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Abstract 

 
These days an increasing number of applications, 

especially in science and engineering, are dealing with 
a massive amount of data; hence they are data-
intensive. Bioinformatics, data-mining and image 
processing are some typical areas of data-intensive 
applications. Such applications tend to be deployed on 
grids that provide powerful processing capabilities at 
reasonable cost. One fundamental scheduling issue, 
that arises when exploiting grids with these types of 
applications, is the minimization of data transfer. 
Therefore, the use of an efficient scheduling scheme 
that takes into account data transfers is rather 
essential in order to achieve both a shorter application 
completion time and efficient system utilization. In this 
paper, a novel scheduling algorithm, called the Shared 
Input data based Listing (SIL) algorithm for data-
intensive bag-of-tasks (DBoT) applications in grid 
environments is proposed. The algorithm uses a set of 
task lists that are constructed taking the data sharing 
pattern into account and that are reorganized 
dynamically, based on performance of resources, 
during the execution of the application. The primary 
goal of this dynamic listing is to minimize data 
transfer, thus leading to shortening the overall 
completion time of DBoT applications. SIL further 
attempts to reduce serious schedule increases by 
adopting task duplication. In our evaluation study 
extensive simulation tests with three different types of 
the DBoT application model have been conducted. 
Based on the experimental results, SIL noticeably 
outperforms two previously proposed algorithms in 
schedule length.  
 
1. Introduction 
 

As the grid has emerged as a promising platform to 
tackle large-scale problems, an increasing number of 
applications in various areas, including bioinformatics, 

high energy physics, image processing and data 
mining, have been developed and ported for grid 
environments. In general, these applications are 
designed with parallel and/or distributed processing in 
mind. Two typical application models found among 
them are bag-of-tasks and workflow. A bag-of-tasks 
application consists of independent tasks and thus no 
specific order of task execution, whereas an application 
in the workflow model   is composed of interdependent 
tasks. Bag-of-tasks applications can be further 
classified into compute-intensive and data-intensive. In 
the case of running applications in the former category, 
the performance of computing resources is the most 
influential factor. However, the management of data 
transfers plays a crucial role with applications in the 
latter category. 

In this paper, data-intensive bag-of-tasks 
applications are of particular interest. The DBoT 
application model can be found in many scientific, 
engineering and enterprise applications, such as 
BLAST [1], MCell [2], INS2D [3] and data mining 
applications. Since tasks in a DBoT application are 
able to run independently and simultaneously, 
distributed computing systems, such as grids are 
indeed suitable for DBoT applications [4]. Although 
the tasks do not have any dependencies, they may 
share input data. This particular characteristic of DBoT 
applications (i.e. data sharing) raises one fundamental 
scheduling issue, namely the minimization of data 
transfer. Therefore, it is essential to use an efficient 
scheduling scheme that takes into account data 
transfers in order to achieve both shorter application 
completion time and efficient system utilization. 
However, designing such grid scheduling schemes 
involves a number of challenging issues mainly due to 
the dynamic nature of the grid. These issues include 
searching for resources in collections of geographically 
distributed heterogeneous computing systems and 
making scheduling decisions taking into consideration 
quality of service. 



In recent years a number of grid scheduling 
algorithms for various application models including the 
DBoT application model have been proposed [5] [6] 
[7] [8] [9]. Despite efforts that these existing 
scheduling algorithms have been designed to provide 
good performance, they have difficulty guaranteeing 
the quality of schedules they produce. It can be said 
that performance prediction information on resources 
obtained using NWS [10] can be incorporated with 
scheduling algorithms as in XSufferage [5] to ensure 
the quality of scheduling. However, it is impractical to 
assume that perfect performance information on 
underlying resources in a grid is readily able to be 
obtained. 

