

Address-Value Decoupling for Early Register Deallocation

Deniz Balkan, Joseph Sharkey, Dmitry Ponomarev
Department of Computer Science

State University of New York at Binghamton
{dbalkan, jsharke, dima}@cs.binghamton.edu

 Aneesh Aggarwal
Department of Electrical and Computer Engineering

State University of New York at Binghamton
aneesh@binghamton.edu

Abstract

We propose a series of aggressive register deallocation
mechanisms to reduce the register file pressure and increase
the parallelism exploited by superscalar microprocessors.
Our techniques are based on a key observation that a
register value can be temporarily decoupled from the
register identifier. Specifically, even if a physical register is
deallocated, the value is still available in the register and
can be read by the dependent instructions until the register is
overwritten. In these situations, we can effectively overlap
the consumption of the produced register value and partial
processing of the instruction that gets the same register
reassigned to it. In this paper, we propose several
realizations of the address-value decoupling idea and discuss
their implications on the performance. Our most aggressive
scheme achieves an average IPC speedup of 14.6% across
simulated SPEC 2000 benchmarks.

1. Introduction

In modern superscalar microarchitectures, the access to
the register file lies on the critical schedule-to-execute path.
As a new physical register needs to be allocated for every
instruction with a destination register, larger register files are
required to extract more instruction-level parallelism (ILP)
out of sequential programs. Additionally, to reduce the
amount of data transfers, a single RAM structure is typically
used to maintain both committed and speculative register
values [13], [16], [34].

Register file access latency increases with the register
file size. To achieve higher clock frequencies with large
register files, the register file often needs to be pipelined over
multiple cycles. A pipelined register file access degrades
performance by increasing the branch and load-hit
misspeculation penalties [5]. It also complicates the bypass
network by increasing the number of stages for which the
values are forwarded through the network. The situation is
further exacerbated in the SMT processors, where a larger
register file is required to satisfy the register requirements of
the multiple threads running simultaneously. Using a smaller
register file limits the amount of ILP that can be exploited,
by stalling instructions in rename due to unavailability of

registers. An effective alternative for a larger register file is
to use fewer registers (facilitating faster clock), but manage
them more efficiently. If the reduction of the register file size
is not the goal, then such mechanism will simply increase the
ILP that is exploited by providing the illusion of having more
registers.

Traditional register allocation and deallocation
techniques are very conservative – a new physical register is
allocated for the destination of a new instruction at the time
of dispatch and this register remains allocated until the next
instruction writing to the same architectural register commits.
In this paper, we propose a series of novel techniques for
early register deallocation, thus making more registers
available for rename. Our proposals are based on the key
observation that a register value can be temporarily
decoupled from the register address. Specifically, even if a
register is deallocated, the value stored in that register is still
available and can be read by the dependent instructions until
the register is overwritten.

We describe several realizations of such Address-Value
Decoupling (AVD). In our first implementation of AVD, a
physical register is deallocated immediately after the result is
written to the register. In our basic scheme, the instruction
reacquiring the early deallocated register stalls at the time of
dispatch if the prior value stored in that register has not been
read by all its consuming instructions. To avoid these
dispatch stalls, we introduce an auxiliary structure called
Temporary Instruction Buffer (TIB), which temporarily
holds instructions that would otherwise be stalled. The
instructions are moved from the TIB to the issue queue when
the old value stored in the instruction’s destination register
has been read by all its consumers. The key advantage of
moving head-of-the-line instructions into the TIB is that
subsequent instructions can execute normally, as long as the
conditions imposed on their destination registers allow such
execution.

We then take our ideas one step further and explore
deallocating a physical register when the next instruction
writing to the same architectural register is renamed. We
explore several variations of this technique and show that the
most aggressive solution achieves 14.6% IPC gains on the
average across simulated SPEC benchmarks compared to the
baseline machine with traditional register management

mechanisms. Finally, we show that our most aggressive
technique favorably compares with some other recently
proposed register file optimization schemes.

2. Background and motivations
2.1 Background

The design proposed in this paper relies on the use of
Checkpointed Register File (CRF) circuitry that was
introduced in [9]. For a circuit schematic and the detailed
area, power and timing analysis of CRF we refer the readers
to [9], in this subsection we just provide a brief overview of
this mechanism.

In CRF, each traditional register file bitcell is backed-up
by a shadow cell, which is connected to the main bitcell
using pass transistors. When the Checkpoint signal rises, the
contents of a bitcell are simply copied to the shadow cell. To
recover, the contents of the shadow cells are copied back to
the main storage when the Recover signal rises. As
discussed in [9], the resulting bitcell area increases by about
26.5%. Since the area of the other peripheral components of
the register file such as sensamps, decoders, word select
drivers and prechargers is not impacted by the proposed
bitcell modification, the overall increase in the area of the
register file is less than 20%. There is a very slight increase
in the register file delay due to the longer word select and bit
lines. Since no gate capacitance is added to these lines, the
increase in the delay is miniscule; it is less than 3% [9].
There is also a similar minimal impact on the delay of the
word select line during the normal course of read and write
accesses. Consequently, the CRF design represents an
efficient way of doubling the register file storage without
commensurate increase in the area, access delay, or power
dissipation. The only limitation is that half of the register file
bitcells (the shadow copies) are not directly accessible
through the regular ports.

