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Abstract 
 

We propose a series of aggressive register deallocation 
mechanisms to reduce the register file pressure and increase 
the parallelism exploited by superscalar microprocessors. 
Our techniques are based on a key observation that a 
register value can be temporarily decoupled from the 
register identifier.  Specifically, even if a physical register is 
deallocated, the value is still available in the register and 
can be read by the dependent instructions until the register is 
overwritten.  In these situations, we can effectively overlap 
the consumption of the produced register value and partial 
processing of the instruction that gets the same register 
reassigned to it. In this paper, we propose several 
realizations of the address-value decoupling idea and discuss 
their implications on the performance. Our most aggressive 
scheme achieves an average IPC speedup of 14.6% across 
simulated SPEC 2000 benchmarks. 
 
1. Introduction 

In modern superscalar microarchitectures, the access to 
the register file lies on the critical schedule-to-execute path. 
As a new physical register needs to be allocated for every 
instruction with a destination register, larger register files are 
required to extract more instruction-level parallelism (ILP) 
out of sequential programs. Additionally, to reduce the 
amount of data transfers, a single RAM structure is typically 
used to maintain both committed and speculative register 
values [13], [16], [34].  

Register file access latency increases with the register 
file size. To achieve higher clock frequencies with large 
register files, the register file often needs to be pipelined over 
multiple cycles.  A pipelined register file access degrades 
performance by increasing the branch and load-hit 
misspeculation penalties [5]. It also complicates the bypass 
network by increasing the number of stages for which the 
values are forwarded through the network. The situation is 
further exacerbated in the SMT processors, where a larger 
register file is required to satisfy the register requirements of 
the multiple threads running simultaneously. Using a smaller 
register file limits the amount of ILP that can be exploited, 
by stalling instructions in rename due to unavailability of 

registers. An effective alternative for a larger register file is 
to use fewer registers (facilitating faster clock), but manage 
them more efficiently. If the reduction of the register file size 
is not the goal, then such mechanism will simply increase the 
ILP that is exploited by providing the illusion of having more 
registers.  

Traditional register allocation and deallocation 
techniques are very conservative – a new physical register is 
allocated for the destination of a new instruction at the time 
of dispatch and this register remains allocated until the next 
instruction writing to the same architectural register commits.  
In this paper, we propose a series of novel techniques for 
early register deallocation, thus making more registers 
available for rename. Our proposals are based on the key 
observation that a register value can be temporarily 
decoupled from the register address. Specifically, even if a 
register is deallocated, the value stored in that register is still 
available and can be read by the dependent instructions until 
the register is overwritten.  

We describe several realizations of such Address-Value 
Decoupling (AVD). In our first implementation of AVD, a 
physical register is deallocated immediately after the result is 
written to the register. In our basic scheme, the instruction 
reacquiring the early deallocated register stalls at the time of 
dispatch if the prior value stored in that register has not been 
read by all its consuming instructions. To avoid these 
dispatch stalls, we introduce an auxiliary structure called 
Temporary Instruction Buffer (TIB), which temporarily 
holds instructions that would otherwise be stalled. The 
instructions are moved from the TIB to the issue queue when 
the old value stored in the instruction’s destination register 
has been read by all its consumers. The key advantage of 
moving head-of-the-line instructions into the TIB is that 
subsequent instructions can execute normally, as long as the 
conditions imposed on their destination registers allow such 
execution.  

We then take our ideas one step further and explore 
deallocating a physical register when the next instruction 
writing to the same architectural register is renamed. We 
explore several variations of this technique and show that the 
most aggressive solution achieves 14.6% IPC gains on the 
average across simulated SPEC benchmarks compared to the 
baseline machine with traditional register management 



 

mechanisms. Finally, we show that our most aggressive 
technique favorably compares with some other recently 
proposed register file optimization schemes. 

 
2. Background and  motivations 
2.1 Background  

The design proposed in this paper relies on the use of 
Checkpointed Register File (CRF) circuitry that was 
introduced in [9]. For a circuit schematic and the detailed 
area, power and timing analysis of CRF we refer the readers 
to [9], in this subsection we just provide a brief overview of 
this mechanism.  