In this paper, a novel scheduling algorithm, called 
the Shared Input data based Listing (SIL) algorithm for 
DBoT applications on grids is proposed. The algorithm 
uses a set of task lists that are constructed taking the 
data sharing pattern into account and that are 
reorganized dynamically, based on performance of 
resources, during the execution of the application. The 
primary goal of this dynamic listing is to minimize 
data transfer thus leading to shortening the overall 
completion time of DBoT applications. SIL further 
attempts to reduce serious schedule increases, that 
occur because of inefficient task/host assignments, by 
adopting task duplication. 

The evaluation study in this paper is conducted with 
three different types of DBoT applications in various 
grid environments simulated using a grid simulator 
built with SimGrid [11], [12]. The characteristics of 
resources in the simulated grid environments are 
random and uniformly distributed among a predefined 
set of resource properties, such as processing speed, 
latency and bandwidth. In addition, the workload on 
each grid resource is simulated by workload traces 
obtained from actual systems deployed as the GrADS 
testbed at University of California, Santa Barbara [13]. 

The remainder of this paper is organized as follows. 
Section 2 introduces the scheduling model used for the 
algorithm. The proposed algorithm along with other 
algorithms used for comparative purposes is described 
in detail in Section 3. In Section 4, the evaluation 
results are presented and explained with conclusions 
following in Section 5. 
 
2. Models 
 
2.1. Grid Model 
 
The grid G in our study consists of a number of sites in 
each of which a set of m computational hosts is 
participating in a grid. More formally, 

G = {S1, S2,…,Sr}, and Si, 1 ≤ i ≤ r, = {Hi,1, Hi,2,…, 
Hi,m} U Di 

where Si is the ith site participating in G, and Hi and 
Di are a set of host machines and data 
repository/storage at Si, respectively. Let H = {H1, 
H2,…, Hr} denote a set of all hosts in G. 

Each site is an autonomous administrative domain 
that has its own local users who use the resources in it. 
These sites are connected with each other through 
WAN. Hosts are composed of both space-shared and 
time-shared machines with various processing speeds, 
i.e., CPU speed. These resources are not entirely 
dedicated to the grid. In other words, they are used for 
both local and grid jobs. Each of these hosts has one or 
more processors, memory, disk, etc. We assume that 
hosts in the same site are able to access each other’s 
data repository as if they are accessing their own, i.e., a 
set of data repositories in a site can be represented as a 
single data repository. This assumption is made 
because a site connects its hosts through a high 
bandwidth LAN, in general. 

The availability and capability of resources, e.g., 
hosts and network links, fluctuates over time. 
Therefore, the accurate completion time of a task on a 
particular host is difficult, if not impossible, to 
determine a priori. Moreover, the task may fail to 
complete due to a failure of the resource on which it is 
running. However, resource failures are not considered 
in the study. 
 
2.2. Application Model 
 

Bag-of-tasks applications are typically 
embarrassingly parallel type of applications that exist 
in many scientific and engineering fields. An 
application J of this model consists of a number of n 
heterogeneous independent tasks {T1, T2,…, Tn} 
without inter-task communications or dependencies 
and thus it is suitable for grids. A task Ti in J is 
associated with a set I i of input data objects {Ii,1, I i,2,…, 
I i,d}. 

In our model, tasks are data-intensive; that is, the 
input data transfer for each task is a more influential 
factor than its computation for task execution. A bunch 
of tasks in an application may share one or more input 
data objects. This data sharing pattern varies between 
applications. Three typical data sharing patterns found 
in DBoT applications are shown in Figure 1. 

It is assumed that all input data are initially stored 
on the host on which scheduling takes place. 
Therefore, input data required by a task need to be 
transferred from the scheduling host to the site on 
which the task is scheduled if not existing on the 
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Figure 1. Data Sharing Patterns of DBoT applications 

scheduled site. We also assume that there are no inter-
site data exchanges. 

The amount of output data produced by DBoT 
applications considered in this study is assumed to be 
much smaller and negligible compared to input data. 

Hereafter, application and job are used 
interchangeably. 
 