2.2 Motivations

To motivate the rest of this paper, we now present two
key microarchitectural statistics regarding the producer-
consumer relationships in a typical superscalar datapath.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

bz
ip

2

gc
c

gz
ip

m
cf

pe
rl

tw
ol

f

vo
rte

x

vp
r

ap
pl

u

ap
si ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

In
t A

ve
ra

ge

FP
 A

ve
ra

ge

A
ve

ra
ge

cy
cl

es

Figure 1. Number of cycles between the writeback of a
short-lived value and the issue of its last consumer

First, it has been noticed by several researchers, that

most of the register instances in a datapath are short-lived
[11], [21], [29]. In [29], a value was defined as short-lived if

the architectural register allocated of an instruction X had
been redefined (i.e., a younger instruction that writes to the
same architectural register has been renamed) before the
value generated by X was written back. We also call the
instruction that redefines a register allocated to hold a short-
lived value as the redefiner. It was shown in [29] that more
than 85% of the generated values are short-lived; our results
showed similar percentages.

Another key observation from our experiments is that all
consumers of a short-lived value are typically issued in a
short duration after the short-lived value is written into the
register file. Figure 1 shows the average number of cycles
between the writeback of the short-lived value and the
issuing of the last consumer of that value. On the average
across all simulated benchmarks, this duration is only 2.4
cycles, the maximum being slightly less than 7 cycles for art.
The early register reclamation techniques that we propose in
this paper are motivated by these two observations. In the
next two sections, we describe the proposed mechanisms.

3. Writeback-time register deallocation

The key idea behind our first technique is to deallocate a
register as soon as the following two conditions are true: a)
the result has been written into the register and b) the register
has been redefined.

To determine whether a register has been redefined or
not, we maintain a bit-vector called Redefined with one bit
for each physical register. When an instruction is renamed, it
sets the Redefined bit corresponding to the previous mapping
of its destination architectural register. The Redefined bits are
reset when the corresponding physical registers are
deallocated, or the redefiners of the physical registers are
squashed on a branch misprediction. There is also another bit
associated with each physical register, called Written_back,
which is set one cycle before the writeback to the register
takes place and reset when the register is deallocated. A
value is identified as short-lived if both Redefined and
Written_back bits are set either at the end of the last
execution cycle or at the time of redefiner’s renaming. Once
a value is identified as short-lived, the register holding the
value is immediately deallocated.

To understand the performance benefit of such early
deallocation of registers, it is instructive to examine the code
example shown in Figure 2. Both the original and the
renamed version of a code fragment are shown in this figure.

In Figure 2, the instruction I1 deallocates its destination
register P2 after it writes back the produced value into this
register. Such an early deallocation is possible because, as
we assume in this example, instruction I3 that redefines R1 is
already renamed. The instruction I2 consumes the value of
P2 after it is deallocated, and the instruction I4 is the next
instruction that uses physical register P2 as its destination
mapping. In the baseline machine without early register
deallocation, the renaming of the instruction I4 could be
stalled for several cycles due to unavailability of free
physical registers - the renaming only resumes when a

committing instruction deallocates a physical register. In
contrast, if the early register release proposed in this paper is
implemented, then as soon as I1 writes back, its register (P2)
can be reassigned to I4, thus avoiding the renaming stalls.

Figure 2. Example code sequence

On a branch misprediction or exception, the original

contents of an early deallocated register may have to be
recovered. For instance, in Figure 2, if I4 overwrites the
value of P2 before I3 executes, and then I3 raises an
exception, then the precise state of architectural register R1 is
defined by the result of I1, which has to be recovered. To
address this problem, the contents of an early-deallocated
register are saved when the register is overwritten, using the
register file design with shadow bitcells, as introduced in [9]
and reviewed in Section 2.1. Since each register is only
backed by a single shadow copy, a maximum of two
allocated instances of the same physical register are allowed
at one time.. Hence, when an instruction writes back a short-
lived value, it should deallocate the register only if it has the
only instance of the register. To ensure that no more than two
instances of a register are alive at the same time, we maintain
two bits – Early-deallocated Register Reallocated (ERR) and
Short-lived Register Written-back (SRW) – for each physical
register.

The ERR and the SRW bits of a register are checked and
updated when the register is allocated and written back, and
when the redefiner of the register is renamed and committed.
These bits can be trivially manipulated to reconstruct a
precise state following exceptions or interrupts. The specific
details are not central to the ideas proposed in this paper.
Therefore, not to deviate from the conceptual discussions of
our ideas, the details pertaining to the manipulation of the
ERR and SRW bits, along with the finite state machine for
updating these bits, are formally and completely presented in
Appendix A.

