
Balancing ILP and TLP in SMT Architectures through
Out-of-Order Instruction Dispatch

Joseph Sharkey and Dmitry Ponomarev

Department of Computer Science
State University of New York at Binghamton

{jsharke, dima}@cs.binghamton.edu

Abstract
Simultaneous Multi-threading (SMT) architectures open

up new avenues for datapath optimizations due to the
presence of thread-level parallelism (TLP). One recent
proposal for exploiting such parallelism is the 2OP_BLOCK
scheduler design, which completely avoids the dispatch of
instructions with two non-ready source operands into the
issue queue. This technique reduces the scheduler complexity
and also provides performance benefits for workloads with
sufficient TLP, as the issue queue is more efficiently utilized.

In this paper we first revisit the 2OP_BLOCK scheduler
and show that this design actually results in performance
losses for workloads with a limited number of threads
because the constraints imposed on the exploitable ILP
within each thread outweigh its advantages. To balance the
ILP and TLP in SMT processors supporting such schedulers,
we propose out-of-order dispatch of instructions within each
thread. This simple augmentation naturally allows the
2OP_BLOCK scheduler to perform well even when the
number of threads is small. Furthermore, for environments
with a larger number of threads, the out-of-order dispatch
mechanism improves the performance of the original
proposal by up to 15% on the average across simulated
multithreaded mixes of SPEC 2000 benchmarks.

1. Introduction and Motivation
As traditional techniques attempting to increase processor

performance through the extraction of Instruction-Level
Parallelism (ILP) within applications have reached the point
of diminishing returns, the research focus has shifted towards
the designs that exploit the parallelism across multiple
threads of control, or Thread-Level Parallelism (TLP).
Current designs realize TLP either through the use of
Simultaneous Multithreading (SMT), where multiple threads
execute together on a slightly enhanced superscalar core and
share its key resources, or through the use of Chip
Multiprocessing (CMP) when multiple processor cores,
along with the cache memory subsystem and the
interconnection fabric, are placed on a single die. Often, the
two paradigms are combined such that each core of a CMP is
also multithreaded. For example, IBM Power 5 is dual-core
CMP, with each core being 2-way SMT [20]. The Intel
Pentium Extreme Edition is also a dual-core processor
supporting up to two simultaneous threads per core [19], and
Intel’s Montecito processor is a dual-core, dual-thread
implementation of the Itanium Processor [18].

As the number of transistors available on a chip will
continue to increase in future technologies, it is likely that a
higher degree of multithreading will be supported within
each core of future CMPs or within single-core SMT
processors [22]. Therefore, it is important to consider
techniques for increasing the efficiency of SMT-enabled
cores, either in single or multi-core designs.

The SMT processors trade the ILP that can be
momentarily extracted from within each thread for the larger
amounts of TLP that are harvested across all threads. An
optimized SMT design should carefully balance both the ILP
and the TLP in order to achieve the best performance. For
example, previous studies show that the techniques mostly
relying on TLP (by disallowing speculative execution or
limiting the instruction issue within each thread to be strictly
in-order [21]) significantly underperform the techniques
which support more complex scheduling mechanisms. On
the other hand, an attempt to extract too much ILP from one
thread can result in the monopolization of shared resources
(such as the issue queue) by instructions from that one
thread, thus denying these valuable resources to the
instructions from other threads and also degrading the overall
throughout.

The complex trade-offs between ILP and TLP in SMT
processors are traditionally managed by the instruction fetch
policies, which control the instruction delivery to the
dynamic scheduling logic. Various fetching mechanisms
have been proposed in the literature with the goal of avoiding
the resource monopolization by any one thread. The dynamic
instruction scheduling logic can then simply extract the
available ILP from within each thread using the instructions
supplied by the fetch mechanism. For example, the I-Count
fetching policy [16] gives priority to threads with fewer not-
yet-executed instructions that are already in the pipeline.
Some optimizations to the I-Count policy that further
increase the efficiency of the issue queue (IQ) usage have
also been proposed. Fundamentally, these solutions attempt
to avoid clogging the queue with instructions that reside
there for a large number of cycles before being issued. For
example, FLUSH [15], FLUSH++ [3] and the Data Miss
Gating technique of [4] combine I-count with a special
treatment of threads that experienced misses in various levels
of the cache hierarchy. While all these mechanisms are
effective to some extent, their inherent limitation lies in the
reliance on information that is available at the time of
instruction fetch.