In CRF, each traditional register file bitcell is backed-up 
by a shadow cell, which is connected to the main bitcell 
using pass transistors. When the Checkpoint signal rises, the 
contents of a bitcell are simply copied to the shadow cell. To 
recover, the contents of the shadow cells are copied back to 
the main storage when the Recover signal rises.  As 
discussed in [9], the resulting bitcell area increases by about 
26.5%. Since the area of the other peripheral components of 
the register file such as sensamps, decoders, word select 
drivers and prechargers is not impacted by the proposed 
bitcell modification, the overall increase in the area of the 
register file is less than 20%. There is a very slight increase 
in the register file delay due to the longer word select and bit 
lines. Since no gate capacitance is added to these lines, the 
increase in the delay is miniscule; it is less than 3% [9]. 
There is also a similar minimal impact on the delay of the 
word select line during the normal course of read and write 
accesses. Consequently, the CRF design represents an 
efficient way of doubling the register file storage without 
commensurate increase in the area, access delay, or power 
dissipation. The only limitation is that half of the register file 
bitcells (the shadow copies) are not directly accessible 
through the regular ports.  

 
2.2 Motivations 

To motivate the rest of this paper, we now present two 
key microarchitectural statistics regarding the producer-
consumer relationships in a typical superscalar datapath.  
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Figure 1. Number of cycles between the writeback of a 
short-lived value and the issue of its last consumer 
 
First, it has been noticed by several researchers, that 

most of the register instances in a datapath are short-lived 
[11], [21], [29]. In [29], a value was defined as short-lived if 

the architectural register allocated of an instruction X had 
been redefined (i.e., a younger instruction that writes to the 
same architectural register has been renamed) before the 
value generated by X was written back. We also call the 
instruction that redefines a register allocated to hold a short-
lived value as the redefiner. It was shown in [29] that more 
than 85% of the generated values are short-lived; our results 
showed similar percentages. 

Another key observation from our experiments is that all 
consumers of a short-lived value are typically issued in a 
short duration after the short-lived value is written into the 
register file. Figure 1 shows the average number of cycles 
between the writeback of the short-lived value and the 
issuing of the last consumer of that value. On the average 
across all simulated benchmarks, this duration is only 2.4 
cycles, the maximum being slightly less than 7 cycles for art.  
The early register reclamation techniques that we propose in 
this paper are motivated by these two observations. In the 
next two sections, we describe the proposed mechanisms. 
 
3. Writeback-time register deallocation 

The key idea behind our first technique is to deallocate a 
register as soon as the following two conditions are true: a) 
the result has been written into the register and b) the register 
has been redefined.  

To determine whether a register has been redefined or 
not, we maintain a bit-vector called Redefined with one bit 
for each physical register. When an instruction is renamed, it 
sets the Redefined bit corresponding to the previous mapping 
of its destination architectural register. The Redefined bits are 
reset when the corresponding physical registers are 
deallocated, or the redefiners of the physical registers are 
squashed on a branch misprediction. There is also another bit 
associated with each physical register, called Written_back, 
which is set one cycle before the writeback to the register 
takes place and reset when the register is deallocated. A 
value is identified as short-lived if both Redefined and 
Written_back bits are set either at the end of the last 
execution cycle or at the time of redefiner’s renaming. Once 
a value is identified as short-lived, the register holding the 
value is immediately deallocated. 

To understand the performance benefit of such early 
deallocation of registers, it is instructive to examine the code 
example shown in Figure 2. Both the original and the 
renamed version of a code fragment are shown in this figure.  

In Figure 2, the instruction I1 deallocates its destination 
register P2 after it writes back the produced value into this 
register. Such an early deallocation is possible because, as 
we assume in this example, instruction I3 that redefines R1 is 
already renamed. The instruction I2 consumes the value of 
P2 after it is deallocated, and the instruction I4 is the next 
instruction that uses physical register P2 as its destination 
mapping. In the baseline machine without early register 
deallocation, the renaming of the instruction I4 could be 
stalled for several cycles due to unavailability of free 
physical registers - the renaming only resumes when a 



 

committing instruction deallocates a physical register. In 
contrast, if the early register release proposed in this paper is 
implemented, then as soon as I1 writes back, its register (P2) 
can be reassigned to I4, thus avoiding the renaming stalls.  
 