2.3. Grid Scheduling Problem 
 

The grid scheduling problem addressed in this study 
is task scheduling of a set J of n independent tasks, 
comprising a bag-of-tasks application, onto │H│ 
heterogeneous hosts dispersed across multiple sites in a 
grid. The primary goal of this scheduling is to make as 
many appropriate task-host matches as possible, so that 
the makespan, also called schedule length, of a bag-of-
tasks application can be minimized. The makespan in 
this study is defined as the amount of time taken from 
the time the first input data transfer starts to the time 
the last task completes its execution. 
 
3. Scheduling Algorithms 
 

In this section, some existing scheduling algorithms 
are described first and then the proposed algorithm is 
presented. 
 
3.1. Storage Affinity (SA) 
 

The Storage Affinity algorithm primarily aims at 
the minimization of data transfer by making scheduling 
decisions incorporating the location of data previously 
transferred [6]. In addition, it considers task replication 
as soon as a host becomes available between the time 
the last unscheduled task gets assigned and the time the 
last running task completes its execution. 

SA determines task/host assignments based on ‘the 
storage affinity metric.’ Storage affinity of a task to a 
host is the amount of the task’s input data already 
stored in the site to which the host belongs. Although 
the scheduling decision SA makes is between task and 
host, storage affinity is calculated between task and 
site. This is because in the grid model used for SA each 

site in the grid uses a single data repository that can be 
fairly accessible by the hosts in the site. 

For each scheduling decision SA calculates storage 
affinity values of all unscheduled tasks and dispatches 
the task with the largest storage affinity value. If none 
of the tasks has a positive storage affinity value one of 
them is scheduled at random. By the time this initial 
scheduling gets completed there would be as many as 
│H│ running tasks leaving all │H│ hosts busy. On the 
completion of any of these running tasks SA starts task 
replication. Now each of the remaining running tasks is 
considered for replication and the best one is selected. 
The selection decision is based on the storage affinity 
value and the number of replicas. 
 
3.2. List scheduling with Round-robin order 
Replication (RR) 
 

RR [14] is a grid scheduling algorithm for 
independent coarse-grained tasks. As the name implies 
its distinctiveness comes from the round-robin order 
replication scheme that makes replicas of running tasks 
in a round-robin fashion after conducting list 
scheduling for all the unscheduled tasks. RR first 
randomly assigns a task to each host in the grid and 
then waits until one or more of those assigned hosts 
complete their tasks. On the completion of a task the 
next unscheduled task is dispatched to the host that on 
which the completed task has run. This tends to result 
in fast resources get more tasks. Once all the tasks are 
dispatched RR starts replicating running tasks hoping 
that some or all of these replicas finish earlier than 
their originals. Note that, RR performs scheduling 
without any dynamic information on resources and 
tasks. Nevertheless, the algorithm is compelling and 
comparable to other scheduling heuristics that require 
such performance information. 
 
3.3. The SIL Algorithm 
 

Two very influential factors that should be taken 
into account when scheduling DBoT applications on 
grids are data transfer and the dynamicity of grid 
resources. In this section we present SIL that 
incorporates these issues into its scheduling. 



Function GroupTasks 
/** Input: A set J of tasks, a set H of hosts, a set G of sites 
      Output: A set L of task lists                                                   **/ 
1.  Let L = Ø 
2.  while J is not empty do 
3.      Remove the first task and tasks in J, such that all pairs of the tasks have data sharing 
4.      Create a task list, Ll  and insert it to L  
5.      Associated Ll with Si, if i  ≤ │G│, otherwise Ll  is called unassociated 
6.      Insert the removed tasks to Ll 
7.      Create a task list, tempL 
8.      Remove the first task in Ll and insert it to tempL 
9.      while Ll is not empty do 
10.        Remove task, T,j in Ll that: 
                 • shows data sharing with some tasks in tempL  
                 • the amount of its data transfer is the smallest among tasks in Li if it is scheduled after tasks in       
                    tempL and they are all scheduled into the same site 
11.        Insert T,j  to tempL 
12.    end while 
13.    Let Ll  = tempL 
14. end while 
15. for each site, Si in G 
16.     Associate Ll which is associated with Si  with a host, Hi,1 in Si 
17.     for each host, Hi,k in Si , except Hi,1 
18.         Find the longest task list, longestL, │ longestL │ > 1 in L in order of: 
                  lists associated with Si, unassociated lists and lists associated with other sites. 
19.         if │ longestL │ is greater than 1 then 
20.             Break longestL into two lists as 1st PT in longestL a delimiter /* don’t break if longestL is unassociated 
*/ 
21.             Associate the latter list with Hi,k 
22.         else 
23.             Break 
24.        end if 
25.     end for 
26. end for 
27. return L 
 

