
Efficient Algorithms for Traffic Grooming in SONET/WDM Networks

Yong Wang and Qian-Ping Gu
School of Computing Science, Simon Fraser University

Burnaby B.C. Canada V5A 1S6
{ywangb,qgu}@cs.sfu.ca

Abstract

In SONET/WDM optical networks, a wavelength channel is
shared by multiple low-rate traffic demands. The multiplex-
ing is known as traffic grooming and carried out by SONET
add-drop multiplexers (SADM). A key optimization problem in
traffic grooming is to minimize the number of SADMs. This op-
timization problem is challenging and NP-hard even for unidi-
rectional SONET/WDM rings (UPSR) with symmetric unitary
traffic demands. In this paper, we give a linear time heuristic
algorithm for this NP-hard problem. Empirical results show
that the algorithm outperforms previous algorithms. The al-
gorithm uses the minimum number of wavelengths, which are
also precious resources in optical networks. An important sub-
class of the symmetric unitary traffic pattern is the regular
traffic pattern, where each network node appears in exactly
r symmetric demands. The regular traffic pattern is a gener-
alization of the well known all-to-all traffic pattern, in which
r = n−1 for a network of n nodes. We prove that the optimiza-
tion problem remains NP-hard for the regular traffic pattern
on the UPSR. We also propose an algorithm for this problem
with a better upper bound on the number of used SADMs than
previous algorithms. This algorithm always uses the minimum
number of wavelengths as well.

Keywords — Traffic grooming, SONET/WDM networks,
unidirectional rings, regular graph, graph decomposition, NP-
complete.

1 Introduction

In SONET/WDM networks, an optical fiber is shared by
multiple wavelength channels, each of which has a bandwidth
up to a few gigabit per second. Since the bandwidth required
by a traffic demand in practice is usually much smaller than
that of a wavelength channel, low-rate traffic demands are
multiplexed to share a wavelength channel. The multiplex-
ing is known as traffic grooming. The maximum number of
low-rate traffic demands that can be multiplexed onto a wave-
length channel is called grooming factor. For example, sixteen
OC-3 traffic demands multiplexed onto one OC-48 wavelength
channel gives a grooming factor of 16. Traffic grooming is
realized by SONET add-drop multiplexers (SADM). When a
wavelength channel carries low-rate traffic demands from/to
a network node, one SADM is used to multiplex/demultiplex

low-rate traffic demands onto/from the wavelength channel at
the node. When a wavelength channel does not carry any
traffic demand from/to a network node, the channel can op-
tically bypass the node and no SADM is needed for the wave-
length channel at the node. Since SADMs dominate the cost
of SONET/WDM networks, it is critical to minimize the num-
ber of SADMs in the SONET/WDM network design. To re-
duce the number of SADMs, low-rate traffic demands should
be groomed in a way to yield as many optical bypasses as pos-
sible. A major goal of traffic grooming in SONET/WDM net-
works is to find a grooming scheme for a given set of traffic
demands such that the total number of used SADMs is mini-
mized. This problem is surveyed in [5, 14, 15, 22]. Another
important optimization goal in traffic grooming is to minimize
the number of used wavelengths for a given set of traffic de-
mands. It has been shown that the two optimization goals
can not be achieved simultaneously [1, 7, 13] for many cases.
Much work has been done on finding grooming schemes for
one optimization goal subject to a specific condition of the
other goal. Especially, grooming schemes for SADM opti-
mization subject to using the minimum number of wavelengths
have been explored in [1, 11, 13, 19, 21].

A main architecture for SONET/WDM networks is the uni-
directional path-switched ring (UPSR) [8]. The optical fibers
in a UPSR constitute two unidirectional rings with one in the
clockwise direction and the other in the counter-clockwise di-
rection. One ring (e.g., the clockwise ring) is used as a work-
ing ring and the other as a protecting ring. A low-rate traffic
demand from node x to node y, denoted as (x, y), is carried
by a wavelength channel on the unique path from x to y in
the working ring. The wavelength of each channel is the same
for all optical links used by the channel. A set R of traffic
demands is symmetric if (x, y) ∈ R implies (y, x) ∈ R. Sym-
metric traffic demands are common in many applications, for
example, a TCP connection. A set of traffic demands are uni-
tary if each demand requires one unit of bandwidth. We use
{x, y} to denote the pair of unitary traffic demands (x, y) and
(y, x). In the UPSR, a pair {x, y} of demands is carried by two
wavelength channels, one is from x to y and the other is from
y to x on the working ring. It is easy to prove that assigning a
same wavelength to the two channels for {x, y} uses no more
SADMs than assigning two distinct wavelengths [18]. By this,
for a set R of symmetric demand pairs, one can concentrate

on partitioning R into subsets such that each subset of pairs
can be carried by one wavelength to solve the traffic grooming
problem. The number of SADMs used for the wavelength as-
signed to each subset is the number of distinct nodes involved
in the symmetric pairs in the subset. Minimizing the total num-
ber of used SADMs is equivalent to minimizing the sum of the
number of distinct nodes appearing in each subset. In this pa-
per, we consider the traffic grooming problem in the UPSR
network for symmetric unitary traffic demands. Other variants
of the traffic grooming problem in the UPSR include those for
non-unitary and/or non-uniform traffic demands [4, 8, 17, 21].