 
Figure 2. Example code sequence 

 
On a branch misprediction or exception, the original 

contents of an early deallocated register may have to be 
recovered. For instance, in Figure 2, if I4 overwrites the 
value of P2 before I3 executes, and then I3 raises an 
exception, then the precise state of architectural register R1 is 
defined by the result of I1, which has to be recovered. To 
address this problem, the contents of an early-deallocated 
register are saved when the register is overwritten, using the 
register file design with shadow bitcells, as introduced in [9] 
and reviewed in Section 2.1. Since each register is only 
backed by a single shadow copy, a maximum of two 
allocated instances of the same physical register are allowed 
at one time.. Hence, when an instruction writes back a short-
lived value, it should deallocate the register only if it has the 
only instance of the register. To ensure that no more than two 
instances of a register are alive at the same time, we maintain 
two bits – Early-deallocated Register Reallocated (ERR) and 
Short-lived Register Written-back (SRW) – for each physical 
register. 

The ERR and the SRW bits of a register are checked and 
updated when the register is allocated and written back, and 
when the redefiner of the register is renamed and committed. 
These bits can be trivially manipulated to reconstruct a 
precise state following exceptions or interrupts. The specific 
details are not central to the ideas proposed in this paper. 
Therefore, not to deviate from the conceptual discussions of 
our ideas, the details pertaining to the manipulation of the 
ERR and SRW bits, along with the finite state machine for 
updating these bits, are formally and completely presented in 
Appendix A.  

In the example shown in Figure 2, it may happen that the 
instruction I4 writes the early deallocated and reallocated 
physical register P2 before the instruction I2 reads its 
operands, resulting in an incorrect value for I2. This could 
transpire because of the delaying of I2 in the issue queue for 
various reasons. To address this problem, we delay the 
dispatch of an instruction allocated an early deallocated 
register until all consumers of the previous register instance 
have read the value and have begun execution.  In the above 
example, until the instruction I2 reads the register P2, I4 and 

all the following instructions are not dispatched. To detect 
this condition, we maintain a dynamic counter of the number 
of in-flight consumers for each physical register. These 
counters are incremented as the consumers are renamed, and 
are decremented as the consumers start execution or the 
consumers get squashed (because of branch misprediction). 
The consumer counters are reset to zero when a register is 
allocated. Similar support has been used by other works [4], 
[23] and [27]. An instruction can only be dispatched if the 
consumer counter, corresponding to its destination physical 
register, is zero. Otherwise, instruction dispatch stalls. 

 
3.1 Priority-based register allocation 

In the early register deallocation scheme discussed 
above, the free registers can be classified into three types: (i) 
normally released registers (i.e., the ones that have not been 
early deallocated), (ii) early deallocated free registers with 
consumer counter equal to zero, and (iii) early deallocated 
free registers with consumer counter not equal to zero. The 
number of dispatch stalls (which occur when an instruction 
that has been assigned an early deallocated register with a 
non-zero consumer counter reaches the dispatch stage) can 
be reduced by giving the highest priority to normally 
released registers during register allocation. It is also 
conceivable that the second highest priority should be given 
to the registers with the consumer counter equal to zero and 
the least priority should be given to the registers, whose 
consumer counters are not equal to zero. However, our 
results indicated little difference (when prioritizing between 
different types of early deallocated registers) in terms of the 
overall IPCs, and therefore we only make a distinction 
between two priority classes among the registers in the free 
list: normally-released registers (which are given higher 
priority) and early-released registers. To determine the class 
of a register, we can use the ERR and the SRW bits. If the 
ERR and the SRW bits of a register that is being deallocated 
are set to “00”, then the register is a normally released 
register, else the register is an early released register. If the 
bits for a register are set to “00”, the bit for that register in 
the early-released register free list is reset and that in the 
normally released register free list is set. 