Figure 2. The task grouping algorithm 

The heuristic judiciously groups tasks into a number 
of dynamic lists based on their data sharing patterns. 
Each of these lists is intended to be scheduled into the 
same site in the grid in order to minimize data transfer 
which is critical to shorten the overall completion time 
of DBoT applications in particular. Since the 
performance of grid resources fluctuates over time the 
lists are reorganized dynamically during application 
runtime. 

As an attempt to efficiently deal with the 
dynamicity of grid resources SIL adopts task 
duplication that is particularly helpful to avoid serious 
schedule increases. For example, a couple of tasks may 

be running unexpectedly long increasing the overall 
schedule significantly due to the overload or abnormal 
behaviors of the resources on which they are running 
or being transferred. 

Note that SIL does not use any prediction 
information on the performance of resources and 
applications, except the information on input data, i.e., 
size and location, which is easily obtainable. 

SIL consists of two major phases: 

• Task Grouping Phase (Figure 2) – groups tasks 
into a set of lists based on their data sharing 
pattern, associates these task lists with sites, 
and further breaks and/or associates them with 
hosts. 



 
(a) A sample task list 

Initial List Rearranged List 
Task Data object TA ATA Task Data object TA ATA  
T0 D3 10 10 T0 D3 10 10 
T1 D1, D2, D6 50 50 T2 D3 10 0 
T2 D3 10 0 T9 D1, D3 25 15 
T3 D0 30 30 T1 D1, D2, D6 50 35 
T4 D4 10 10 T8 D2, D4 35 10 
T5 D0, D5 50 20 T4 D4 10 0 
T6 D0, D2, D6 65 0 T6 D0, D2, D6 65 30 
T7 D0, D6 50 0 T3 D0 30 0 
T8 D2, D5 35 0 T7 D0, D6 50 0 
T9 D1, D3 25 0 T5 D0, D5 50 20 

 

 

 

(b) Task lists before and after task rearrangement 
 

Figure 3. An example of task rearrangement 

• Scheduling Phase (Figure 4) – assigns tasks to 
hosts dynamically reorganizing task lists and 
duplicates tasks when all tasks are scheduled 
and some tasks are still running. 

 
3.3.1. Task Grouping Phase 
 

The major performance gain of SIL is achieved 
through its distinctive task grouping scheme that tends 
to make a substantial reduction of data transfer. A 
DBoT application may show a certain data sharing 
pattern as shown Figure 1. It is obvious that assigning 
tasks sharing input data to the same site reduces data 
transfer. This is a primary motivation for task grouping. 
In the task grouping phase the tasks are first grouped 
into a number of task lists and then tasks in each of 
these lists are rearranged as shown in steps from 9 to 
12. Each of the first │G│ task lists created at this stage 
is associated with a site. This task rearrangement 
further clusters tasks in each list according to actual 
transfer amount (ATA) of task. The actual transfer 
amount of a task is defined to be 

∑
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where TA(Tj) is the original transfer amount of Tj, 
DAT(Di) is the data already transferred to Di and │d│ 
is the amount of data object d. 

An example of a task list after task rearrangement is 
show in Figure 3. As one can easily see the ATAs of 
the rearranged tasks exhibit a certain pattern of curve. 
Here, T1, T6 and T5 are denoted as peak tasks (PT). 
Note that, the first task in the rearranged list is not 
considered for peak task in order to avoid a task list 
continuously being associated with shifting from one 
particular site to another particular site (steps from 17 
to 25). 