For the problem we study in this paper, a graph partition
approach has been used to develop various algorithms [1, 3, 9,
19]. In this approach, a set R of symmetric unitary traffic de-
mand pairs is viewed as an undirected simple graph G(V, E)
called traffic graph, where V (G) is the set of nodes in the
UPSR and there is an edge in E(G) between nodes x and y if
and only if {x, y} ∈ R The traffic grooming problem is formu-
lated as the following k-edge-partitioning problem on the traf-
fic graph: for a positive integer k ≤ |E(G)|, partition the edge
set E(G) into a collection of subsets E = {E1, E2, . . . , EW }
(where

⋃W
i=1Ei = E(G) and Ep ∩ Eq = ∅ for p �= q), such

that |Ei| ≤ k for each Ei ∈ E and
∑

Ei∈E |Vi| is minimized,
where Vi is the set of nodes in the sub-graph induced by edge
set Ei. It is obvious that integer k corresponds to the grooming
factor, W corresponds to the number of used wavelengths, and∑

Ei∈E |Vi| corresponds to the number of used SADMs in the
traffic grooming problem.

The k-edge-partitioning problem on arbitrary traffic graphs
has been proved NP-hard by Goldschmidt et al. [9]. Several al-
gorithms [3, 9, 19] have been proposed, and those algorithms
fall into two categories: spanning-tree-partition based algo-
rithms [9, 19] and Euler-path-partition based algorithms [3]. In
this paper, we propose a linear time algorithm combining the
spanning-tree-partition based skeleton cover approach in [19]
and the Euler path approach in [3]. Our algorithm uses the
minimum number � |E(G)|

k � of wavelengths. Experimental re-
sults show that our algorithm has better performance on the
number of used SADMs than algorithms of [3, 9, 19] in most
cases.

An important subclass of the symmetric traffic pattern is the
regular traffic pattern, in which each network node appears in
r symmetric traffic demand pairs, where 1 ≤ r ≤ n − 1 for
a network of n nodes. The regular traffic pattern is a gener-
alization of the all-to-all traffic pattern, in which r = n − 1.
The all-to-all traffic pattern has been well studied for the traf-
fic grooming problem [1, 11, 13, 21]. Little work has been
known for the general regular traffic pattern, although it mod-
els the communications on the networks in which each node
has limited capacity on sourcing/ending traffic demands si-
multaneously due to the hardware constraints. For the regu-
lar traffic pattern, the traffic graph is a r-regular graph. We
prove that the traffic grooming problem remains NP-hard for
the regular traffic pattern by showing the NP-hardness for the

k-edge-partitioning problem on regular graphs. We also pro-
pose an algorithm for the regular traffic pattern. The algorithm
uses at most �|E(G)|(1 + 1

k)� SADMs for even value r, and
�|E(G)|(1 + 1

k)� + (3n
2(r+1) − 1) SADMs for odd value r,

which are better than previous algorithms of [3, 9, 19] apply-
ing on regular graphs in most cases. The algorithm also uses
the minimum number � |E(G)|

k � of wavelengths.
The rest of the paper is organized as follows. Section 2

gives the preliminaries of the paper. The algorithm for the k-
edge-partitioning problem on arbitrary traffic graphs is given in
Section 3. In Section 4, we study the k-edge-partitioning prob-
lem on regular traffic graphs. Section 5 gives the experimental
performances of our algorithms. The final section concludes
the paper.

2 Preliminaries

Readers are referred to a textbook on graph theory (e.g.,
the one by West [20]) for basic definitions and terminology on
graphs. Let G(V, E) be a simple undirected graph with node
set V (G) and edge set E(G). A path of G is a sequence of
consecutive edges in G, where no repeated edge is allowed in
the path. The two nodes at which the path starts and termi-
nates are called end-points of the path, and all other nodes on
the path are called mid-points. A simple path is a path with no
repeated node. An Euler path is a path which uses each edge
of G exactly once, and a connected graph has an Euler path if
and only if it has at most two odd-degree nodes. A matching
M is a set of edges of G such that no two of them share a node
in common. We say a node is saturated by matching M if the
node is an end-point of some edge in M . A tree T is a con-
nected graph with |V (T)| − 1 edges, and a spanning tree of G
is a tree that contains all nodes and |V (G)|−1 edges of G. For
a graph G and a spanning tree T of G, graph G\T is defined as
a graph (which might be disconnected) with vertex set V (G)
and edge set E(G)\E(T). A connected component of G is a
maximal connected sub-graph of G. The edge connectivity of
G, denoted as λ(G), is defined to be the minimum number of
edges whose deletion from G disconnects graph G. An edge
coloring of G is a coloring of the edges of G such that adja-
cent edges receive different colors. For each node v in graph
G, we use δ(v) to denote the degree of v in G. If δ(v) = r
for every v ∈ V (G), we say G is a r-regular graph. We use
∆(G) to denote the maximum degree over all nodes in G, (i.e.,
∆(G) = maxv∈V (G){δ(v)}), and we simply use ∆ instead of
∆(G) when it is clear in the context.