 
4. Reducing the number of stalls: TIB 

In Section 3, instruction dispatch stalls if an instruction 
with an early deallocated register assigned to it reaches the 
dispatch stage and the pending consumer counter of the 
register is not zero. Consequently, all subsequent 
instructions, even when they are independent of the blocked 
instruction, are also stalled, often unnecessarily.  In this 
section, we propose the use of a small Temporary Instruction 
Buffer (TIB) to temporarily store (provided that a free entry 
exists in the TIB) the instructions which were allocated 
registers with the non-zero consumer counters. 
Simultaneously, to avoid deadlock, these instructions are also 
dispatched to the issue queue; however, the corresponding 
issue queue entries are not marked “valid” immediately. If a 

Original code  Renamed code 

I1: ADD ->R1   ADD ->P2  /* ADD writes to R1 (P2) */ 

 ……….       ……….. 

I2: SUB <-R1   SUB <-P2   /* SUB reads R1 (P2) */ 

 ……….       ……….. 

I3: XOR ->R1   XOR ->P19 /* XOR writes to R1 (P19)*/ 

  

I4: NOR ->R5   NOR ->P2 /* NOR writes to R5 (P2) */ 



 

free entry is not available either in the issue queue or within 
the TIB, then instruction dispatching stalls as before.  

When an instruction is dispatched into the TIB, its TIB 
entry is tagged with the destination register of the instruction. 
Simultaneously, the destination register of the instruction is 
marked (by setting a bit for the register). The “marking” is 
removed when the register is deallocated. Eventually, when 
the consumer counter associated with this destination register 
reaches zero, the register identifier is broadcast (using tag 
lines) across the TIB and the instruction with that particular 
destination register is moved into the issue queue (the 
“movement” here simply accounts to validating the 
corresponding issue queue entry, which was already 
established at the time of establishing the TIB entry), freeing 
up its TIB entry. The real key advantage of this technique is 
that instructions following the one sent to the TIB (even if 
they depend on it) are still dispatched to the issue queue 
provided that their register states allow it (their destinations 
do not have a non-zero consumer counter). Obviously two 
sets of consumer counters are needed in this case to keep an 
accurate track of the number of in-flight consumers of each 
register instance.  

 
5. Rename-time register deallocation 

An even more aggressive realization of the AVD 
philosophy is to deallocate a register when its redefiner is 
renamed, regardless of whether the value is produced or not.  
Hardware support for this scheme is similar to that described 
in Section 3 (and in Appendix A) with some trivial 
modifications. The consumer counters and the Redefined bit-
vector remain the same as in Section 3. The ERR and the 
SRW bits also remain the same. However, they are not 
updated at writeback, but only when the redefiner is 
renamed. The main difference is that instead of one 
Written_back bit per register, this scheme requires two 
Written_back bits per register. These two bits are needed, 
because with rename-time deallocation scheme there can be 
two in-flight instructions with the same destination physical 
register that have both not reached the writeback stage. The 
branch misprediction handling mechanism now needs to 
consider the value of both the Written_back bits to update the 
bits and register free list accordingly. We do not present all 
details here due to the space constraints, but the logic 
described in Appendix A can be easily extended to support 
this with two copies of Written_back bits. 

Several variations of this general rename-time 
deallocation AVD scheme can be considered. 

Variation (a). First, an instruction that acquired an 
early-released register can be stalled at the time of dispatch if 
the consumers of the previous instance have not issued.  

Variation (b). Second, the TIB-based mechanism can be 
put in place, similar to that described in Section 4.  

Variation (c). Third, an instruction that acquired an 
early-released register does not have to stall at dispatch even 
if the consumers of the previous instance have not issued. 
Instead, this instruction can proceed all the way to the 

writeback stage, and can re-check the conditions just prior to 
writeback. If the consumers of the previous instance have 
already issued (the likelihood of which increases), then the 
writeback can be performed normally, otherwise the 
instruction will be re-issued. This scheme requires that the 
instruction is stored in the issue queue until it can safely 
writeback, and the mechanisms similar to those used to 
support replays in cases of load-hit mispredictions [18] can 
also be used here to replay the instructions. Note that even 
when an instruction has to be re-issued, its dependents can 
still execute without any delays provided that they obtain the 
value off the bypass network. Also in this scheme, the 
consumer counters are only decremented when the 
consumers writeback (to avoid storing erroneous information 
in the counters because of possible replays).  Two 
instructions writing to the same physical register may be 
simultaneously present in the issue queue in this scheme. An 
additional bit is used for each issue queue entry to 
distinguish between these two instances. 