A recent study [13] has shown that augmenting these
fetch policies with another level of control at the time of
instruction dispatch, taking into account the register status
information available after register renaming, can result in a
more effective usage of shared datapath resources in SMT
and higher performance in some configurations. The study of
[13] showed that for an ISA with at most two source
operands for each instruction, the instructions with two non-
ready source operands at the time of dispatch spend a
significantly larger number of cycles in the IQ than other
instructions, and most of these cycles are spent waiting for
the arrival of the first source. The authors of [13] then
capitalized on this observation by proposing the
2OP_BLOCK mechanism – a design that prevents the
instructions with two non-ready sources at the time of
dispatch from entering the IQ until one of these sources
becomes available. Such instructions, along with all
subsequent instructions from the same thread are instead
stalled.

The 2OP_BLOCK mechanism reduces the complexity of
the IQ, because only the capability to support instructions
with at most 1 non-ready register source operand is needed.
Consequently, the access delay and the power consumption
of the IQ are reduced. Additionally, the throughput IPCs also
improve for the 4-threaded workloads for some IQ
configurations, as substantial TLP available from 4 thread
contexts can be exploited.

In this paper we revisit the 2OP_BLOCK design and
show that it results in significant performance losses if the
number of threads is limited (i.e. less than 4). We then
propose a modification to the basic 2OP_BLOCK scheme
that allows the instructions from each thread to be dispatched
into the IQ out-of-order, while still maintaining the in-order
register renaming process.

In our modified design, the renamed instructions which
are piled up behind the one with 2 non-ready register sources
are still allowed to enter the IQ, thus exposing deeper ILP
from this thread to the scheduling logic. Although this
technique shows very significant performance gains all
across the board, the improvements are especially remarkable
in the environments with a limited amount of exploitable
TLP (i.e. when only a few threads are available). The out-of-
order dispatch technique proposed in this paper achieves the
following key results:
• For 4-threaded workloads, the out-of-order dispatch

mechanism results in the additional 15% IPC
improvement over 2OP_BLOCK for 64-entry schedulers
and outperforms both 2OP_BLOCK and traditional
designs for larger scheduler sizes as well. In contrast, the
basic 2OP_BLOCK scheme only outperforms the
traditional designs for the scheduler sizes of up to 64
entries.

• For 2-threaded workloads, the 2OP_BLOCK design
exhibits consistently lower performance than the baseline
machine (due to the lack of TLP), while the out-of-order
dispatch mechanism outperforms both 2OP_BLOCK and
the traditional scheduler for the IQ sizes of up to 64-
entries (by exploiting deeper ILP within each thread). For
64-entry IQs, the out-of-order dispatch improves the

performance over 2OP_BLOCK by 22% and over
traditional scheduler by 2%.

• The behavior of 3-threaded workloads shows more
complicated trends, combining the features observed in 2-
threaded and 4-threaded mixes. For 64-entry IQs,
2OP_BLOCK again results in lower IPCs compared to
the baseline machine, while the out-of-order dispatch
outperforms the baseline case by 9%. The performance of
out-of-order dispatch and traditional case roughly even
out at 96-entry schedulers.
The rest of the paper is organized as follows. Our

simulation methodology is described in Section 2. Section 3
examines the effectiveness of the previously proposed
2OP_BLOCK mechanism on workloads with a limited
number of threads. The out-of-order dispatch mechanism is
introduced in Section 4. Section 5 presents the evaluation of
the results, the related work is described in Section 6, and our
concluding remarks are offered in Section 7.

2. Simulation Methodology
For estimating the performance impact of the schemes

described in this paper, we used M-Sim [12]: a significantly
modified version of the Simplescalar 3.0d simulator [1] that
supports the SMT processor model. M-Sim implements
separate models for the key pipeline structures such as the
IQ, the reorder buffer, and the physical register file; it also
explicitly models register renaming. In the SMT model, the
threads share the IQ, the pool of physical registers, the
execution units and the caches, but have separate rename
tables, program counters, load/store queues and reorder
buffers. Each thread also has its own branch predictor. The
details of the studied processor configuration are shown in
Table 1. In the baseline SMT model, the I-Count fetch policy
[16] was implemented and fetching was limited to two
threads per cycle.

We simulated the full set of SPEC 2000 integer and
floating point benchmarks [6], using the precompiled Alpha
binaries available from the Simplescalar website [1]. We
skipped the initialization part of each benchmark using the
procedure prescribed by the Simpoints tool [14] and then
simulated the execution of the following 100 million
instructions. For multithreaded workloads, we stopped the
simulations after 100 million instructions from any thread
had committed.

Our multithreaded workloads contain a subset of the
possible combinations of the simulated benchmarks. In
selecting the multithreaded workloads, we first simulated all
benchmarks in the single-threaded superscalar environment
and used these results to classify them as low, medium, and
high ILP, where the low ILP benchmarks are memory bound
and the high ILP benchmarks are execution bound.