In the example shown in Figure 2, it may happen that the
instruction I4 writes the early deallocated and reallocated
physical register P2 before the instruction I2 reads its
operands, resulting in an incorrect value for I2. This could
transpire because of the delaying of I2 in the issue queue for
various reasons. To address this problem, we delay the
dispatch of an instruction allocated an early deallocated
register until all consumers of the previous register instance
have read the value and have begun execution. In the above
example, until the instruction I2 reads the register P2, I4 and

all the following instructions are not dispatched. To detect
this condition, we maintain a dynamic counter of the number
of in-flight consumers for each physical register. These
counters are incremented as the consumers are renamed, and
are decremented as the consumers start execution or the
consumers get squashed (because of branch misprediction).
The consumer counters are reset to zero when a register is
allocated. Similar support has been used by other works [4],
[23] and [27]. An instruction can only be dispatched if the
consumer counter, corresponding to its destination physical
register, is zero. Otherwise, instruction dispatch stalls.

3.1 Priority-based register allocation

In the early register deallocation scheme discussed
above, the free registers can be classified into three types: (i)
normally released registers (i.e., the ones that have not been
early deallocated), (ii) early deallocated free registers with
consumer counter equal to zero, and (iii) early deallocated
free registers with consumer counter not equal to zero. The
number of dispatch stalls (which occur when an instruction
that has been assigned an early deallocated register with a
non-zero consumer counter reaches the dispatch stage) can
be reduced by giving the highest priority to normally
released registers during register allocation. It is also
conceivable that the second highest priority should be given
to the registers with the consumer counter equal to zero and
the least priority should be given to the registers, whose
consumer counters are not equal to zero. However, our
results indicated little difference (when prioritizing between
different types of early deallocated registers) in terms of the
overall IPCs, and therefore we only make a distinction
between two priority classes among the registers in the free
list: normally-released registers (which are given higher
priority) and early-released registers. To determine the class
of a register, we can use the ERR and the SRW bits. If the
ERR and the SRW bits of a register that is being deallocated
are set to “00”, then the register is a normally released
register, else the register is an early released register. If the
bits for a register are set to “00”, the bit for that register in
the early-released register free list is reset and that in the
normally released register free list is set.

4. Reducing the number of stalls: TIB

In Section 3, instruction dispatch stalls if an instruction
with an early deallocated register assigned to it reaches the
dispatch stage and the pending consumer counter of the
register is not zero. Consequently, all subsequent
instructions, even when they are independent of the blocked
instruction, are also stalled, often unnecessarily. In this
section, we propose the use of a small Temporary Instruction
Buffer (TIB) to temporarily store (provided that a free entry
exists in the TIB) the instructions which were allocated
registers with the non-zero consumer counters.
Simultaneously, to avoid deadlock, these instructions are also
dispatched to the issue queue; however, the corresponding
issue queue entries are not marked “valid” immediately. If a

Original code Renamed code

I1: ADD ->R1 ADD ->P2 /* ADD writes to R1 (P2) */

 ………. ………..

I2: SUB <-R1 SUB <-P2 /* SUB reads R1 (P2) */

 ………. ………..

I3: XOR ->R1 XOR ->P19 /* XOR writes to R1 (P19)*/

I4: NOR ->R5 NOR ->P2 /* NOR writes to R5 (P2) */

free entry is not available either in the issue queue or within
the TIB, then instruction dispatching stalls as before.

When an instruction is dispatched into the TIB, its TIB
entry is tagged with the destination register of the instruction.
Simultaneously, the destination register of the instruction is
marked (by setting a bit for the register). The “marking” is
removed when the register is deallocated. Eventually, when
the consumer counter associated with this destination register
reaches zero, the register identifier is broadcast (using tag
lines) across the TIB and the instruction with that particular
destination register is moved into the issue queue (the
“movement” here simply accounts to validating the
corresponding issue queue entry, which was already
established at the time of establishing the TIB entry), freeing
up its TIB entry. The real key advantage of this technique is
that instructions following the one sent to the TIB (even if
they depend on it) are still dispatched to the issue queue
provided that their register states allow it (their destinations
do not have a non-zero consumer counter). Obviously two
sets of consumer counters are needed in this case to keep an
accurate track of the number of in-flight consumers of each
register instance.

5. Rename-time register deallocation

An even more aggressive realization of the AVD
philosophy is to deallocate a register when its redefiner is
renamed, regardless of whether the value is produced or not.
Hardware support for this scheme is similar to that described
in Section 3 (and in Appendix A) with some trivial
modifications. The consumer counters and the Redefined bit-
vector remain the same as in Section 3. The ERR and the
SRW bits also remain the same. However, they are not
updated at writeback, but only when the redefiner is
renamed. The main difference is that instead of one
Written_back bit per register, this scheme requires two
Written_back bits per register. These two bits are needed,
because with rename-time deallocation scheme there can be
two in-flight instructions with the same destination physical
register that have both not reached the writeback stage. The
branch misprediction handling mechanism now needs to
consider the value of both the Written_back bits to update the
bits and register free list accordingly. We do not present all
details here due to the space constraints, but the logic
described in Appendix A can be easily extended to support
this with two copies of Written_back bits.

