affinity algorithm primarily aims at
the minimization of data transfer by making scheduling
decisions incorporating the location of data previously
transferred [6]. In addition, it considers task replication
as soon as a host becomes available between the time
the last unscheduled task gets assigned and the time the
last running task completes its execution.

SA determines task/host assignments based on ‘the
storage affinity metric.’ Storage affinity of a task to a
host is the amount of the task’s input data already
stored in the site to which the host belongs. Although
the scheduling decision SA makes is between task and
host, storage affinity is calculated between task and
site. This is because in the grid model used for SA each

site in the grid uses a single data repository that can be
fairly accessible by the hosts in the site.

For each scheduling decision SA calculates storage
affinity values of all unscheduled tasks and dispatches
the task with the largest storage affinity value. If none
of the tasks has a positive storage affinity value one of
them is scheduled at random. By the time this initial
scheduling gets completed there would be as many as
│H│ running tasks leaving all │H│ hosts busy. On the
completion of any of these running tasks SA starts task
replication. Now each of the remaining running tasks is
considered for replication and the best one is selected.
The selection decision is based on the storage affinity
value and the number of replicas.

3.2. List scheduling with Round-robin order
Replication (RR)

RR [14] is a grid scheduling algorithm for
independent coarse-grained tasks. As the name implies
its distinctiveness comes from the round-robin order
replication scheme that makes replicas of running tasks
in a round-robin fashion after conducting list
scheduling for all the unscheduled tasks. RR first
randomly assigns a task to each host in the grid and
then waits until one or more of those assigned hosts
complete their tasks. On the completion of a task the
next unscheduled task is dispatched to the host that on
which the completed task has run. This tends to result
in fast resources get more tasks. Once all the tasks are
dispatched RR starts replicating running tasks hoping
that some or all of these replicas finish earlier than
their originals. Note that, RR performs scheduling
without any dynamic information on resources and
tasks. Nevertheless, the algorithm is compelling and
comparable to other scheduling heuristics that require
such performance information.

3.3. The SIL Algorithm

Two very influential factors that should be taken
into account when scheduling DBoT applications on
grids are data transfer and the dynamicity of grid
resources. In this section we present SIL that
incorporates these issues into its scheduling.

Function GroupTasks
/** Input: A set J of tasks, a set H of hosts, a set G of sites
 Output: A set L of task lists **/
1. Let L = Ø
2. while J is not empty do
3. Remove the first task and tasks in J, such that all pairs of the tasks have data sharing
4. Create a task list, Ll and insert it to L
5. Associated Ll with Si, if i ≤ │G│, otherwise Ll is called unassociated
6. Insert the removed tasks to Ll
7. Create a task list, tempL
8. Remove the first task in Ll and insert it to tempL
9. while Ll is not empty do
10. Remove task, T,j in Ll that:
 • shows data sharing with some tasks in tempL
 • the amount of its data transfer is the smallest among tasks in Li if it is scheduled after tasks in
 tempL and they are all scheduled into the same site
11. Insert T,j to tempL
12. end while
13. Let Ll = tempL
14. end while
15. for each site, Si in G
16. Associate Ll which is associated with Si with a host, Hi,1 in Si
17. for each host, Hi,k in Si , except Hi,1
18. Find the longest task list, longestL, │ longestL │ > 1 in L in order of:
 lists associated with Si, unassociated lists and lists associated with other sites.
19. if │ longestL │ is greater than 1 then
20. Break longestL into two lists as 1st PT in longestL a delimiter /* don’t break if longestL is unassociated
*/
21. Associate the latter list with Hi,k
22. else
23. Break
24. end if
25. end for
26. end for
27. return L

Figure 2. The task grouping algorithm

The heuristic judiciously groups tasks into a number
of dynamic lists based on their data sharing patterns.
Each of these lists is intended to be scheduled into the
same site in the grid in order to minimize data transfer
which is critical to shorten the overall completion time
of DBoT applications in particular. Since the
performance of grid resources fluctuates over time the
lists are reorganized dynamically during application
runtime.

As an attempt to efficiently deal with the
dynamicity of grid resources SIL adopts task
duplication that is particularly helpful to avoid serious
schedule increases. For example, a couple of tasks may

be running unexpectedly long increasing the overall
schedule significantly due to the overload or abnormal
behaviors of the resources on which they are running
or being transferred.

Note that SIL does not use any prediction
information on the performance of resources and
applications, except the information on input data, i.e.,
size and location, which is easily obtainable.