In total, we simulated 12 4-threaded workloads, 12 3-
threaded workloads and 12 2-threaded workloads. All
workloads were created by mixing the benchmarks with
different ILP levels in various ways. Tables 2, 3, and 4 depict
the specific benchmarks that constituted each of our
workloads. The ILP level of each benchmark is also shown.

Table 1: Configuration of the simulated processor.
Parameter Configuration

Machine
width

8-wide fetch, 8-wide issue, 8-wide commit

Window size

Issue queue – as specified, 48 entry
load/store queue, 96–entry ROB per thread

Function
Units and Lat
(total/issue)

8 Int Add (1/1), 4 Int Mult (3/1) / Div (20/19), 4
Load/Store (2/1), 8 FP Add (2), 4 FP Mult
(4/1) / Div (12/12) / Sqrt (24/24)

Physical
Registers

256 integer + 256 floating-point physical
registers

L1 I–cache 64 KB, 2–way set–associative, 128 byte line

L1 D–cache 32 KB, 4–way set–associative, 256 byte line

L2 Cache
unified

2 MB, 8–way set–associative, 512 byte line,
10 cycles hit time

BTB 2048 entry, 2–way set–associative

Branch
Predictor

Per thread 2K entry gShare with 10-bit global
history

Pipeline
Structure

5-stage front-end (fetch-dispatch),
scheduling, 2 stages for register file access,
execution, writeback, commit.

Memory 64 bit wide, 150 cycles access latency

Table 2: Simulated 4-threaded workloads

Classification Mix
Name

Benchmarks

Mix 1 mgrid, equake, art, lucas
4 LOW ILP

Mix 2 twolf, vpr, swim, parser

Mix 3 applu, ammp, mgrid, galgel
4 MED ILP

Mix 4 Gcc, bzip2, eon, apsi

Mix 5 facerec, crafty, perlbmk, gap
4 HIGH ILP

Mix 6 wupwise, gzip, vortex, mesa

Mix 7 parser, equake, mesa, vortex 2 LOW ILP +
2 HIGH ILP Mix 8 parser, swim, crafty, perlbmk

Mix 9 art, lucas, galgel, gcc 2 LOW ILP +
2 MED ILP Mix 10 parser, swim, gcc, bzip2

Mix 11 gzip, wupwise, fma3d, apsi 2 MED ILP +
2 HIGH ILP Mix 12 vortex, mesa, mgrid, eon

Table 3: Simulated 2-threaded workloads

Classification Mix Name Benchmarks

Mix 1 equake, lucas
2 LOW ILP

Mix 2 twolf, vpr

Mix 3 gcc, bzip2
2 MED ILP

Mix 4 mgrid, galgel

Mix 5 facerec, wupwise
2 HIGH ILP

Mix 6 crafty, gzip

Mix 7 parser, vortex 1 LOW ILP +
1 HIGH ILP Mix 8 swim, gap

Mix 9 twolf, bzip2 1 LOW ILP +
1 MED ILP Mix 10 equake, gcc

Mix 11 applu, mesa 1 MED ILP +
1 HIGH ILP Mix 12 ammp, gzip

We used several metrics for evaluating the performance

of the multithreaded workloads throughout this paper. The
first metric is the total throughput in terms of the commit IPC

rate. However, this metric does not accurately reflect changes
that favor a thread with high IPC at the expense of
significantly hindering a thread with low IPC [8, 16].
Therefore, we also present the “fairness” metric of
“harmonic mean of weighted IPCs” [8, 16], which accounts
for individual per-thread performance.