Several variations of this general rename-time
deallocation AVD scheme can be considered.

Variation (a). First, an instruction that acquired an
early-released register can be stalled at the time of dispatch if
the consumers of the previous instance have not issued.

Variation (b). Second, the TIB-based mechanism can be
put in place, similar to that described in Section 4.

Variation (c). Third, an instruction that acquired an
early-released register does not have to stall at dispatch even
if the consumers of the previous instance have not issued.
Instead, this instruction can proceed all the way to the

writeback stage, and can re-check the conditions just prior to
writeback. If the consumers of the previous instance have
already issued (the likelihood of which increases), then the
writeback can be performed normally, otherwise the
instruction will be re-issued. This scheme requires that the
instruction is stored in the issue queue until it can safely
writeback, and the mechanisms similar to those used to
support replays in cases of load-hit mispredictions [18] can
also be used here to replay the instructions. Note that even
when an instruction has to be re-issued, its dependents can
still execute without any delays provided that they obtain the
value off the bypass network. Also in this scheme, the
consumer counters are only decremented when the
consumers writeback (to avoid storing erroneous information
in the counters because of possible replays). Two
instructions writing to the same physical register may be
simultaneously present in the issue queue in this scheme. An
additional bit is used for each issue queue entry to
distinguish between these two instances.

Variation (d). Finally, we propose the most aggressive
implementation of rename-based deallocation with AVD. If
an instruction that acquired an early-released register is
allowed to progress into the writeback stage even if the
consumers of the previous instance are not issued, as
explained in the above variation, then there is a possibility
that a normally released physical register will become
available by the time this instruction enters the writeback
stage. In such a case, it is possible to remap the early-
released register to a normally released register. While the
instruction that acquired an early-released register re-checks
the conditions just prior to writeback, in parallel to that it can
also check if a normally released register is available. If the
consumers of the previous instance are still not issued, and
there is a normally released register available, then the
instruction that acquired the early-released register can
remap its destination to one of the normally released registers
and carry on with the writeback operation. In such a case,
this instruction does not need to be re-issued. To update the
source tags within the issue queue, an update broadcast of a
(old tag, new tag) pair, accompanied by the appropriate
control signal, is needed. At first glance, one may assume
that such an update broadcast may require the additional set
of tag buses. However, since the tag buses are typically
grossly underutilized [1], the existing set of wakeup buses is
sufficient to accommodate all update broadcasts. Other
studies [10] have also shown that such a broadcast-based
remapping of registers is not difficult to perform. Of course
the corresponding entries in the remap tables should also be
updated. If remapping is not possible, then the scheme
reverts to the mechanism described in variation (c) above.

6. Related work

Researchers have exploited the inefficiencies in register
usage to reduce the number of registers in three major ways.
One set of solutions delays the actual allocation of physical
registers until the time that the result is written back [12],

[24], [28], [33]. The second set of solutions reduces the
number of registers through the use of register sharing [2],
[14], [15], [31]. The third set of techniques aim at reducing
the register file pressure by using the early deallocation of
physical registers [9], [23], [25], [26] and [27]. These
techniques are close in spirit to our proposal, and in the
subsequent paragraphs we describe them in detail.

In the Cherry scheme [23], a physical register is recycled
if both the instruction that produces the physical register and
all those that consume it have executed and are free of replay
traps and are not subject to branch mispredictions. The
scheme of [26] describes two techniques to release registers
as soon as the processor knows that there will be no further
use of them. Both schemes are less aggressive than what we
propose and also do not support precise interrupts. In [9], the
authors proposed schemes to release registers at the time of
commitment. Again, techniques proposed herein are more
aggressive in nature as we release registers at the time of
writeback or even renaming.

The scheme of [27] proposes to release a register early if
the register value has been produced, all consumers of the
value have issued, the register has been redefined, and all
branch instructions between the value producing instruction
and the refiner have been resolved. Unfortunately, this
technique does not support precise exceptions unless the
precise state is explicitly checkpointed in regular intervals.
The authors of [27] then discuss an alternative scheme to
support precise interrupts in a less expensive manner. Note
that this scheme is widely used in modern processors, and is
exactly the baseline that we assumed for our work.

Alternative register file organizations (mainly using
various forms of caching or banking) have also been
explored for reducing the access time (which goes up with
the number of ports and registers), particularly in wire-delay
dominated circuits [4], [5], [7], [8], [17], [32]. In [22],
register file usage was optimized using compiler support to
exploit dead value information. Techniques exploiting
narrow-width values were proposed to reduce the register file
pressure [10] , [20] and to reduce the area, access time and
energy consumption of the register file [19] and in [2]. The
concept of non-blocking register file, where instructions
waiting for the long- latency events (such as the caches
misses) do not tie up physical registers, was introduced in
[30].