We define a skeleton S of G to be a connected sub-graph of
G that consists of a backbone and a set of branches, where the
backbone is a path of G, and a branch is an edge of G such that
at least one end-point of the edge is in the backbone. We say a
branch {u, v} is attached to a backbone if u or v is a node in
the backbone. The size of a skeleton S, denoted as s(S), is the
number of edges in the skeleton. A skeleton cover S of graph
G is a collection of skeletons {S1, S2, . . . , Sj} which form an
edge partition of G (i.e.,

⋃j
i=1 E(Si) = E(G) and E(Sp) ∩

E(Sq) = ∅ for p �= q), where j is the size of the skeleton cover.
It was proved in [19] that the following proposition holds for
any skeleton.

Proposition 1 [19] For any skeleton S and integer t with 0 ≤
t ≤ s(S), S can be partitioned into two skeletons S1 and S2,
such that s(S1) = t and s(S2) = s(S) − t.

By Proposition 1, it is easy to transform a skeleton cover
to a k-edge partition of G with exactly k edges in each sub-
graph except the last one (note that some sub-graphs might be
disconnected). Especially we have the following proposition
for any skeleton cover.

Proposition 2 Any skeleton cover S = {S1, S2, . . . , Sj} of
graph G can be transformed into a k-edge partition E =
{E1, ..., EW } of G with W = � |E(G)|

k �, |Ei| = k for 1 ≤
i < W , and

∑
Ei∈E |Vi| ≤ �|E(G)|(1 + 1

k)� + (j − 1).

Proof: Let si and ti be the end-points of the backbone of each
skeleton Si ∈ S. We can connect S1, ..., Sj into one skeleton
S∗ by adding (j−1) virtual edges {ti, si+1} for 1 ≤ i ≤ j−1.
According to Proposition 1, S∗ can be cut into W skeletons
{S∗

1 , S∗
2 , . . . , S∗

W }, where W = � |E(G)|
k �, each skeleton S∗

i

(1 ≤ i ≤ W − 1) contains exactly k edges of G and ji virtual
edges, and S∗

W contains at most k edges of G and jW virtual
edges. We have

∑W
i=1 ji = j − 1 since the total number of

added virtual edges is j − 1. For a skeleton of k + ji edges,
the maximum number of nodes in the skeleton is k + ji + 1.
Therefore the set of skeletons {S∗

1 , S∗
2 , . . . , S∗

W } becomes a
k-edge-partition E = {E1, ..., EW } of G after deleting virtual
edges, and

∑

Ei∈E
|Vi| ≤ |E(G)|+

W∑

i=1

ji+W = �|E(G)|(1+
1
k
)�+(j−1).

�

3 Grooming with arbitrary traffic graph

Intuitively, to achieve good solutions for the k-edge-
partitioning problem, we need partition the traffic graph G into
sub-graphs with at most k edges such that each sub-graph con-
tains as few nodes as possible. One key observation is that
given a fixed number of edges, a sub-graph with fewer con-
nected components more likely contains fewer nodes. This
is the basic idea behind the algorithms in [3, 9, 19]. In this
section, we propose Algorithm Span Euler which tries to min-
imize the total number of connected components over all sub-
graphs. The algorithm in [3] constructs an Euler path of traffic
graph G by adding virtual edges between odd-degree nodes.
Then the Euler path is cut into segments and virtual edges are
deleted to obtain a k-edge partition of G. However in the case
that G contains a large number of odd-degree nodes, there will
be a large number of virtual edges, whose deletion further im-
plies a large number of connected components over sub-graphs

in the k-edge partition. Another algorithm is proposed in [19]
to construct a skeleton cover of G, and then transform the
skeleton cover into a k-edge partition. Each skeleton is con-
structed based on a spanning-tree-partition approach, which
likely produces skeletons with small size, and thus the size
of the skeleton cover is usually large. According to Propo-
sition 2, a skeleton cover with large size yields a solution of
the k-edge-partitioning problem with large value. Our algo-
rithm SpanT Euler combines the techniques of constructing
Euler path and skeleton cover. We intend to generate a skeleton
cover of small size with the help of Euler path construction.

On constructing a skeleton cover, the following lemma
holds.

Lemma 3 If there exist l edge-disjoint paths which span every
node in graph G, then G has a skeleton cover with size l.

Proof: Each of the l paths can be considered as the backbone
of a skeleton. Since the backbones span every node in graph
G, other edges which do not appear in the backbones can be
attached as branches. Thus the size of the constructed skeleton
cover is exactly l. �

It is proved by Jaeger [12] that if λ(G) ≥ 4, then there ex-
ists a path that spans every node in G, which implies that there
exists a skeleton cover with size one for λ(G) ≥ 4 according
to Lemma 3. Following a similar argument, we generalize the
result of [12] as the next Lemma.

Lemma 4 Let T be a spanning tree of G, and c be the the
number of connected components in graph G\T , then G has a
skeleton cover with size at most c.

Proof: Let Vodd ⊆ V (G) be the set of nodes having odd de-
gree in graph G\T . |Vodd| must be even since the number of
odd-degree nodes in any graph is even. Pair the nodes of Vodd

arbitrarily and let P = {p1, p2, . . . , p |Vodd|
2

} be the set of sim-

ple paths in T between each pair of nodes. For every edge
e ∈ E(T), let α(e) denote the number of paths (in P) that
contain edge e. Define

Eodd = {e|e ∈ E(T) and α(e) is odd}, and

Eeven = {e|e ∈ E(T), α(e) is even, and α(e) �= 0}.
Let G1 denote the graph with vertex set V (G) and edge set
Eodd. We shall prove in the following that Vodd is also the set
of nodes that have odd degree in graph G1.