Table 4: Simulated 3-threaded workloads

Classification
Mix

Name Benchmarks

Mix 1 mgrid, equake, art
3 LOW ILP

Mix 2 twolf, vpr, swim

Mix 3 applu, ammp, mgrid
3 MED ILP

Mix 4 gcc, bzip2, eon

Mix 5 facerec, crafty, perlbmk
3 HIGH ILP

Mix 6 wupwise, gzip, vortex

2 LOW ILP + 1 HIGH ILP Mix 7 parser, equake, mesa

1 LOW ILP + 2 HIGH ILP Mix 8 perlbmk, parser, crafty

2 LOW ILP + 1 MED ILP Mix 9 art, lucas, galgel

1 LOW ILP + 2 MED ILP Mix 10 parser, bzip2, gcc

2 MED ILP + 1 HIGH ILP Mix 11 gzip, wupwise, fma3d

1 MED ILP + 2 HIGH ILP Mix 12 vortex, eon, mgrid

3. 2OP_BLOCK Scheduler Design for SMT and
its Limitations

Several instruction scheduler designs with a reduced
number of tag comparators per entry have been proposed in
the recent literature [5,11,13]. Of those, the design of [13]
specifically targets the SMT processors. The scheduler
proposed in [13], called 2OP_BLOCK, capitalizes on the
observation that instructions which enter the IQ with two
non-ready sources typically wait for a much larger number of
cycles before being issued compared to all other instructions.
Therefore, if an abundant supply of instructions from
multiple threads is available for dispatch, then it is
advantageous for performance to avoid dispatching the
instructions with two non-ready source operands into the IQ
and instead make such instructions (and all subsequent
instructions from the same thread) wait in the dispatch stage
until at least one of the source operands becomes available.
Such a dispatch mechanism results in more efficient use of
the IQ, as the same IQ entry can be reused multiple times by
different instructions instead of being hogged for a long time
by an instruction entering the queue with two non-ready
source operands. Consequently, both the throughput IPC and
the fairness metric can be improved. At the same time, this
design also results in a less complex, more power-efficient
and faster IQ, as each IQ entry only needs one tag
comparator.

When one thread is blocked at the dispatch stage waiting
for one of the source operands of its oldest non-dispatched
instruction to become available, the other threads can
continue processing through the front end as long as they do
not encounter instructions with two non-ready sources.
Since typically the thread processing is split in the front end
(e.g. each thread uses its own rename table), it is easy to
block only the progress of one specific thread. Every cycle
when the instructions from this particular thread are

considered for dispatching, the ready bits associated with the
source operand registers of the blocked instruction are re-
examined. If one of these registers becomes ready, the thread
is unblocked and further fetches, renames, and dispatches
from that thread resume. Such checks are not unique to this
scheme; they are routinely performed in the baseline
machine to determine the status of the source register
operands before the instruction is moved into the IQ.

In essence, the 2OP_BLOCK design attempts to
maximize the exploitation of TLP at the expense of
temporarily limiting the amount the ILP that can be extracted
from the individual threads, even compared to the baseline
SMT. While indeed providing performance improvement in
some configurations, the 2OP_BLOCK design can result in
significant performance losses when the limitations on ILP
(e.g. percentage of cycles when dispatch stalls due to all
threads having instructions with two non-ready sources)
outweighs the potential benefits attributed to higher TLP
(e.g. more efficient usage of the queue). This is especially
true if the number of simultaneous threads is limited.

-30%

-20%

-10%

0%

10%

20%

30%

40%

32 48 64 96 128

IQ Size

IP
C

 S
pe

ed
up

2threads

3threads

4threads

Figure 1: IPC speedup (harmonic mean across all mixes) of the
2OP_BLOCK scheduler compared to the traditional IQ of the same

capacity for various IQ sizes.

The work of [13] only considered 4-threaded workloads,
and it is therefore not surprising to see positive results
reported in that paper. However, the current commercial
implementations of SMT rarely support more than two
threads [18,19,20]. We analyzed the performance of the
2OP_BLOCK scheduler for 2-threaded, 3-threaded, and 4-
threaded workloads for various IQ sizes and arrived at some
interesting conclusions. The main results of these simulations
are summarized in Figure 1. In each case, we compare the
performance of the 2OP_BLOCK schedulers against
traditional schedulers of the same overall capacity. For the 4-
threaded workloads, the 2OP_BLOCK scheduler provides
significant speedups over the traditional queue for schedulers
up to 64-entries – these results are in line with those
presented in [13]. For schedulers larger than 64 entries,
however, even the presence of 4 concurrent threads does not
provide sufficient TLP to sustain the performance, and
therefore the 2OP_BLOCK scheduler performs worse than
the traditional IQ by 14% and 21% for 96-entry and 128-
entry schedulers, respectively. Furthermore, the workloads
with 2 threads experience performance degradations
compared to the traditional scheduler for all sizes of the IQ –
by as much as 19% on the average for the 64-entry
schedulers. The situation with 3-threaded workloads is
somewhere in between, with 2OP_BLOCK outperforming
the traditional queue of the same capacity for 32-entry

queues and breaking even for 48-entry queue. After that
point, the performance degrades.

To understand these trends, it is useful to examine the
statistics pertaining to the percentage of cycles when the
dispatch of all threads stalls due to the conditions imposed by
2OP_BLOCK scheduling. For example, for a 64-entry
queue, the average percentage of such stalled cycles is 7%
for 4-threaded workloads, it increases to 17% for 3-threaded
workloads, and balloons to 43% for 2-threaded workloads.
This significant hindering of each thread’s ILP is the main
reason for the performance losses in various configurations
examined in Figure 1. Therefore, we conclude that the
2OP_BLOCK scheduler design as proposed in [13] does not
scale well with either the number of threads, or the size of
the IQ. To address this deficiency, in the next section we
explore a technique to balance ILP and TLP and therefore
provide a more attractive scheduling solution in the presence
of the IQ with a reduced number of tag comparators.