7. Simulation methodology

For estimating the performance gains achieved by using
the proposed scheme, we used a significantly modified
version of the Simplescalar simulator [6] that implements
realistic models for a datapath where a unified register file is
used. The studied processor configuration is shown in Table
1. We assumed a pipeline with two stages for instruction
fetch, two stages for register renaming, two stages dispatch.
We used 16 SPEC 2000 benchmarks for our analysis.
Benchmarks were compiled using the Simplescalar GCC
compiler that generates code in the portable ISA (PISA)

format. Reference inputs were used for all the simulated
benchmarks. The results from the simulation of the first 1
billion instructions were discarded and the results from the
execution of following 200 million instructions were used.

Table 1 Configuration of the Simulated Processor

Parameter Configuration

Machine width 4-wide fetch, 4-wide issue, 4 wide commit
Window size

64 entry issue queue, 64 entry load/store queue,
128–entry ROB

Registers Varied as indicated in the text
Function Units
and Latency
(total/issue)

4 Int Add (1/1), 1 Int Mult (3/1) / Div (20/19), 2
Load/Store (2/1), 4 FP Add (2), 1FP Mult (4/1) /
Div (12/12) / Sqrt (24/24)

L1 I–cache

32 KB, 2–way set–associative, 32 byte line, 2
cycles hit time

L1 D–cache 32 KB, 4–way set–associative, 32 byte line, 2
cycles hit time

L2 Cache unified 512 KB, 4–way set–associative, 128 byte line, 8
cycles hit time

BTB 1024 entry, 4–way set–associative

Branch Predictor

Combined with 1K entry Gshare, 10 bit global
history, 4K entry bimodal, 1K entry selector

Memory 128 bit wide, 120 cycles first chunk, 2 cycles
interchunk

TLB 64 entry (I), 128 entry (D), fully associative, 30
cycles miss latency

8. Results

Figures 3 (a) and (b) present the IPC performance for the
schemes described in this paper for integer and floating point
benchmarks respectively. The results are presented for a
setup with 64-entry integer and 64-entry floating point
register files. Six bars are presented for each benchmark. The
leftmost bar shows the performance of the baseline case. The
next bar shows the performance of the scheme discussed in
Section 3, which is called WD_DS (Writeback-time
Deallocation with Dispatch Stalls). The next bar shows the
performance of the scheme from Section 4, where the
writeback-time deallocation is augmented with a 4-entry
TIB. The three rightmost bars show the IPCs of the rename-
time deallocation schemes, with dispatch stalls (RD_DS –
variation (a) from Section 5), writeback stalls (RD_WS –
variation (c) from Section 5) and finally with remapping
(RD_REMAP – variation (d) in Section 5). We do not
present results for variation (b) since the performance
difference compared to (a) was minimal.

On the average across the benchmarks, WD_DS
achieves 4% IPC gain for integer benchmarks and 12.6% for
floating point benchmarks with an overall average of 8.3%,
WD_TIB achieves 4.9% and 16.7% IPC gain for integer and
floating point benchmarks respectively, the average speedup
for WD_TIB across all benchmarks is 10.8%. The rename-
time deallocation schemes without remapping perform much
worse. The basic RD_DS scheme actually loses 13.5% and
6.7% in performance compared to the baseline case for
integer and floating point benchmarks respectively, with an

overall average degradation of 10.2%, while the RD_WS
scheme performs 0.6% worse than the baseline case for
integer benchmarks and gains 6.2% for the floating point
benchmarks on the average, across all benchmarks this
scheme performs 2.8% better compared to the baseline
machine.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

bz
ip

2

gc
c

gz
ip

m
cf

pe
rl

tw
ol

f

vo
rte

x

vp
r

Av
er

ag
e

IP
C

Baseline 64 WD_DS 64 WD_TIB 64 RD_DS 64 RD_WS 64 RD_REMAP 64

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ap
pl

u

ap
si ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

Av
er

ag
e

IP
C

Baseline 64 WD_DS 64 WD_TIB 64 RD_DS 64 RD_WS 64 RD_REMAP 64

(b)

Figure 3. IPC performance of the proposed schemes for a
setup with 64 entry register files - (a) Integer
benchmarks, (b) Floating Point benchmarks

The reason why the rename-time deallocation schemes

without remapping perform so poorly is due to the excessive
number of stalls because of the very aggressive nature of
register deallocations. The performance is worse than in the
baseline case, because an instruction often acquires a “bad”
register and has to stall for a large number of cycles, while in
the baseline even if the instruction is stalled due to the lack
of registers, chances are that some register will be freed up
soon and the instruction dispatching will continue. Similar
problems, albeit on a lesser scale, occur with the RD_WS
scheme. Such stalls can be avoided if the writeback-time
remapping (variation (d) in Section 5) is implemented. The
right-most bar, labeled RD_REMAP, on Figure 3 shows the
performance improvement when the remapping scheme is
used with rename time deallocation. In this case, we see a
significant performance improvement: 7.8% for the integer
benchmarks, 21.5% for the floating point benchmarks on the
average and 14.6% on the average across all benchmarks.
The remapping scheme not only makes up for the
performance losses seen with the other two rename time
allocation techniques but it also outperforms the writeback-
time deallocation techniques.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

bz
ip

2

gc
c

gz
ip

m
cf

pe
rl

tw
ol

f

vo
rte

x

vp
r

Av
er

ag
e

IP
C

Baseline 96 WD_DS 96 WD_TIB 96 RD_DS 96 RD_WS 96 RD_REMAP 96

(a)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

ap
pl

u

ap
si ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

Av
er

ag
e

IP
C

Baseline 96 WD_DS 96 WD_TIB 96 RD_DS 96 RD_WS 96 RD_REMAP 96

(b)