Variation (d). Finally, we propose the most aggressive 
implementation of rename-based deallocation with AVD. If 
an instruction that acquired an early-released register is 
allowed to progress into the writeback stage even if the 
consumers of the previous instance are not issued, as 
explained in the above variation, then there is  a possibility 
that a normally released physical register will become 
available by the time this instruction enters the writeback 
stage. In such a case, it is possible to remap the early-
released register to a normally released register. While the 
instruction that acquired an early-released register re-checks 
the conditions just prior to writeback, in parallel to that it can 
also check if a normally released register is available. If the 
consumers of the previous instance are still not issued, and 
there is a normally released register available, then the 
instruction that acquired the early-released register can 
remap its destination to one of the normally released registers 
and carry on with the writeback operation. In such a case, 
this instruction does not need to be re-issued. To update the 
source tags within the issue queue, an update broadcast of a 
(old tag, new tag) pair, accompanied by the appropriate 
control signal, is needed. At first glance, one may assume 
that such an update broadcast may require the additional set 
of tag buses. However, since the tag buses are typically 
grossly underutilized [1], the existing set of wakeup buses is 
sufficient to accommodate all update broadcasts. Other 
studies [10] have also shown that such a broadcast-based 
remapping of registers is not difficult to perform.  Of course 
the corresponding entries in the remap tables should also be 
updated.  If remapping is not possible, then the scheme 
reverts to the mechanism described in variation (c) above. 

 
6. Related work 

Researchers have exploited the inefficiencies in register 
usage to reduce the number of registers in three major ways.  
One set of solutions delays the actual allocation of physical 
registers until the time that the result is written back [12], 



 

[24], [28], [33]. The second set of solutions reduces the 
number of registers through the use of register sharing [2], 
[14], [15], [31]. The third set of techniques aim at reducing 
the register file pressure by using the early deallocation of 
physical registers [9], [23], [25], [26] and [27].  These 
techniques are close in spirit to our proposal, and in the 
subsequent paragraphs we describe them in detail.  

In the Cherry scheme [23], a physical register is recycled 
if both the instruction that produces the physical register and 
all those that consume it have executed and are free of replay 
traps and are not subject to branch mispredictions. The 
scheme of [26] describes two techniques to release registers 
as soon as the processor knows that there will be no further 
use of them. Both schemes are less aggressive than what we 
propose and also do not support precise interrupts. In [9], the 
authors proposed schemes to release registers at the time of 
commitment. Again, techniques proposed herein are more 
aggressive in nature as we release registers at the time of 
writeback or even renaming.  

The scheme of [27] proposes to release a register early if 
the register value has been produced, all consumers of the 
value have issued, the register has been redefined, and all 
branch instructions between the value producing instruction 
and the refiner have been resolved. Unfortunately, this 
technique does not support precise exceptions unless the 
precise state is explicitly checkpointed in regular intervals. 
The authors of [27] then discuss an alternative scheme to 
support precise interrupts in a less expensive manner. Note 
that this scheme is widely used in modern processors, and is 
exactly the baseline that we assumed for our work. 

Alternative register file organizations (mainly using 
various forms of caching or banking) have also been 
explored for reducing the access time (which goes up with 
the number of ports and registers), particularly in wire-delay 
dominated circuits [4], [5], [7], [8], [17], [32]. In [22], 
register file usage was optimized using compiler support to 
exploit dead value information. Techniques exploiting 
narrow-width values were proposed to reduce the register file 
pressure [10] , [20] and to reduce the area, access time and 
energy consumption of the register file [19] and in [2]. The 
concept of non-blocking register file, where instructions 
waiting for the long- latency events (such as the caches 
misses) do not tie up physical registers, was introduced in 
[30]. 

 
7. Simulation methodology 

For estimating the performance gains achieved by using 
the proposed scheme, we used a significantly modified 
version of the Simplescalar simulator [6] that implements 
realistic models for a datapath where a unified register file is 
used. The studied processor configuration is shown in Table 
1. We assumed a pipeline with two stages for instruction 
fetch, two stages for register renaming, two stages dispatch. 
We used 16 SPEC 2000 benchmarks for our analysis. 
Benchmarks were compiled using the Simplescalar GCC 
compiler that generates code in the portable ISA (PISA) 

format. Reference inputs were used for all the simulated 
benchmarks. The results from the simulation of the first 1 
billion instructions were discarded and the results from the 
execution of following 200 million instructions were used. 