For every node v ∈ Vodd, let Ev ⊆ Eodd ∪Eeven be the set
of edges adjacent to node v. We notice that v is an end-point
for exactly one path in P (i.e., only one edge in the path is
adjacent to v), and for any other path in P , either v is a mid-
point of the path (i.e., two edges in the path are adjacent to v)
or v is not in the path (i.e., no edge in the path is adjacent to
v). Therefore

∑
e∈Ev

α(e) must be odd. We also know that

∑

e∈Ev

α(e) =
∑

e∈(Ev∩Eodd)

α(e) +
∑

e∈(Ev∩Eeven)

α(e),

Algorithm SpanT Euler
Input: An undirected graph G and integer k.
Output: A k-edge partition of G.
begin

Compute a spanning tree T of G;
Let c be the number of connected components in G\T ;
Let Vodd be the set of odd degree nodes in G\T ;
Pair nodes of Vodd, and let P = {p1, p2, . . . , p|Vodd|/2}

be simple paths in T between each pair of nodes;
Let Eodd ⊆ E(T) be the set of edges appearing in

odd number paths of P ;
Construct an Euler path for each of the c connected

components of G2;
Attach each edge in E(T)\Eodd to Euler paths

to obtain a skeleton cover S = {S1, ..., Sc};
Transform skeleton cover to a k-edge partition of G;

end.

Figure 1. Pseudo code of SpanT Euler.

so |Ev ∩ Eodd| must be odd, that is, every node v ∈ Vodd

has odd degree in graph G1. Similarly for every node u ∈
V (G)\Vodd, since either u is a mid-point of some paths or u is
not in any path, we have that

∑
e∈Eu

α(e) must be even. That
is,

∑

e∈Eu

α(e) =
∑

e∈(Eu∩Eodd)

α(e) +
∑

e∈(Eu∩Eeven)

α(e)

must be even, and thus |Eu ∩ Eodd| must be even. Therefore
every node u ∈ V (G)\Vodd has even degree in graph G1.

Let G2 denote the graph with vertex set V (G) and edge set
Eodd ∪ (E(G)\E(T)). Since Vodd is defined to be the set of
nodes having odd degree in graph G\T , every node in graph
G2 has even degree. We know that G\T contains at most c
connected components, so there are at most c connected com-
ponents in graph G2 as well. For each of the c connected com-
ponent in G2, we can construct an Euler path since all nodes
have even degree (for the component consisting of a single
node, the Euler path is a special one consisting of the single
node). It is clear that the Euler paths span every node in G.
Thus we can construct a skeleton cover of G with size at most
c according to Lemma 3. �

We need point out that the above lemma generalizes the
result by Jaeger [12], which showed that if λ(G) ≥ 4 then
G has two edge-disjoint spanning trees T1, T2. This implies
c = 1 if we remove T1 (or T2) from G.

The pseudo code of Algorithm SpanT Euler is given in Fig-
ure 1.

Theorem 5 Algorithm SpanT Euler finds a k-edge partition
E = {E1, ..., EW } of G with W = � |E(G)|

k �, |Ei| = k for
1 ≤ i < W , and

∑
Ei∈E |Vi| ≤ �|E(G)|(1 + 1

k)� + (c − 1).

Proof: The theorem can be easily proved based on Proposi-
tion 2 and Lemma 4. �

We do not have a precise upper bound on the number c
of connected components in graph G\T , however some al-
gorithms on constructing spanning tree T with specific prop-
erties might be used to achieve such bounds (e.g., the algo-
rithm by Fürer and Raghavachari [6] approximates the opti-
mal solution on generating a spanning tree T with maximum
degree ∆(T) minimized). We develop experimental simula-
tion in Section 5, and Algorithm SpanT Euler outperforms the
algorithms in [3, 9, 19] according to our simulation results.

Since the spanning tree generation and Euler path construc-
tion can be done in O(|E(G)|) time, it is clear that each step of
Algorithm SpanT Euler takes O(|E(G)|) time. So Algorithm
SpanT Euler runs in O(|E(G)|) time, which is linear in the
size of the input graph.

4 Grooming with regular traffic graph
Due to the hardware constraints in some networks, each

node can communicate with at most r other nodes simulta-
neously at any specific time. The communication on such net-
works can be abstracted as a r-regular traffic graph. We first
prove that the k-edge-partitioning problem remains NP-hard
on r-regular graph for arbitrary r, and then give an algorithm
with guaranteed performance.

We consider the decision version of the k-Edge-Partitioning
of Regular Graph (KEPRG) problem, and prove it is NP-
complete. The KEPRG problem is stated as follows:

k-Edge-Partitioning of Regular Graph (KEPRG) Problem
Instance: An undirected regular graph G(V, E), and integers
k and L.
Question: Is there a partition of E(G) into a collection of
subsets E = {E1, E2, . . . , EW } (where

⋃W
i=1Ei = E(G)

and Ep ∩ Eq = ∅ for p �= q), such that |Ei| ≤ k for each
Ei ∈ E and

∑
Ei∈E |Vi| ≤ L, where Vi is the set of nodes in

the sub-graph induced by edge set Ei?