4. Augmenting 2OP_BLOCK with Out-of-
Order Dispatch

As shown in the previous section, the 2OP_BLOCK
scheduler increases the efficiency of the IQ usage but relies
on the abundant instruction supply from multiple threads to
overcome the performance barriers imposed by blocking the
instruction dispatching from some threads for possibly
prolonged periods of time. With a small number of threads to
choose the instructions from, such a limitation can have a
huge impact on the performance (as shown in Figure 1).

To address the issues of 2OP_BLOCK performance in the
environments with a limited number of threads, we propose
the use of out-of-order dispatching of instructions within
each thread, i.e. opening up the opportunities to dispatch
instructions with some of their operands ready, which would
have otherwise piled up behind the blocked instructions with
2 non-ready sources. Such out-of-order dispatching naturally
increases the ability to exploit deeper ILP within each thread.

To support the discussions in the rest of the paper, we
introduce the term Dispatchable Instruction (DI) – which
refers to an instruction that is considered for dispatch in a
given cycle and for which an appropriate IQ entry (one
containing the necessary number of tag comparators required
by this particular instruction) is also available. In general, the
number of dispatchable instructions may be equal to the
number of instructions considered for dispatch (when there is
sufficient number of entries available in the IQ), or it may be
less than the number of instructions considered for dispatch
(i.e. due to the presence of instructions with more non-ready
source operands than the number of tag comparators in the
available IQ entries). For example, for the 2OP_BLOCK
scheduler, only instructions with at most one non-ready
source operand can be dispatchable. An instruction that is
considered for dispatch in a given cycle, but for which an
appropriate IQ entry is not available is termed Non-
Dispatchable Instruction (NDI) (for the 2OP_BLOCK
scheduler, all instructions with 2 non-ready sources are
NDIs).

In a superscalar machine (with or without reduced-tag
schedulers), instruction dispatch operates in program order
each cycle until either W instructions have been dispatched

(where W is the dispatch rate of the machine), or a non-
dispatchable instruction is encountered. The same semantics
hold true for the instructions within each thread of an SMT
processor - dispatch occurs in-order within each thread,
although it can occur out of fetch order for instructions
between different threads. Thus, a single non-dispatchable
instruction within a thread will stall dispatch of the entire
thread until it becomes dispatchable (i.e. when one of its
source operands becomes available). The 2OP_BLOCK
scheduler is able to sustain the rate of instruction dispatching
unless all threads encounter a non-dispatchable instruction
simultaneously, in which case the supply of instruction to the
out-of-order core of the SMT pipeline comes to a halt. With
a limited number of threads, however, such situations are
very frequent and they impact the performance drastically, as
seen in Figure 1.

We now observe that, while a thread may contain one
NDI in a given cycle, there may also be several DIs behind it
in program order that are otherwise eligible for dispatch. In
the basic 2OP_BLOCK design, the dispatch of this entire
thread will stall, missing the opportunity to bring these DIs
into the scheduling widow. These instructions are in a way
hidden from the scheduler as an artifact of the in-order
dispatch policy. In the rest of the paper, we call such
instructions Hidden Dispatchable Instructions, or HDIs. In
fact, we observe that almost 90% of instructions piled up
behind the NDIs, can be classified as HDIs.

Further, we observe that both the NDI and HDI
instructions piled up behind it in the 2OP_BLOCK case
would be considered DIs with regular schedulers (e.g.,
schedulers without reduced number of tag comparators), and
could be dispatched into the IQ all together in the same cycle
(at least in the absence of other instructions considered for
dispatch from other threads). Therefore, all necessary
connections and write ports to the IQ to allow the dispatch of
the HDI instructions already exist – it is simply that the
2OP_BLOCK scheduler does not make use of this hardware
in an effort to increase the scheduler efficiency by exploiting
TLP. The solution that we propose is to allow the dispatching
of all HDIs into the IQ, effectively introducing out-of-order
instruction dispatch from each thread. Notice that the register
renaming, as well as the allocation of ROB and load/store
queue entries, are still performed in program order within
each thread, thus guaranteeing that all true data dependencies
are still enforced correctly. In other words, the HDIs are
dispatched from a buffer, which contains the instructions
already in the renamed form.