The peak tasks come into play when the task lists, 
constructed and associated with sites in the first while 
loop, are further divided (steps from 15 to 26) in order 
for each host to get the share of tasks that are targeted 
to be assigned to it. That is, the peak task is used as a 
delimiter when breaking a site-wide task list into a 
number of host-wide lists. A peak task in a task list 
normally implies data sharing is small between those 
tasks before the peak task and those tasks after it and 
itself; hence it is suitable for being used as a delimiter. 
 
3.3.2. Scheduling Phase 
 



Algorithm SIL 
/** Input: A set J of tasks, a set H of hosts, a set G of sites 
      Output: A schedule of J onto H                                            **/ 
1.  Call GroupTasks 
2.  Assign the first task in each task list in L to its associated host  
3.  Wait until any host, H* becomes available 
4.  while any unscheduled task or running task exists do 
5.      Get next task, T* in the task list, L* associated with H* 
6.      if T* is empty then 
7.          Find task list, L** in L that contains unscheduled task, T** that: 
                 ATA(T**, S*), H*∈ S* is the smallest, but not 0 unless ATA of all unscheduled tasks is 0 
8.          if L** is not empty then 
9.              Break L** into two lists as T** a delimiter 
10.            Append L** to the end of L* 
11.            Let T* = T** 
12.        end if 
13.    end if 
14.    if T* is empty then 
15.        Find the running task, T** with min. ATA(T**, S*), H* ∈ S* and the smallest # replicas 
16.         Let T* = replica of T** 
17.    end if 
18.    Assign T* to H* 
19.    Wait until any host, H* becomes available  /* either task completed or canceled */ 
20.    Kill all the replicas of the task just completed 
21. end while 
 

Figure 4. The SIL algorithm 

The work in the scheduling phase of SIL (Figure 4) 
is significantly lightened by its intuitive task grouping. 
SIL simply dispatches a task in each task list to the 
host the list is associated with, waits until any of the 
assigned hosts become available and assigns more 

tasks to available hosts. This process is repeated until 
one or more of the task lists become empty. Once this 
happens and there are still some tasks unscheduled, 
SIL searches among all unscheduled tasks for an 
unscheduled task whose ATA to the available host is 
the smallest, but not 0. An unscheduled task with an 
ATA of 0 might be selected if all unscheduled tasks 
have their ATAs being 0. Note that SIL does not just 
take that task, but it also takes all the tasks after that 
task and appends them to the end of the emptied task 
list. This is because the amount of data transfer of the 
following tasks is likely to increase if the selected 
task’s data transfer to the site to which their associated 
host belongs has not taken place. 

There are two main reasons for the adoption of task 
duplication in the proposed algorithm. First, due to the 
absence of the use of performance information in SIL 
some tasks might be assigned to resources that show a 
drastic performance drop during the time they are in 
process, i.e., they are running on hosts or their input 

data are being transferred. In addition, hosts that 
become available, when there are no more tasks to 
schedule, could complete some of running tasks if they 
are duplicated and assigned to these hosts. 

As implied above task duplication only starts when 

all tasks are scheduled, some tasks are still running and 
one or more hosts are available. The selection for a 
task to be duplicated is determined based on ATA and 
the number of replicas. 
 
4. Experiments 
 

The comparative evaluation of the SIL algorithm is 
presented in this section. Comparisons have been 
conducted between two previously proposed 
scheduling algorithms (i.e., SA and RR) introduced in 
Section 3 and SIL. This selection is made based on 
their proven performance and the performance 
information independence; that is, their scheduling 
decisions, like SIL’s, are made without using any 
performance information on resources and 
applications. Note that the target application model of 
RR is a computation intensive bag-of-tasks which is 
different from that of SIL and SA. Despite this factor it 



Table 1. A predefined set of resource and job 
parameters 

 
 Property Value 

The number of sites 3 – 25 
The number of hosts per 
site 2 – 8 Computing 
Relative processing 
speed 1 – 7.5 

Bandwidth (Mbps) 0.1 – 100 
Communication 

Latency (ms) 1 – 300 
The number of tasks 100 – 1000 
Random computation 
time of task (sec) 100 – 500 

Proportional 
computation time of task 
(sec/MB) 

1 – 5 
Job 

The size of data per 
task(MB) 4 – 100 
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(a) One-many 
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(b) Partitioned 
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(c) Random 
 
Figure 5. Simulation Results for different data 

sharing patterns of DBoT applications 

is selected for the present comparison study. This is 
mainly to study the impact of neglecting data transfer 
on scheduling quality. 