We shall give a two-step reduction from the Edge-Partition
into Triangles (EPT) problem to the KEPRG problem. The
EPT problem is known to be NP-complete [10] and stated as
follows:

Edge-Partition into Triangles (EPT) Problem
Instance: An undirected graph G(V, E) with |E(G)| = m.
Question: Is there a partition of E(G) into sets
{E1, E2, ..., Em/3} such that each Ei induces a trian-
gle?

In the first step we show the EPT problem on regular graphs
is NP-complete by the reduction from the EPT problem.

Lemma 6 The EPT problem is NP-complete even if the input
graph G is regular.

Proof: It is easy to see that if an odd-degree node exists in a
graph, the graph can not be partitioned into triangles. There-

fore, the EPT problem is NP-complete even if the input graph
contains no odd-degree nodes. Otherwise, the EPT problem it-
self is not NP-complete. In what follows, we assume the input
graph has no odd-degree nodes when we refer to an instance
of the EPT problem.

The regular graph version of EPT is clearly in NP. Given
an undirected graph G with maximum degree ∆ (where ∆ is
even) , we construct a ∆-regular graph G∗ as follows (for sim-
plicity, we use (u, v, w) to denote a triangle with {u, v, w} as
node set):

1. For every node v in G with degree δ(v) < ∆, add trian-
gles {(v, uv,i, uv,i+1)} for i = 1, 3, 5, . . . , ∆ − δ(v) − 1
to get graph G′, where the ∆ − δ(v) nodes uv,i’s and
uv,i+1’s are the new added nodes.

2. Make two extra copies of G′, and assume the number of
new added nodes in G′ is q.

3. Re-label all the new added nodes as u1, u2, u3, . . ., u3q .

4. If 3q < ∆−2
2

(a) add 3p new nodes u3q+1, u3q+2, u3q+3, . . ., u3q+3p,
where p is the smallest integer satisfying 3q + 3p ≥
∆−2

2 ;

(b) add p triangles {(u3q+i, u3q+i+1, u3q+i+2)} for i =
1, 4, 7, . . . , 3p − 2;

(c) set q = q + p.

5. Add 3q new nodes w1, w2, w3, . . . , w3q and q triangles
{(wi, wi+1, wi+2)} for i = 1, 4, 7, . . . , 3q − 2. Add
another 3q new nodes y1, y2, y3, . . . , y3q and q triangles
{(yi, yi+1, yi+2)} for i = 1, 4, 7, . . . , 3q − 2.

6. Repeat the following for i = 1, 2, 3, . . . , ∆−2
2 : add trian-

gles {(uj , wj⊕i, yj⊕2i)} for j = 1, 2, 3, . . . , 3q, where ⊕
is defined as mod 3q sum.

Figure 2 shows how to construct the regular graph G∗ from
G by an example (We make two copies for nodes y1, y2 and
w1 to avoid messy drawing). Now we prove that G can be
partitioned into triangles if and only if G∗ can be partitioned
into triangles. If G can be partitioned into triangles, according
to the construction of G∗, G∗ can be partitioned into triangles
as well. If G∗ can be partitioned into triangles, it is noticed
that any triangle containing an edge from a copy of G can not
contain any edge outside of that copy. So each copy of G by
itself must be able to be partitioned into triangles. �

In the second step we show that the KEPRG problem is
NP-complete by the reduction from the regular graph version
of the EPT problem.

Theorem 7 The KEPRG problem is NP-complete.

Proof: The problem is clearly in NP. Given an instance of
the regular graph version of EPT problem, where the input
graph G is regular, we construct an instance of the KEPRG
problem on the same graph with L = m and k = 3, where
m = |E(G)|.

If G can be partitioned into triangles, the triangle partition
gives a solution for the KEPRG problem where |Ei| = 3 for
each Ei ∈ E and

∑
Ei∈E |Vi| = m.

We now prove that if G has a solution for the KEPRG prob-
lem with k = 3 and L = m, then it can be partitioned into
triangles. It is noticed that

∑
Ei∈E |Vi| ≥ m for k = 3,

and the equation holds if and only if G can be partitioned
into complete graphs with 3 edges (i.e., triangles). Since
we have

∑
Ei∈E |Vi| ≤ L = m, it must be the case that∑

Ei∈E |Vi| = m, which implies that G can be partitioned into
triangles. �

We shall give Algorithm Regular Euler with guaranteed
performance for the KEPRG problem. First, we prove the fol-
lowing lemma about the lower bound on the size of the max-
imum matching of regular graphs. This lemma also gives a
solution for an open problem proposed by Biedl et al. [2].

Lemma 8 A r-regular graph G with |V (G)| = n has a maxi-
mum matching containing at least n

2 · r
r+1 edges.