Figure 2 clarifies this classification through an example of
specific code segment. In terms of the example of Figure 2,
both instructions I3 and I4 will be dispatched into the IQ
before the instruction I2. Notice that while I4 is dependent on
I2 and I3 is not dependent on it, both I3 and I4 are still
dispatched prior to I2. While it could be more efficient to
only dispatch the NDI-independent instructions out-of-order,
the logic to perform such filtering would be complicated and
would almost certainly impact the cycle time. At the same
time, our simulation results actually showed that even under
the idealized assumption of perfect and zero-overhead
filtering, the potential to further boost the IPC is very limited
if such filtering is implemented – the IPCs only improved by

about 1.2% on the average. This is because only about 10%
of all HDIs which entered the IQ out of program order were
directly or indirectly dependent on a prior NDI. Therefore,
the performance impact of foregoing the filtering opportunity
and blindly dispatching all HDIs into the IQ is minimal.

Figure 2: Example

One potential problem with the out-of-order instruction
dispatching is the possibility of a deadlock. Consider the
situation where the oldest instruction in the ROB is blocked
at dispatch because there are no available IQ entries and that
all younger instructions from that thread that have already
been dispatched out-of-order into the IQ are directly or
indirectly dependent on this oldest instruction. If this
scenario transpires simultaneously for all the threads, then
the processor comes to a deadlock state and no instruction
can be committed or dispatched. While such an occurrence
would be extremely rare, it is necessary to provide a
mechanism that either avoids such deadlocks, or detects and
recovers from them.

Several solutions are possible to address the deadlock-
related issues arising with the out-of-order dispatch. One
alternative is to rely on a simple watchdog timer, which is a
counter that counts down the number of cycles since the last
instruction was dispatched. The timer can be initialized to a
value exceeding the largest expected delay between
consecutive dispatches in the course of normal execution
(something in the order of 2 to 3 times more than the main
memory access latency). This timer is decremented every
cycle when no dispatches take place and it is reset back to its
maximal value when a dispatch of an instruction occurs.
When the value of the watchdog timer reaches zero, the PCs
of all threads are reset to the addresses of the oldest
instructions in the corresponding ROBs and the pipeline is
flushed. While the implementation of this mechanism
requires little additional hardware (only a small counter is
needed; the capability to flush the pipeline is already present
for handling branch mispredictions, exceptions, and
interrupts), the performance penalty due to the pipeline
flushes could be non-negligible. Therefore, in our
evaluations we used a more elegant technique that does not
require pipeline flushing when deadlocks are detected (as in
watchdog timer design), but instead avoids the occurrence of
deadlocks in the first place.

This alternative method relies on the use of a small
deadlock-avoidance buffer. This buffer is only used when a
free IQ entry can not be allocated for an instruction that is
the oldest in the ROB at the time of dispatch. In these cases,
the instruction is placed in the deadlock avoidance buffer and
will issue from there. Note that, since this instruction is the
oldest in the ROB, it has all source operands ready by
definition. Therefore, this deadlock-avoidance buffer is a

Code Segment

 I1: ADD P2, P4, P5 /* P2 = P4 + P5 */
 I2: SUB P3, P7, P6 /* P3 = P7 – P6 */
 I3: ADD P8, P7, P7 /* P8 = P7 + P7 */
 I4: MUL P9, P3, P5 /* P9 = P3 * P5 */

HIDDEN
INSTRUCTIONS

I4 I3 I2 I1

DI

NDI
HDI

HDI

simple RAM structure and does not require any CAM
wakeup-logic. Instructions in this buffer can either arbitrate
for selection with the instructions in the IQ, or can simply
take precedence over the instructions in the IQ, in which case
selection from the IQ is disabled when there are instructions
present in the deadlock-avoidance buffer. Note that this latter
alternative does not significantly impact performance since it
is very unlikely that instructions will be able to issue out of
the IQ anyway (especially in the deadlock cases). We find
that a simple one-entry deadlock-avoidance buffer is
sufficient to prevent deadlocks with a minimal impact on
performance.

In summary, in terms of hardware implementation the
changes to the basic 2OP_BLOCK design amount to the
removal of the logic that enforces in-order dispatch within
the threads and the addition of the logic to implement the
deadlock avoidance mechanism.

5. Results
In this section, we present the results of the out-of-order

dispatch mechanism for various sizes of the IQ and for the
workloads with various numbers of threads. The results are
presented both in terms of the overall processor throughput
IPC and the fairness metric. All results are shown as
harmonic means across the simulated multithreaded mixes.