SIL consists of two major phases:

• Task Grouping Phase (Figure 2) – groups tasks
into a set of lists based on their data sharing
pattern, associates these task lists with sites,
and further breaks and/or associates them with
hosts.

(a) A sample task list

Initial List Rearranged List
Task Data object TA ATA Task Data object TA ATA
T0 D3 10 10 T0 D3 10 10
T1 D1, D2, D6 50 50 T2 D3 10 0
T2 D3 10 0 T9 D1, D3 25 15
T3 D0 30 30 T1 D1, D2, D6 50 35
T4 D4 10 10 T8 D2, D4 35 10
T5 D0, D5 50 20 T4 D4 10 0
T6 D0, D2, D6 65 0 T6 D0, D2, D6 65 30
T7 D0, D6 50 0 T3 D0 30 0
T8 D2, D5 35 0 T7 D0, D6 50 0
T9 D1, D3 25 0 T5 D0, D5 50 20

(b) Task lists before and after task rearrangement

Figure 3. An example of task rearrangement

• Scheduling Phase (Figure 4) – assigns tasks to
hosts dynamically reorganizing task lists and
duplicates tasks when all tasks are scheduled
and some tasks are still running.

3.3.1. Task Grouping Phase

The major performance gain of SIL is achieved
through its distinctive task grouping scheme that tends
to make a substantial reduction of data transfer. A
DBoT application may show a certain data sharing
pattern as shown Figure 1. It is obvious that assigning
tasks sharing input data to the same site reduces data
transfer. This is a primary motivation for task grouping.
In the task grouping phase the tasks are first grouped
into a number of task lists and then tasks in each of
these lists are rearranged as shown in steps from 9 to
12. Each of the first │G│ task lists created at this stage
is associated with a site. This task rearrangement
further clusters tasks in each list according to actual
transfer amount (ATA) of task. The actual transfer
amount of a task is defined to be

∑
∩∈

−=
))((

)(),(

ij DDATId
jij dTTASTATA

where TA(Tj) is the original transfer amount of Tj,
DAT(Di) is the data already transferred to Di and │d│
is the amount of data object d.

An example of a task list after task rearrangement is
show in Figure 3. As one can easily see the ATAs of
the rearranged tasks exhibit a certain pattern of curve.
Here, T1, T6 and T5 are denoted as peak tasks (PT).
Note that, the first task in the rearranged list is not
considered for peak task in order to avoid a task list
continuously being associated with shifting from one
particular site to another particular site (steps from 17
to 25).

The peak tasks come into play when the task lists,
constructed and associated with sites in the first while
loop, are further divided (steps from 15 to 26) in order
for each host to get the share of tasks that are targeted
to be assigned to it. That is, the peak task is used as a
delimiter when breaking a site-wide task list into a
number of host-wide lists. A peak task in a task list
normally implies data sharing is small between those
tasks before the peak task and those tasks after it and
itself; hence it is suitable for being used as a delimiter.

3.3.2. Scheduling Phase

Algorithm SIL
/** Input: A set J of tasks, a set H of hosts, a set G of sites
 Output: A schedule of J onto H **/
1. Call GroupTasks
2. Assign the first task in each task list in L to its associated host
3. Wait until any host, H* becomes available
4. while any unscheduled task or running task exists do
5. Get next task, T* in the task list, L* associated with H*
6. if T* is empty then
7. Find task list, L** in L that contains unscheduled task, T** that:
 ATA(T**, S*), H*∈ S* is the smallest, but not 0 unless ATA of all unscheduled tasks is 0
8. if L** is not empty then
9. Break L** into two lists as T** a delimiter
10. Append L** to the end of L*
11. Let T* = T**
12. end if
13. end if
14. if T* is empty then
15. Find the running task, T** with min. ATA(T**, S*), H* ∈ S* and the smallest # replicas
16. Let T* = replica of T**
17. end if
18. Assign T* to H*
19. Wait until any host, H* becomes available /* either task completed or canceled */
20. Kill all the replicas of the task just completed
21. end while

Figure 4. The SIL algorithm

The work in the scheduling phase of SIL (Figure 4)
is significantly lightened by its intuitive task grouping.
SIL simply dispatches a task in each task list to the
host the list is associated with, waits until any of the
assigned hosts become available and assigns more

tasks to available hosts. This process is repeated until
one or more of the task lists become empty. Once this
happens and there are still some tasks unscheduled,
SIL searches among all unscheduled tasks for an
unscheduled task whose ATA to the available host is
the smallest, but not 0. An unscheduled task with an
ATA of 0 might be selected if all unscheduled tasks
have their ATAs being 0. Note that SIL does not just
take that task, but it also takes all the tasks after that
task and appends them to the end of the emptied task
list. This is because the amount of data transfer of the
following tasks is likely to increase if the selected
task’s data transfer to the site to which their associated
host belongs has not taken place.