Figure 4 IPC performance of the proposed schemes for a
setup with 96 entry register files - (a) Integer
benchmarks, (b) Floating Point benchmarks

Figure 4 presents the same performance evaluation for a

setup with 96 entry integer and 96 entry floating point
register files. We can see that WD_DS scheme exhibits a
slight slowdown (smaller than 1%) with respect to the
baseline case for the integer benchmarks but it shows a
speedup of for the floating point benchmarks with the overall
average speedup of 2.6% across all benchmarks. The second
writeback time deallocation scheme, namely WD_TIB shows
only a slight speedup (0.4%) for the integer benchmark. This
scheme shows much higher IPC gains for the floating point
benchmarks; 10.9% on the average. Overall, across all
benchmarks the speedup of the WD_TIB scheme is 5.7%.
The rename time deallocation techniques without remapping
again perform much worse than the writeback deallocation
schemes. It can also be seen from the figure that the rename
time deallocation scheme where remapping is performed
achieves an average speedup of 2.7% and 12.6% for integer
and floating point benchmarks respectively. The overall IPC
gain across all benchmarks for this scheme is 7.5%.

Figure 5 depicts the IPC numbers for the baseline case
and the RD_REMAP scheme with 64 and 96 entries register
files as well as the baseline case with 256 registers (in our
configuration this corresponds to having infinite number of
registers). It can be seen from the figure that the
RD_REMAP scheme comes within 2% and 5% of the
baseline case with infinite number of registers for integer and
floating point benchmarks respectively.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
bz

ip
2

gc
c

gz
ip

m
cf

pe
rl

tw
ol

f

vo
rte

x

vp
r

A
ve

ra
ge

IP
C

Baseline 64 RD_REMAP 64 Baseline 96 RD_REMAP 96 Baseline 256

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ap
pl

u

ap
si ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

A
ve

ra
ge

IP
C

Baseline 64 RD_REMAP 64 Baseline 96 RD_REMAP 96 Baseline 256

(b)

Figure 5 IPC performance of the baseline machine and
the RD_REMAP scheme for several different register file

sizes

Finally, Figure 6 compares the RD_REMAP scheme that
is proposed in this paper to the Physical Register Inlining
scheme of [20], which stores narrow-width results directly
in the rename table, and the early register release scheme of
[9] (Ergin_ICCD). We implemented all these schemes in our
framework and therefore provide the performance
comparison on an even footing. As the figure shows, the
RD_REMAP scheme performs better than previous
techniques on the average for both integer and floating point
benchmarks. The RD_REMAP scheme results in a 10%
higher speedup than the scheme of Ergin_ICCD on the
average. The additional performance gains are due to the
more aggressive nature of our schemes. While the scheme of
[9] early deallocates registers at the time of instructions
commitment, our techniques go much further than that. The
Physical Register Inlining outperforms the RD_REMAP
scheme proposed in this paper for some benchmarks (gzip,
perl, twolf, vpr, mesa, swim) due to the high percentage of
narrow-width values in these benchmarks, but RD_REMAP
scheme performs 6% better on the average.

9. Concluding remarks

It is important to consider techniques for efficient use of
physical registers in modern high performance processors,
because even though smaller register files facilitate faster
clocks, they limit the instruction level parallelism exploited
in the processor. In this paper we proposed a series of
techniques for early register deallocation based on the idea
that a register value can be temporarily decoupled from the
register address. Early register deallocation increases the

effective register file size. We described several realizations
of this idea and showed that our most aggressive design
achieves about 14.6% IPC gains on the average across the
SPEC benchmarks in a somewhat register-constrained
datapath configuration. Our techniques also compare
favorably against some previously proposed solutions. For
example, the performance gains almost triple compared to a
less aggressive scheme of [9]. We also show that our most
aggressive technique outperforms the Physical Register
Inlining scheme of [20] by 6% on the average. Finally, our
techniques applied to 96-entry register files come as close as
3.5% of the performance of a machine with infinite number
of physical registers.