Proof: It is proved by Vizing [16] that any simple graph G has
an edge coloring with ∆ or ∆ + 1 colors, where ∆ is the max-
imum degree of G. The proof immediately yields an approx-
imation algorithm to color any simple graph G with at most
∆ + 1 colors. Therefore, a r-regular graph G can be colored
by r + 1 colors. Considering such an edge coloring, we notice
that each set of edges with the same color is a matching of G.
Since the total number of edges in G is nr

2 , there must exist at

least nr/2
r+1 = n

2 · r
r+1 edges having the same color in the edge

coloring. Therefore, n
2 · r

r+1 is a lower bound on the size of
the maximum matching of r-regular graph. �

We prove the following lemma for any r-regular graph,
where r is nontrivial (i.e., r �= 0 or 1).

Lemma 9 For r-regular graph G with |V (G)| = n, there ex-
ists a skeleton cover of size 1 if r is even, and there exists a
skeleton cover of size at most 3n

2(r+1) if r is odd.

Proof: For even value r, we can construct an Euler path of
G. Such an Euler path is a skeleton of G without branches,
therefore we obtain a skeleton cover of size 1.

For odd value r, we first compute a maximum matching
M of G. Then after deleting the edges in M from graph
G, all the nodes saturated by M have degree r − 1, all the
unsaturated nodes have degree r, and there might be more than
one connected components in graph G(V (G), E(G)\M). We
call a connected component in G(V (G), E(G)\M) an even
component if every node in the component has degree r − 1,
and an odd component if there exists a node with degree r. As-
sume there are s even components and t odd components. Let

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u12u11
(u)v,1 (u)v,2

w4
w5

w6 w7
w8

w9 w10
w11

w12

y4
y5

y6 y7
y8

y9 y10
y11

y12y1
y2

y3 y1

w2
w3 w1

y2

V

(b) regular graph G*(a) graph G

w1

Figure 2. An example: graph G with ∆ = 4 and the corresponding 4-regular graph G∗.

Ceven = {C ′
1, C

′
2, . . . , C

′
s} be the set of even components, and

Codd = {C1, C2, . . . , Ct} be the set of odd components. It is
noticed that any odd component Ci contains at least two nodes
vi,1, vi,2 with degree r, since the number of odd-degree nodes
in any graph must be even. Thus all the odd components can
form one connected graph Godd by adding t − 1 virtual edges
(v1,1, v2,1), (v2,2, v3,1), . . . , (vt−2,2, vt−1,1), (vt−1,2, vt,1).
Then for other nodes with degree r in graph Godd, we
arbitrarily pair them and add one virtual edge between each
pair. So the degree of each node in Godd is either r + 1 or
r− 1, except that nodes vt,2 and v1,2 have degree r. Therefore
we can construct an Euler path of Godd. Since each node
has degree r − 1 in an even component, we can construct
an Euler path for each even component as well. Thus we
obtain s + 1 edge-disjoint Euler paths in total, and those
Euler paths span every node of G. According to Lemma 3,
we can construct a skeleton cover with size s + 1. After
deleting the virtual edges, we obtain a skeleton cover of G

with size (s + 1) + (n−2|M|
2 − 1) = s + n−2|M|

2 since there

are n−2|M|
2 − 1 virtual edges in total.

Since each node in an even component has degree r − 1,
each even component must contain at least r nodes. In graph
G(V (G), E(G)\M), the total number of nodes with degree
r − 1 is 2|M |, so the number of even components in graph
G(V (G), E(G)\M) is at most 2|M|

r , that is, s ≤ 2|M|
r .

We have |M | ≥ n
2 · r

r+1 according to Lemma 8, so the size
of the skeleton cover for odd value r is

s +
n − 2|M |

2
≤ 2|M |

r
+

n − 2|M |
2

≤ 3n

2(r + 1)
.

�

The pseudo code of Algorithm Regular Euler is given in
Figure 3.

Theorem 10 Algorithm Regular Euler finds a k-edge parti-
tion E = {E1, ..., EW } of r-regular graph G with W =
� |E(G)|

k �, |Ei| = k for 1 ≤ i < W ,
∑

Ei∈E |Vi| ≤
�|E(G)|(1 + 1

k)� for even value r, and
∑

Ei∈E |Vi| ≤
�|E(G)|(1 + 1

k)� + (3n
2(r+1) − 1) for odd value r.

Algorithm Regular Euler
Input: An undirected r-regular graph G and integer k.
Output: A k-edge partition of G.
begin

If r is even then begin
Construct an Euler path of G;
Cut Euler path into W = �|E(G)|/k� segments s.t.

each of first W − 1 segments has k edges of G;
end
else begin

Compute a maximum matching M of G;
Connect odd components in G(V (G), E(G)\M)

by virtual edges to form connected graph Godd;
Construct an Euler path for Godd;
Construct an Euler path for each even component

in graph G(V (G), E(G)\M);
Attach edges in M to Euler paths and delete virtual

edges to obtain skeleton cover S = {S1, ..., S 3n
2(r+1)

};

Transform skeleton cover to a k-edge partition of G;
end;

end.

Figure 3. Pseudo code of Regular Euler.