 
Table 1 Configuration of the Simulated Processor 

Parameter Configuration 

Machine width 4-wide fetch, 4-wide issue, 4 wide commit 
Window size 
 

64 entry issue queue, 64 entry load/store queue, 
128–entry ROB 

Registers Varied as indicated in the text 
Function Units 
and Latency 
(total/issue)

4 Int Add (1/1), 1 Int Mult (3/1) / Div (20/19), 2 
Load/Store (2/1), 4 FP Add (2), 1FP Mult (4/1) / 
Div (12/12) / Sqrt (24/24) 

L1 I–cache 
 

32 KB, 2–way set–associative, 32 byte line, 2 
cycles hit time 

L1 D–cache 32 KB, 4–way set–associative, 32 byte line, 2 
cycles hit time 

L2 Cache unified 512 KB, 4–way set–associative, 128 byte line, 8 
cycles hit time 

BTB 1024 entry, 4–way set–associative 

Branch Predictor 
 

Combined with 1K entry Gshare, 10 bit global 
history, 4K entry bimodal, 1K entry selector 

Memory 128 bit wide, 120 cycles first chunk, 2 cycles 
interchunk 

TLB 64 entry (I), 128 entry (D), fully associative, 30 
cycles miss latency 

 
8. Results 

Figures 3 (a) and (b) present the IPC performance for the 
schemes described in this paper for integer and floating point 
benchmarks respectively. The results are presented for a 
setup with 64-entry integer and 64-entry floating point 
register files. Six bars are presented for each benchmark. The 
leftmost bar shows the performance of the baseline case. The 
next bar shows the performance of the scheme discussed in 
Section 3, which is called WD_DS (Writeback-time 
Deallocation with Dispatch Stalls). The next bar shows the 
performance of the scheme from Section 4, where the 
writeback-time deallocation is augmented with a 4-entry 
TIB. The three rightmost bars show the IPCs of the rename-
time deallocation schemes, with dispatch stalls (RD_DS – 
variation (a) from Section 5), writeback stalls (RD_WS – 
variation (c) from Section 5) and finally with remapping 
(RD_REMAP – variation (d) in Section 5). We do not 
present results for variation (b) since the performance 
difference compared to (a) was minimal. 

On the average across the benchmarks, WD_DS 
achieves 4% IPC gain for integer benchmarks and 12.6% for 
floating point benchmarks with an overall average of 8.3%, 
WD_TIB achieves 4.9% and 16.7% IPC gain for integer and 
floating point benchmarks respectively, the average speedup 
for WD_TIB across all benchmarks is 10.8%. The rename-
time deallocation schemes without remapping perform much 
worse. The basic RD_DS scheme actually loses 13.5% and 
6.7% in performance compared to the baseline case for 
integer and floating point benchmarks respectively, with an 



 

overall average degradation of 10.2%, while the RD_WS 
scheme performs 0.6% worse than the baseline case for 
integer benchmarks and gains 6.2% for the floating point 
benchmarks on the average, across all benchmarks this 
scheme performs 2.8% better compared to the baseline 
machine.  
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(b) 

Figure 3. IPC performance of the proposed schemes for a 
setup with 64 entry register files - (a) Integer 
benchmarks, (b) Floating Point benchmarks 

 
The reason why the rename-time deallocation schemes 

without remapping perform so poorly is due to the excessive 
number of stalls because of the very aggressive nature of 
register deallocations. The performance is worse than in the 
baseline case, because an instruction often acquires a “bad” 
register and has to stall for a large number of cycles, while in 
the baseline even if the instruction is stalled due to the lack 
of registers, chances are that some register will be freed up 
soon and the instruction dispatching will continue. Similar 
problems, albeit on a lesser scale, occur with the RD_WS 
scheme. Such stalls can be avoided if the writeback-time 
remapping (variation (d) in Section 5) is implemented. The 
right-most bar, labeled RD_REMAP, on Figure 3 shows the 
performance improvement when the remapping scheme is 
used with rename time deallocation. In this case, we see a 
significant performance improvement: 7.8% for the integer 
benchmarks, 21.5% for the floating point benchmarks on the 
average and 14.6% on the average across all benchmarks. 
The remapping scheme not only makes up for the 
performance losses seen with the other two rename time 
allocation techniques but it also outperforms the writeback-
time deallocation techniques. 
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(b) 