Figure 3 presents the speedup in throughput IPC for the
traditional scheduler, the 2OP_BLOCK scheduler, and the
2OP_BLOCK scheduler augmented with out-of-order
instruction dispatch for various sizes of the IQ on the
workloads with 2 threads. As seen from the graph, the use of
out-of-order instruction dispatch increases the performance
compared to the basic 2OP_BLOCK scheduler significantly
for all IQ sizes – the gains are 12% for 32-entry schedulers,
19% for 48-entry IQs, and 22% for 64-entry IQs. The large
performance differences observed here are not surprising
because the 2-threaded environment does not contain
sufficient TLP to be harnessed by the 2OP_BLOCK design,
and thus results in a significant number of cycles in which
the dispatch is blocked due to the presence of instructions
with 2 non-ready operands from both threads – this happens
in 43% of the cycles, on the average. On the other hand, the
ability to extract the deeper ILP within each thread afforded
by the out-of-order dispatch mechanism almost eliminates
the cycles in which dispatch is stalled for both threads
simultaneously – this percentage drops to only 0.2% of the
cycles on the average. Therefore, the out-of-order dispatch
policy allows for the sustained performance even in the
environment with a limited amount of TLP. In other words,
where TLP can not be exploited, the scheduler focuses on
harvesting the ILP within each thread.

0.9

1

1.1

1.2

1.3

32 48 64 96 128
IQ Size

IP
C

 S
pe

ed
up

Traditional 2OP_BLOCK 2OP_BLOCK+OOOD

Figure 3: Throughput IPC Speedup for 2-threaded Workloads

0.9

1

1.1

1.2

1.3

32 48 64 96 128
IQ Size

Fa
irn

es
s

Im
pr

ov
em

en
t

Traditional 2OP_BLOCK 2OP_BLOCK+OOOD

Figure 4: Improvement in Fairness Metric for 2-threaded Workloads

Compared to the traditional schedulers of the same
capacity, the 2OP_BLOCK mechanism with out-of-order
instruction dispatch increases the performance by 10%, 7%,
and 2% for the 32-entry, 48-entry, and 64-entry schedulers,
respectively, for 2-threaded workloads. Again, this is not
surprising because the benefits of the 2OP_BLOCK
mechanism are achieved (i.e., the IQ entries are used more
efficiently), but the additional dispatch stalls introduced are
minimal. Specifically, for the 64-entry schedulers, the
average number of cycles that an instruction spends in the IQ
drops from 21 cycles with the traditional scheduler to 15
cycles for the 2OP_BLOCK scheduler with out-of-order
instruction dispatch.

However, for the larger scheduler sizes the traditional
scheduler outperforms the 2OP_BLOCK with out-of-order
dispatch slightly – by 4% for 96-entries and 5% for 128-
entries. It should be noted that the schedulers of these sizes
(greater than 64 entries) are perhaps too large for 2-threaded
workloads, at least in the framework of the simulated
processor. Therefore, at these sizes the scheduler efficiency
is not a concern even for the baseline design and the issues of
delay and power consumption (which are addressed by our
scheme directly) are likely to take a central role. Therefore,
even in such cases where there is small performance
degradation, the savings in delay and power may overshadow
this and still provide an attractive design point. For detailed
circuit delay and power-related analysis of the 2OP_BLOCK
mechanism, we refer the readers to [13].

Figure 4 presents similar results in terms of the
improvement in the fairness metric. The trends observed with
respect to this metric are very similar to the previous results.
Specifically, for the 64-entry schedulers, the out-of-order
dispatch mechanism improves the fairness metric compared
to the basic 2OP_BLOCK by 21% and over the traditional
scheduler by 1%.

We now examine the results for the 3-threaded workloads.
Figure 5 presents these statistics in terms of the speedup in
throughput IPC. Here, out-of-order dispatch increases the
performance compared to the basic 2OP_BLOCK for all
scheduler sizes and by as much as 21% for 64-entry
schedulers. Compared to the traditional scheduler, the
2OP_BLOCK with out-of-order dispatch increases
performance by 20%, 16%, and 9% for the schedulers with
32-entries, 42-entries, and 64-entries, respectively, and
degrades performance by only 2% for 96-entries and 4% for
128-entries. Once again, similar trends are observed in terms
of the fairness metric, presented in Figure 6, where the
improvements for 64-entry schedulers are 17% over the basic
2OP_BLOCK and 6% over the traditional scheduler.