The performance metric used for the comparison is 
makespan. Typically, the makespan of a job generated 
by a scheduling algorithm is used as the main 
performance measure of the algorithm. 
 
4.1. Simulation Configuration 
 

The grid simulator used for this study is 
implemented with SimGrid since its rich set of 
simulation facilities empowers us to easily develop and 
evaluate scheduling algorithms for heterogeneous 
distributed computing environments, e.g., 
computational grids. Another tool used for simulating 
grids is Tiers [15], a random network topology 
generator that produces random network models 
analogous with the structure of the Internet. 

Properties of resources and jobs in the simulations 
conducted in this study are random and uniformly 
distributed among a predefined set of resources and job 
parameters shown in Table 1. Each host and network 
link is simulated by workload traces obtained from 
actual systems deployed as the GrADS testbed at 
University of California, Santa Barbara. 
 

4.2. Experimental Results 
 

The proposed algorithm and the two previously 
proposed algorithms, SA and RR are extensively   
experimented with using a total of 18,000 simulations, 

i.e., 6,000 simulations for each. More specifically, 
three groups (i.e. the three data sharing patterns shown 
in Figure 1) of 20 jobs are first generated. With respect 

to each group of 20 jobs, the computation time of each 
task in one 10 job lot is random and uniformly 
distributed between 100 and 500 seconds and that in 
the other 10 job lot is proportional to the size of the 
input data. Each 10 job lot is run in 10 different 
simulated grids (i.e. 100 grid-job pairs per 10 jobs), 



and these 600 grid-job pairs are run 10 times with 
different host and network link workload traces. 

It can be easily seen from Figure 5 that SIL 
outperforms SA and RR by a significant margin, 
except for DBoT applications that show a random data 
sharing pattern. According to the experimental results 
SIL can be a natural choice for DBoT applications that 
show one-many and partitioned data sharing patterns in 
particular. As mentioned earlier this superior 
performance of SIL to the other two is achieved 
through its distinctive task grouping scheme and 
dynamic task reorganization taking data transfer into 
account. 

The results for DBoT applications with random data 
sharing, presented in Figure 5 (c) indicate that the 
average makespan of SIL is only slightly over 2% 
higher than that of SA. This can be explained as 
follows. When tasks in a DBoT application are sharing 
input data randomly it is often the case that all pairs of 
tasks share some input data; hence a single task list is 
constructed when SIL is used. In this case some data 
transfers to different sites containing the same data 
tend to be frequent. 

The average makespan of SIL computed based on 
the entire simulations is 13% and 26% on average 
smaller than those of SA and RR, respectively. It is 
observed that with some data sharing patterns SIL 
outperforms SA and RR by 22% and 40%. The poor 
performance of RR is a strong indication that 
scheduling for DBoT applications in grids should take 
data transfer into account. 
 
5. Conclusion 
 

In this paper, we have presented a novel scheduling 
algorithm, called the SIL algorithm, for data intensive 
bag-of-tasks applications in grid environments. SIL 
delves into the data sharing pattern of DBoT 
applications in order to efficiently group and 
reorganize tasks. In addition, its adoption of task 
duplication helps lead to better schedules. Based on a 
number of intensive experiments with various test 
configurations SIL mostly outperformed the two 
algorithms by a noticeable margin, especially when 
scheduling DBoT applications with one-many and 
partitioned data sharing patterns. The simulation 
results presented in this paper clearly show this 
promising performance of SIL. 
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