Figure 4 IPC performance of the proposed schemes for a 
setup with 96 entry register files - (a) Integer 
benchmarks, (b) Floating Point benchmarks 

 
Figure 4 presents the same performance evaluation for a 

setup with 96 entry integer and 96 entry floating point 
register files. We can see that WD_DS scheme exhibits a 
slight slowdown (smaller than 1%) with respect to the 
baseline case for the integer benchmarks but it shows a 
speedup of for the floating point benchmarks with the overall 
average speedup of 2.6% across all benchmarks. The second 
writeback time deallocation scheme, namely WD_TIB shows 
only a slight speedup (0.4%) for the integer benchmark. This 
scheme shows much higher IPC gains for the floating point 
benchmarks; 10.9% on the average. Overall, across all 
benchmarks the speedup of the WD_TIB scheme is 5.7%. 
The rename time deallocation techniques without remapping 
again perform much worse than the writeback deallocation 
schemes. It can also be seen from the figure that the rename 
time deallocation scheme where remapping is performed 
achieves an average speedup of 2.7% and 12.6% for integer 
and floating point benchmarks respectively. The overall IPC 
gain across all benchmarks for this scheme is 7.5%. 

Figure 5 depicts the IPC numbers for the baseline case 
and the RD_REMAP scheme with 64 and 96 entries register 
files as well as the baseline case with 256 registers (in our 
configuration this corresponds to having infinite number of 
registers). It can be seen from the figure that the 
RD_REMAP scheme comes within 2% and 5% of the 
baseline case with infinite number of registers for integer and 
floating point benchmarks respectively. 
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Figure 5  IPC performance of the baseline machine and 
the RD_REMAP scheme for several different register file 

sizes 
 

Finally, Figure 6 compares the RD_REMAP scheme that 
is proposed in this paper to the Physical Register Inlining 
scheme of  [20], which stores narrow-width results directly 
in the rename table, and the early register release scheme of 
[9] (Ergin_ICCD). We implemented all these schemes in our 
framework and therefore provide the performance 
comparison on an even footing. As the figure shows, the 
RD_REMAP scheme performs better than previous 
techniques on the average for both integer and floating point 
benchmarks. The RD_REMAP scheme results in a 10% 
higher speedup than the scheme of Ergin_ICCD on the 
average. The additional performance gains are due to the 
more aggressive nature of our schemes. While the scheme of 
[9] early deallocates registers at the time of instructions 
commitment, our techniques go much further than that. The 
Physical Register Inlining outperforms the RD_REMAP 
scheme proposed in this paper for some benchmarks (gzip, 
perl, twolf, vpr, mesa, swim) due to the high percentage of 
narrow-width values in these benchmarks, but RD_REMAP 
scheme performs 6% better on the average. 

 
9. Concluding remarks 

It is important to consider techniques for efficient use of 
physical registers in modern high performance processors, 
because even though smaller register files facilitate faster 
clocks, they limit the instruction level parallelism exploited 
in the processor. In this paper we proposed a series of 
techniques for early register deallocation based on the idea 
that a register value can be temporarily decoupled from the 
register address. Early register deallocation increases the 

effective register file size. We described several realizations 
of this idea and showed that our most aggressive design 
achieves about 14.6% IPC gains on the average across the 
SPEC benchmarks in a somewhat register-constrained 
datapath configuration. Our techniques also compare 
favorably against some previously proposed solutions. For 
example, the performance gains almost triple compared to a 
less aggressive scheme of [9]. We also show that our most 
aggressive technique outperforms the Physical Register 
Inlining scheme of [20] by 6% on the average. Finally, our 
techniques applied to 96-entry register files come as close as 
3.5% of the performance of a machine with infinite number 
of physical registers. 
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Figure 6. Speed-up comparison of the RD_REMAP 
scheme to Physical Register Inlining [20] and the scheme 

of Ergin_ICCD [9]  
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Appendix A: Reconstructing the precise state 

The finite state machine (FSM) diagram for updating the ERR (Early-
deallocated Register Reallocated) and and the SRW (Short-lived Register 
Written-back) bits is shown in Figure 7. In Figure 7, the first bit in the circle 
is the ERR bit and the second bit is the SRW bit. If no instances of a register 
are alive, then the bits are “00”.  