Proof: The theorem can be easily proved based on Proposi-
tion 2 and Lemma 9. �

If we apply the algorithms in [3] on r-regular graph, the
upper bound on the number of SADMs is �|E(G)|(1 + 1

k)�
for even value r, and �|E(G)|(1 + 1

k)� + n
2 for odd value

r. Therefore our algorithm Regular Euler always gives a bet-
ter upper bound. The algorithm in [9] applying on r-regular
graph gives an upper bound of �|E(G)|(1 + 2

k)�. So for even
value r, Algorithm Regular Euler is always better. And for
odd value r, Algorithm Regular Euler is better as long as the
graph is relatively dense. The algorithm in [19] applying on r-
regular graph gives an upper bound of �|E(G)|(1+ 1

k)�+�n
4 ,

therefore Algorithm Regular Euler is always better except the
only case of r = 3. In summary, Algorithm Regular Euler
almost always achieves a better upper bound than previous al-

gorithms.
A maximum matching can be computed in O(|V | 12 |E(G)|)

time, the Euler path construction can be done in O(|E(G)|),
and each of other steps in Algorithm Regular Euler can be
done in O(|E(G)|) as well, therefore Algorithm Regular Euler
runs in O(|V | 12 |E(G)|) time.

5 Empirical results

We implemented the algorithms in [3, 9, 19], and Algorithm
SpanT Euler to compare their performances on randomly gen-
erated traffic graphs. In generating graphs, we specify the
number n of nodes and dense ratio d that is used to calcu-
late the number m = n1+d of edges. A graph of m edges
and n nodes is generated by randomly connecting m pairs of
nodes among all n(n − 1)/2 possible pairs. Figure 4 shows
the empirical results for graphs of 36 nodes with different set-
tings of dense ratio d and grooming factor k. We refer to the
algorithm in [9] [3] and [19] as Algo. 1, Algo. 2 and Algo.
3 respectively. For these previous algorithms, we observe that
the spanning-tree-partition based algorithms Algo. 1 and Algo.
3 have better performances if dense ratio d is smaller, and the
Euler-path-partition based algorithm Algo. 2 has better per-
formance if dense ratio d is larger. As we mentioned in Sec-
tion 3, Algorithm SpanT Euler combines the techniques of
constructing Euler path and skeleton cover. Therefore, Al-
gorithm SpanT Euler can be considered as a hybrid of the
spanning-tree-partition based algorithm in [19] and the Euler-
path-partition based algorithm in [3]. The empirical results
in Figure 4 verify that Algorithm SpanT Euler does take ad-
vantages of both approaches, and has better performance than
all of the previous algorithms. The performance is especially
good for grooming factor k being relatively small values (e.g.,
k ≤ 16), which include some important values of practical in-
terest. We ran simulations on graphs with different parameter
settings as well, and the results present similar characteristics.
To save space, we report some representative results in Fig-
ure 4.

We have shown in Section 4 that Algorithm Regular Euler
achieves better worst case performance guarantee than previ-
ous algorithms. We implemented Algorithm Regular Euler as
well to compare its performance to previous algorithms. We
use the regular graph generator from [23] to randomly generate
traffic graphs. The results show that Algorithm Regular Euler
outperforms previous algorithms in most cases. We ran the
simulation on graphs with different parameter settings as well,
and the results present similar characteristics. To save space,
we report some representative results in Figure 5.

6 Concluding remarks

In this paper, we studied the traffic grooming problem on
the SONET/WDM UPSR network with symmetric unitary
traffic demands. For arbitrary traffic graphs, we gave an al-
gorithm which uses the minimum number of wavelengths and
achieves better practical performance than previous algorithms

according to our simulation results. For the case that the traf-
fic graph is regular, we proved the traffic grooming problem
remains NP-hard. We also gave an algorithm with guaranteed
performance for this subclass of symmetric traffic pattern, and
the algorithm achieves a better upper bound in most cases than
previous algorithms and uses the minimum number of wave-
lengths as well. Further improvements for both algorithms in-
clude heuristics on constructing denser sub-graphs in the k-
edge partition, for example, partitioning the traffic graph into
sub-graphs which are cliques or close to cliques. In addition,
for Algorithm SpanT Euler, it is worth developing techniques
to bound the number of connected components after deleting
spanning tree T from graph G, such that the guaranteed per-
formance can be achieved.

Acknowledgment

This work was partially supported by the NSERC research
grant (611352).

References
[1] J.-C. Bermond and D. Coudert. Traffic grooming in uni-

directional WDM ring networks using design theory. In
Proceedings of IEEE ICC’03, pages 1995–2003, 2003.

[2] T. Biedl, E.D. Demaine, C.A. Duncan, R. Fleischer, and
S.G. Kobourov. Tight bounds on maximal and maximum
matchings. Discrete Mathematics, 285:7–15, 2004.

[3] N. Brauner, Y. Crama, G. Finke, P. Lemaire, and
C. Wynants. Approximation algorithms for the design
of SDH/SONET networks. RAIRO Operations Research,
37:235–247, 2003.

[4] W. Cho, J. Wang, and B. Mukherjee. Improved ap-
proaches for cost-effective traffic grooming in WDM ring
networks: uniform-traffic case. Photonic Network Com-
munications, 3(3):245–254, 2001.

[5] R. Dutta and G.N. Rouskas. Traffic grooming in WDM
networks: past and future. IEEE Network, 16(6):46–56,
2002.

[6] M. Fürer and B. Raghavachari. Approximating the mini-
mum degree spanning tree to within one from the optimal
degree. In Proceedings of ACM-SIAM SODA’92, pages
317–324, 1992.