0%

5%

10%

15%

20%

25%

Int Average FP Average Average
S

pe
ed

 U
p

RD_REMAP
Physical Register Inlining
Ergin_ICCD

Figure 6. Speed-up comparison of the RD_REMAP
scheme to Physical Register Inlining [20] and the scheme

of Ergin_ICCD [9]

10. References
[1] Aggarwal, A., Franklin, M., Ergin, O., “Defining Wakeup Width for

Efficient Dynamic Scheduling”, in Proc. of ICCD, 2004.
[2] Aggarwal, A. Franklin, M. “Energy Efficient Asymmetrically Ported

Register Files” in Proc. of ICCD 2003.
[3] Balakrishnan, S., Sohi, G., “Exploiting Value Locality in Physical

Register Files”, in Proc. MICRO-36, 2003.
[4] Balasubramonian, R., Dwarkadas, S., Albonesi, D., "Reducing the

Complexity of the Register File in Dynamic Superscalar Processor", in
Proc. of MICRO-34, 2001.

[5] Borch, E., Tune, E., Manne, S., Emer, J., "Loose Loops Sink Chips", in
Proc. of HPCA-8, 2002.

[6] Burger, D. and Austin, T. M., "The SimpleScalar tool set: Version
2.0", Tech. Report, Dept. of CS, Univ. of Wisconsin-Madison, June
1997 and documentation for all Simplescalar releases.

[7] Butts J. A., G. Sohi “Use-Based Register Caching with Decoupled
Indexing”, in Proc. Of ISCA-31 2004

[8] Cruz, J-L. et. al., "Multiple-Banked Register File Architecture", in
Proc. ISCA-27, 2000.

[9] Ergin O., et.al., “Increasing Processor Performance through Early
Register Release”, in Proc. of ICCD, 2004

[10] Ergin O., et.al., “Register Packing: Exploiting Narrow-Width
Operands for Reducing Register File Pressure”, in Proc. of .MICRO,
2004.

[11] Franklin, M., Sohi, G., "Register Traffic Analysis for Streamlining
Inter-Operation Communication in Fine-Grain Parallel Processors", in
Proc. of MICRO-25, 1992.

[12] Gonzalez, A., Gonzalez, J., Valero, M., “Virtual-Physical Registers”,
in Proc. of HPCA-4, 1998.

[13] Hinton, G., et.al., “The Microarchitecture of the Pentium 4 Processor",
Intel Technology Journal, Q1, 2001.

[14] Hu, Z. and Martonosi, M., "Reducing Register File Power
Consumption by Exploiting Value Lifetime Characteristics", in
Workshop on Complexity-Effective Design (WCED), 2000.

[15] Jourdan, S.,et. al. ., “A Novel Renaming Scheme to Exploit Value
Temporal Locality through Physical Register Reuse and Unification”,
in Proc. of MICRO-31,, 1998.

[16] Kessler, R.E., "The Alpha 21264 Microprocessor", IEEE Micro, 19(2)
(March 1999), pp. 24-36.

[17] Kim, N., Mudge, T., "Reducing Register Ports Using Delayed Write-
Back Queues and Operand Pre-Fetch", in Proc. of ICS-17, 2003.

[18] Kim. I., Lipasti, M., “Understanding Scheduling Replay Schemes”, in
Proceedings of HPCA, 2004.

[19] Kondo M. and Nakamura H. “A Small, Fast and Low-Power Register
File by Bit-Partitioning”, in Proc.HPCA-11, 2005.

[20] Lipasti, M., et.al., “Physical Register Inlining”, in ISCA-31, 2004.
[21] Lozano, G. and Gao, G., "Exploiting Short-Lived Variables in

Superscalar Processors", in Proc. MICRO-28, 1995.
[22] Martin, M., Roth, A., Fischer, C., “Exploiting Dead Value

Information”, in Proc. of MICRO-30, 1997.
[23] Martinez, J., Renau, J., Huang, M., Prvulovich, M., Torrellas, J.,

"Cherry: Checkpointed Early Resource Recycling in Out-of-order
Microprocessors", in Proc. of MICRO-35, 2002.

[24] Monreal, et.al., “Delaying Register Allocation Through Virtual-
Physical Registers”, in Proc. of MICRO-32, 1999.

[25] Monreal, T., et.al., “Late Allocation and Early Release of Physical
Registers”, IEEE Transactions on Computers, October 2004.

[26] Monreal, T., Vinals, V., Gonzalez, A., Valero, M. “Hardware Schemes
for Early Register Release”, in Proc. of ICPP-02, 2002.

[27] Moudgill, et. al., "Register Renaming and Dynamic Speculation: An
Alternative Approach", in Proc. of MICRO-26, 1993.

[28] Park, I., Powell, M., Vijaykumar, T., "Reducing Register Ports for
Higher Speed and Lower Energy", in Proc. of MICRO-35, 2002.

[29] Ponomarev, D., Kucuk, G., Ergin, O., Ghose, K., "Reducing Datapath
Energy Through the Isolation of Short-Lived Operands", in Proc. of
PACT-12, 2003.