There are two main reasons for the adoption of task
duplication in the proposed algorithm. First, due to the
absence of the use of performance information in SIL
some tasks might be assigned to resources that show a
drastic performance drop during the time they are in
process, i.e., they are running on hosts or their input

data are being transferred. In addition, hosts that
become available, when there are no more tasks to
schedule, could complete some of running tasks if they
are duplicated and assigned to these hosts.

As implied above task duplication only starts when

all tasks are scheduled, some tasks are still running and
one or more hosts are available. The selection for a
task to be duplicated is determined based on ATA and
the number of replicas.

4. Experiments

The comparative evaluation of the SIL algorithm is
presented in this section. Comparisons have been
conducted between two previously proposed
scheduling algorithms (i.e., SA and RR) introduced in
Section 3 and SIL. This selection is made based on
their proven performance and the performance
information independence; that is, their scheduling
decisions, like SIL’s, are made without using any
performance information on resources and
applications. Note that the target application model of
RR is a computation intensive bag-of-tasks which is
different from that of SIL and SA. Despite this factor it

Table 1. A predefined set of resource and job
parameters

 Property Value

The number of sites 3 – 25
The number of hosts per
site 2 – 8 Computing
Relative processing
speed 1 – 7.5

Bandwidth (Mbps) 0.1 – 100
Communication

Latency (ms) 1 – 300
The number of tasks 100 – 1000
Random computation
time of task (sec) 100 – 500

Proportional
computation time of task
(sec/MB)

1 – 5
Job

The size of data per
task(MB) 4 – 100

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Random Computation Cost Proportional Computation Cost

A
ve

ra
ge

 M
ak

es
pa

n
(s

ec
)

RR
SA
SIL

(a) One-many

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Random Computation Cost Proportional Computation Cost

A
ve

ra
ge

 M
ak

es
pa

n
(s

ec
)

RR
SA
SIL

(b) Partitioned

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Random Computation Cost Proportional Computation Cost

A
ve

ra
ge

 M
ak

es
pa

n
(s

ec
)

RR
SA
SIL

(c) Random

Figure 5. Simulation Results for different data

sharing patterns of DBoT applications

is selected for the present comparison study. This is
mainly to study the impact of neglecting data transfer
on scheduling quality.

The performance metric used for the comparison is
makespan. Typically, the makespan of a job generated
by a scheduling algorithm is used as the main
performance measure of the algorithm.

4.1. Simulation Configuration

The grid simulator used for this study is
implemented with SimGrid since its rich set of
simulation facilities empowers us to easily develop and
evaluate scheduling algorithms for heterogeneous
distributed computing environments, e.g.,
computational grids. Another tool used for simulating
grids is Tiers [15], a random network topology
generator that produces random network models
analogous with the structure of the Internet.

Properties of resources and jobs in the simulations
conducted in this study are random and uniformly
distributed among a predefined set of resources and job
parameters shown in Table 1. Each host and network
link is simulated by workload traces obtained from
actual systems deployed as the GrADS testbed at
University of California, Santa Barbara.

4.2. Experimental Results

The proposed algorithm and the two previously
proposed algorithms, SA and RR are extensively
experimented with using a total of 18,000 simulations,

i.e., 6,000 simulations for each. More specifically,
three groups (i.e. the three data sharing patterns shown
in Figure 1) of 20 jobs are first generated. With respect

to each group of 20 jobs, the computation time of each
task in one 10 job lot is random and uniformly
distributed between 100 and 500 seconds and that in
the other 10 job lot is proportional to the size of the
input data. Each 10 job lot is run in 10 different
simulated grids (i.e. 100 grid-job pairs per 10 jobs),

and these 600 grid-job pairs are run 10 times with
different host and network link workload traces.

It can be easily seen from Figure 5 that SIL
outperforms SA and RR by a significant margin,
except for DBoT applications that show a random data
sharing pattern. According to the experimental results
SIL can be a natural choice for DBoT applications that
show one-many and partitioned data sharing patterns in
particular. As mentioned earlier this superior
performance of SIL to the other two is achieved
through its distinctive task grouping scheme and
dynamic task reorganization taking data transfer into
account.