At register allocation time, the bits are not updated if they are “00” (i.e. 
no instance alive), else they are updated to “10” from “01” (one short-lived 
early-deallocated instance alive). Note that, when a register is allocated, the 
ERR and the SRW bits can only be either “00” or “01”. At writeback, if a 
register is not yet short-lived (the redefiner has not been renamed), nothing 
is done. Otherwise, if the bits are “00”, the register is deallocated and the 
bits are updated to “01”, and if the bits are “10”, they are updated to “11” 
without deallocating the register (ensuring that only two instances of a 
register are alive).  

When the redefiner is renamed, the state is updated from “00” to “01” 
and from “10” to “11” if the register has been written back, else nothing is 
done. When the redefiner of a register commits, the bits can be “00” if the 
only instance of the register is not short-lived, “01” if the early-deallocated 
instance of the register has not been reallocated, “10” if the second instance 
of the register is not short-lived, or “11” if the second instance of the register 
is short-lived. The bits are updated to “00” from “01” and “10”, and to “01” 
from “11”, signifying the accurate condition of the register after the 
commitment of the redefiner.  The register is deallocated if the bits are “11”, 
otherwise the register is not deallocated. 

The FSM of Figure 7 significantly simplifies the handling of branch 
mispredictions and precise interrupts. When an exception occurs, we assume 

that it is handled when the instruction generating the exception is the oldest 
instruction in the pipeline. When handling an exception, if the ERR and SRW 
bits of a register are “11”, then the original value is restored from the 
shadow bitcells. If the bits are “01”, then the register is removed from the 
free list. For all the registers, the ERR and the SRW bits are modified to 
“00”, and the Renamed bits are reset. These updates ensure no early-
deallocated and short-lived registers across exceptions. 

When handling branch mispredictions in the traditional case, the ROB 
entries occupied by the instructions younger than the mispredicted branch 
are examined to recover the precise register renaming. In parallel, the ERR 
and the SRW bits are checked for the register assigned to the instruction and 
the register the instruction redefines. When an instruction is squashed, the 
bits for the register it redefines can be in any one of the four states. If the bits 
are “11”, they are updated to “10”, and if they are “01”, they are updated to 
“00”. Otherwise, the bits are not modified. In addition, the Renamed bit for 
the register the instruction redefines is reset. 

When an instruction is squashed, the bits for the register assigned to it 
can only be “10” or “00”, because either the register is not short-lived, or it 
is short-lived and the redefiner has been squashed. If the bits are “10”, then 
it is not known whether the instruction, that was assigned the second 
instance of the register, has written back its result. To obtain this 
information, we use the Written_back bit of the registers (refer Section 3).  If 
the Written_back bit of a register is “1”, then the original value is restored. 
Irrespective of the Written_back bit, the register is deallocated, the 
Written_back and the Renamed bits are set (because the earlier instance of 
the register has been written to and renamed), and the bits are updated to 
“01”. If the ERR and the SRW bits are “00”, the register is deallocated and 
the Written_back bit is reset. A register may be deallocated twice if two 
instructions using the same register are squashed. However, if a bit-vector is 
maintained to record the free registers, the bit for the register deallocated 
twice will be set twice, which will not cause any problems. Note that, when 
squashing instructions, the register operands of the instructions are also used 
to decrement the consumer counters for the registers. 

 

 
Figure 7. Finite state diagram for the ERR and SRW bits of one 
register; as the register is allocated and written back, and the 

redefiner of the register is committed 
 

Handling branch mispredictions in a checkpoint-based recovery 
mechanism is even easier. When a checkpoint of the rename map table is 
created, the ERR, SRW, Written_back, and Renamed bits for all the registers 
are also checkpointed. On recovery, all the bits are restored. The 
Written_back bits of instructions that writeback after the checkpoint has 
been created will still be zero. However, this does not affect the correctness 
of this scheme. 
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