[30] Srinivasan S., et.al., “Continual Flow Pipelines”, in ASPLOS 2004.
[31] Tran, N., et.al., “Dynamically Reducing Pressure on the Physical

Register File through Simple Register Sharing”, in ISPASS-2004.
[32] Tseng, J., Asanovic, K., "Banked Multiported Register Files for High

Frequency Superscalar Microprocessors", in Proc. of ISCA-30, 2003.
[33] Wallase, S., Bagherzadeh, N., "A Scalable Register File Architecture

for Dynamically Scheduled Processors", in Proc. PACT-5, 1996.
[34] Yeager, K., “The MIPS R10000 Superscalar Microprocessor", IEEE

Micro, Vol. 16, No 2, April, 1996

Appendix A: Reconstructing the precise state

The finite state machine (FSM) diagram for updating the ERR (Early-
deallocated Register Reallocated) and and the SRW (Short-lived Register
Written-back) bits is shown in Figure 7. In Figure 7, the first bit in the circle
is the ERR bit and the second bit is the SRW bit. If no instances of a register
are alive, then the bits are “00”.

At register allocation time, the bits are not updated if they are “00” (i.e.
no instance alive), else they are updated to “10” from “01” (one short-lived
early-deallocated instance alive). Note that, when a register is allocated, the
ERR and the SRW bits can only be either “00” or “01”. At writeback, if a
register is not yet short-lived (the redefiner has not been renamed), nothing
is done. Otherwise, if the bits are “00”, the register is deallocated and the
bits are updated to “01”, and if the bits are “10”, they are updated to “11”
without deallocating the register (ensuring that only two instances of a
register are alive).

When the redefiner is renamed, the state is updated from “00” to “01”
and from “10” to “11” if the register has been written back, else nothing is
done. When the redefiner of a register commits, the bits can be “00” if the
only instance of the register is not short-lived, “01” if the early-deallocated
instance of the register has not been reallocated, “10” if the second instance
of the register is not short-lived, or “11” if the second instance of the register
is short-lived. The bits are updated to “00” from “01” and “10”, and to “01”
from “11”, signifying the accurate condition of the register after the
commitment of the redefiner. The register is deallocated if the bits are “11”,
otherwise the register is not deallocated.

The FSM of Figure 7 significantly simplifies the handling of branch
mispredictions and precise interrupts. When an exception occurs, we assume

that it is handled when the instruction generating the exception is the oldest
instruction in the pipeline. When handling an exception, if the ERR and SRW
bits of a register are “11”, then the original value is restored from the
shadow bitcells. If the bits are “01”, then the register is removed from the
free list. For all the registers, the ERR and the SRW bits are modified to
“00”, and the Renamed bits are reset. These updates ensure no early-
deallocated and short-lived registers across exceptions.

When handling branch mispredictions in the traditional case, the ROB
entries occupied by the instructions younger than the mispredicted branch
are examined to recover the precise register renaming. In parallel, the ERR
and the SRW bits are checked for the register assigned to the instruction and
the register the instruction redefines. When an instruction is squashed, the
bits for the register it redefines can be in any one of the four states. If the bits
are “11”, they are updated to “10”, and if they are “01”, they are updated to
“00”. Otherwise, the bits are not modified. In addition, the Renamed bit for
the register the instruction redefines is reset.

When an instruction is squashed, the bits for the register assigned to it
can only be “10” or “00”, because either the register is not short-lived, or it
is short-lived and the redefiner has been squashed. If the bits are “10”, then
it is not known whether the instruction, that was assigned the second
instance of the register, has written back its result. To obtain this
information, we use the Written_back bit of the registers (refer Section 3). If
the Written_back bit of a register is “1”, then the original value is restored.
Irrespective of the Written_back bit, the register is deallocated, the
Written_back and the Renamed bits are set (because the earlier instance of
the register has been written to and renamed), and the bits are updated to
“01”. If the ERR and the SRW bits are “00”, the register is deallocated and
the Written_back bit is reset. A register may be deallocated twice if two
instructions using the same register are squashed. However, if a bit-vector is
maintained to record the free registers, the bit for the register deallocated
twice will be set twice, which will not cause any problems. Note that, when
squashing instructions, the register operands of the instructions are also used
to decrement the consumer counters for the registers.

Figure 7. Finite state diagram for the ERR and SRW bits of one
register; as the register is allocated and written back, and the

redefiner of the register is committed

Handling branch mispredictions in a checkpoint-based recovery
mechanism is even easier. When a checkpoint of the rename map table is
created, the ERR, SRW, Written_back, and Renamed bits for all the registers
are also checkpointed. On recovery, all the bits are restored. The
Written_back bits of instructions that writeback after the checkpoint has
been created will still be zero. However, this does not affect the correctness
of this scheme.

RC – Redefiner Commits, SL – Short-lived, NSL – Not Short-lived

RC – Dealloc Reg.

Redefiner
Commits

Writeback SL Reg. --- Dealloc Reg.
Redifiner Commits

R
egister A

llocated

Writeback SL Reg.

00 01

10 11

Register Allocated /
Writeback NSL Reg /
RC – Dealloc Reg..

Writeback
NSL Reg.