The results for DBoT applications with random data
sharing, presented in Figure 5 (c) indicate that the
average makespan of SIL is only slightly over 2%
higher than that of SA. This can be explained as
follows. When tasks in a DBoT application are sharing
input data randomly it is often the case that all pairs of
tasks share some input data; hence a single task list is
constructed when SIL is used. In this case some data
transfers to different sites containing the same data
tend to be frequent.

The average makespan of SIL computed based on
the entire simulations is 13% and 26% on average
smaller than those of SA and RR, respectively. It is
observed that with some data sharing patterns SIL
outperforms SA and RR by 22% and 40%. The poor
performance of RR is a strong indication that
scheduling for DBoT applications in grids should take
data transfer into account.

5. Conclusion

In this paper, we have presented a novel scheduling
algorithm, called the SIL algorithm, for data intensive
bag-of-tasks applications in grid environments. SIL
delves into the data sharing pattern of DBoT
applications in order to efficiently group and
reorganize tasks. In addition, its adoption of task
duplication helps lead to better schedules. Based on a
number of intensive experiments with various test
configurations SIL mostly outperformed the two
algorithms by a noticeable margin, especially when
scheduling DBoT applications with one-many and
partitioned data sharing patterns. The simulation
results presented in this paper clearly show this
promising performance of SIL.

6. References

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D.
J. Lipman, “Basic local alignment search tool,” J. Molecular
Biology, 1(215):403–410, 1990.

[2] J. Stiles, T. Bartol, E. Salpeter, and M. Salpeter, “Monte
Carlo simulation of neuromuscular transmitter release using
MCell, a general simulator of cellular physiological
processes,” Computational Neuroscience, pp. 279-284, 1998.
[3] S. Rogers and D. Ywak, “Steady and Unsteady Solutions
of the Incompressible Navier-Stokes Equations,” AIAA
Journal, 29(4):603-610, Apr. 1991.
[4] I. Foster and C. Kesselman (eds.), The Grid: Blueprint for
a Future Computing Infrastructure, Morgan Kaufmann, San
Francisco, CA, USA, 1999.
[5] H. Casanova, A. Legrand, D. Zagorodnov, and F.
Berman, “Heuristics for scheduling parameter sweep
applications in grid environments,” In Heterogeneous
Computing Workshop, Cancun, Mexico, pages 349–363,
May 2000.
[6] E. Santos-Neto, W. Cirne, F. Brasileiro, and A. Lima,
“Exploiting Replication and Data Reuse to Efficiently
Schedule Data-Intensive Applications on Grids,” In
Workshop on Job Scheduling Strategies for Parallel
Processing, New York, NY, USA, pages 210-232, Jun. 2004.
[7] K. Ranganathan, and I. Foster, “Decoupling computation
and data scheduling in distributed data-intensive
applications,” In Int’l Symp. High Performance Distributed
Computing, Edinburgh, Scotland, pages 352–358, Jul. 2002.
[8] H. Mohamed and D. Epema. “An Evaluation of the
Close-to-Files Processor and Data Co-Allocation Policy in
Multiclusters,” In Int’l Conf. Cluster Computing, pages 287-
298, Sep. 2004.
[9] C. Banino, O. Beaumont, L. Carter, J. Ferrante, A.
Legrand, and Y. Robert, “Scheduling Strategies for Master-
Slave Tasking on Heterogeneous Processor Platforms,” IEEE
Trans. Parallel and Distributed Systems, 15(4):319-330, Apr.
2004.
[10] R. Wolski, “Dynamically Forecasting Network
Performance Using the Network Weather Service,” Cluster
Computing, 1(1):119-132, Mar. 1998.
[11] H. Casanova, “Simgrid: A Toolkit for the Simulation of
Application Scheduling,” In Int’l Symp. Cluster Computing
and the Grid, pages 430-437, May 2001.
[12] A. Legrand, L. Marchal and H. Casanova, “Scheduling
Distributed Applications: the SimGrid Simulation
Framework,” In Int’l Symp. Cluster Computing and the
Grid, pages 138-145, May, 2003.
[13] http://pompone.cs.ucsb.edu/~rich/data/.
[14] N. Fujimoto and K. Hagihara, “Near-optimal dynamic
task scheduling of independent coarse-grained tasks onto a
computational grid,” In Int’l Conf. Parallel Processing,
pages 391–398, Oct. 2003.
[15] M. Doar, “A Better Model for Generating Test
Networks,” In Global Telecommunications Conference,
pages 86-93, Nov. 1996.