[7] O. Gerstel, P. Lin, and G. Sasaki. Wavelength assignment
in a WDM ring to minimize cost of embedded SONET
rings. In Proceedings of IEEE INFOCOM’98, pages 94–
101, 1998.

[8] O. Gerstel, P. Lin, and G. Sasaki. Combined WDM and
SONET network design. In Proceedings of IEEE INFO-
COM’99, pages 734–743, 1999.

[9] O. Goldschmidt, D.S. Hochbaum, A. Levin, and E.V.
Olinick. The SONET edge-partition problem. Network,
41(1):13–23, 2003.

[10] I. Holyer. The NP-completeness of some edge-partition
problems. SIAM Journal on Computing, 10:713–717,
1981.

2 4 6 8 10 12 14 16
70

75

80

85

90

95

100

105

110

115

120

grooming factor k

nu
m

be
r

of
 u

se
d

S
A

D
M

s

dense ratio d = 0.2

Algo. 1
Algo. 2
Algo. 3
Algo. SpanT−Euler

2 4 6 8 10 12 14 16
120

140

160

180

200

220

240

grooming factor k

nu
m

be
r

of
 u

se
d

S
A

D
M

s

dense ratio d = 0.4

Algo. 1
Algo. 2
Algo. 3
Algo. SpanT−Euler

2 4 6 8 10 12 14 16
250

300

350

400

450

500

grooming factor k

nu
m

be
r

of
 u

se
d

S
A

D
M

s

dense ratio d = 0.6

Algo. 1
Algo. 2
Algo. 3
Algo. SpanT−Euler

Figure 4. Algorithm SpanT Euler: empirical results on graphs with n = 36 nodes.

0 50 100 150
20

40

60

80

100

120

140

160

180

200

220

grooming factor k

nu
m

be
r

of
 u

se
d

S
A

D
M

s

degree r = 7

Algo. 1
Algo. 2
Algo. 3
Algo. SpanT−Euler
Algo. Regular−Euler

0 50 100 150
40

60

80

100

120

140

160

180

200

220

240

grooming factor k

nu
m

be
r

of
 u

se
d

S
A

D
M

s

degree r = 8

Algo. 1
Algo. 2
Algo. 3
Algo. SpanT−Euler
Algo. Regular−Euler

0 50 100 150
50

100

150

200

250

300

350

400

450

grooming factor k

nu
m

be
r

of
 u

se
d

S
A

D
M

s

degree r = 15

Algo. 1
Algo. 2
Algo. 3
Algo. SpanT−Euler
Algo. Regular−Euler

0 50 100 150
50

100

150

200

250

300

350

400

450

grooming factor k

nu
m

be
r

of
 u

se
d

S
A

D
M

s

degree r = 16

Algo. 1
Algo. 2
Algo. 3
Algo. SpanT−Euler
Algo. Regular−Euler

Figure 5. Algorithm Regular Euler: empirical results on graphs with n = 36 nodes.

[11] J.Q. Hu. Optimal traffic grooming for wavelength-
division-multiplexing rings with all-to-all uniform traffic.
Journal of Optical Networking, 1(1):32–42, 2002.

[12] F. Jaeger. A note on sub-Eulerian graphs. Journal of
Graph Theory, 3:91–93, 1979.

[13] E. Modiano and A. Chiu. Traffic grooming algorithms
for reducing electronic multiplexing costs in WDM ring
networks. Journal of Lightwave Technology, 18(1):2–12,
2000.

[14] E. Modiano and P. Lin. Traffic grooming in WDM net-
works. IEEE communications Magazine, 39(7):124–129,
2001.

[15] A.K. Somani. Surviable traffic grooming in WDM net-
works. In Proceedings of the International Conference
on Broad-Band Optical Fibre Communication Technol-
ogy (BBOFCT’01), pages 17–45, 2001.

[16] V.G. Vizing. On an estimate of the chromatic class of a
p-graph (in Russian). Metody Discret Analiz., 3:25–30,
1964.

[17] J. Wang, W. Cho, V. Vemuri, and B. Mukherjee. Im-
proved approaches for cost-effective traffic grooming in
WDM ring networks: ILP formulations and single-hop

and multihop connections. Journal of Lightwave Tech-
nology, 19(11):1645–1653, 2001.

[18] Y. Wang and Q.-P. Gu. Grooming of symmetric traffic
in unidirectional SONET/WDM rings. Technical Report
2005-15, School of Computing Science, Simon Fraser
University, 2005.

[19] Y. Wang and Q.-P. Gu. Grooming of symmetric traffic
in unidirectional SONET/WDM rings. To appear in Pro-
ceedings of IEEE ICC’06.

[20] D.B. West. Introduction to graph theory. Prentice Hall
Inc., Upper Saddle River, NJ, 1996.

[21] X. Zhang and C. Qiao. An effective and comprehen-
sive approach for traffic grooming and wavelength as-
signment in SONET/WDM rings. IEEE/ACM Transac-
tions on Networking, 8(5):608–617, 2000.

[22] K. Zhu and B. Mukherjee. A review of traffic grooming
in WDM optical networks: architectures and challenges.
Optical Networks Magazine, 4(2):55–64, 2003.

[23] M. Meringer. Genreg: A very fast structure gen-
erator for regular graphs. http://www.mathe2.uni-
bayreuth.de/markus/reggraphs.html.