1

1.1

1.2

1.3

1.4

1.5

1.6

32 48 64 96 128

IQ Size

IP
C

 S
pe

ed
up

Traditional 2OP_BLOCK 2OP_BLOCK+OOOD

Figure 5: Throughput IPC Speedup for 3-threaded Workloads

1
1.05
1.1

1.15
1.2

1.25
1.3

1.35
1.4

1.45

32 48 64 96 128
IQ Size

Fa
irn

es
s

Sp
ee

du
p

Traditional 2OP_BLOCK 2OP_BLOCK+OOOD

Figure 6: Improvement in Fairness Metric for 3-threaded Workloads

1

1.2

1.4

1.6

1.8

32 48 64 96 128
IQ Size

IP
C

 S
pe

ed
up

Traditional 2OP_BLOCK 2OP_BLOCK+OOOD

Figure 7: Throughput IPC Speedup for 4-threaded Workloads

Finally, we present the results for the workloads with 4
simultaneous threads. Figure 7 presents these results in terms
of the throughput IPC. As see from the graph, the use of out-
of-order instruction dispatch increases the performance
compared to the basic 2OP_BLOCK scheduler for all IQ
sizes larger than 32-entries – this increase is 5% for 48-entry
schedulers, 14% for 64-entry IQs, and nearly 20% for both
96 and 128-entry IQs. This shows that, even in the
environments with 4-threaded workloads, the basic
2OP_BLOCK design does not sufficiently balance TLP and
ILP, resulting in a sub-optimal performance and there are
significant opportunities for further improvements. The out-
of-order dispatch mechanism, on the other hand, better
balances these two forms of parallelism and therefore
realizes significant performance gains.

Note that for the 32-entry schedulers, there is a slight
performance degradation incurred by the use of out-of-order
dispatch compared to the basic 2OP_BLOCK. This is
because the amount of TLP available in 4-threaded
workloads is quite sufficient to fill a small 32-entry
scheduler, without relying on any additional mechanisms. An
attempt to extract deeper ILP from within each thread in such
situations hinders performance as it reduces the efficiency of
2OP_BLOCK. It is only when the basic 2OP_BLOCK
design is incapable of utilizing the IQ, the additional
techniques actually pay off. Compared to the machine with
the traditional scheduler, the out-of-order dispatch
mechanism used with 2OP_BLOCK provides performance
gains for all sizes of the IQ. Specifically, gains of 19% are
realized for the 64-entry schedulers. The results showing the
increase in the fairness metric are presented in Figure 8,
where the same trends can be observed. In this case, for the
64-entry schedulers, the improvement over the basic

2OP_BLOCK is 11.6% and the improvement over the
traditional scheduler is 13%, on the average.

1

1.2

1.4

1.6

1.8

32 48 64 96 128
IQ Size

Fa
irn

es
s

Im
pr

ov
em

en
t

Traditional 2OP_BLOCK 2OP_BLOCK+OOOD

Figure 8: Improvement in Fairness Metric for 4-threaded Workloads

As was observed in Section 3, and can also be seen from
the graphs in this section, the basic 2OP_BLOCK scheduler
does not scale well with either the number of threads, or the
size of the IQ. In contrast, the use of the out-of-order
dispatch mechanism improves this scalability for both the
number of threads and the size of the IQ. Furthermore, the
scheduler using both 2OP_BLOCK and out-of-order
instruction dispatching scales nearly as well or better than the
traditional scheduler in terms of both throughput IPC and
fairness with both the size of the IQ and the number of
threads.

6. Related Work
The use of shared as well as partitioned resources in an

SMT processor can be indirectly controlled by instruction
fetching mechanisms. Various fetching policies have been
proposed in the literature to provide the best supply of
instruction mixes from multiple threads for building the most
efficient execution schedules. The I-Count fetching policy
[16] gives fetching priority to threads with fewer instructions
in decode, rename and the IQ. The goal is to avoid clogging
of the IQ with the instructions from one thread. Several
optimizations of I-Count have also been proposed in an effort
to avoid fetching the instructions that are likely to be stalled
in the IQ for a large number of cycles. STALL [15] prevents
the thread from fetching further instructions if it experienced
an L2 cache miss. FLUSH [40] extends STALL by
squashing the already dispatched instructions from such a
thread, thus making the shared IQ resources available for the
instructions from other threads. FLUSH++ [3] combines the
benefits of STALL and FLUSH and uses the cache behavior
of threads to dynamically switch between these two
mechanisms. The Data Gating technique of [4] avoids
fetching from threads that experience an L1 data miss.

Several works proposed specific optimizations for the
SMT processors. El-Moursy and Albonesi [4] explored new
front-end policies that reduce the required integer and
floating point IQ sizes in SMT architectures. Their
techniques limit the number of non-ready instructions in the
queue from each thread and also block further instruction
fetching from a thread if that thread experiences an L1 cache
miss. In [10], a partitioned version of the oldest-first issue
policy is proposed, where separate IQs are used to buffer the
instructions from different threads. In [9], the effect of
partitioning the datapath resources, including the IQs, across
multiple threads is discussed.

In [2], a more fine grained dynamic control over SMT
resources is proposed. The mechanism of [2] first classifies
the threads according to their demands for the resources and

based on this classification determines how the resources
should be distributed among the threads. In contrast to the
previous methods that stall or flush threads which have cache
misses, the technique of [2] actually attempts to help these
threads by providing more resources to them (if such
resources are available) to increase the memory-level
parallelism by overlapping multiple cache misses.

The observation that many instructions are dispatched
with at least one of their source operands ready is not new –
it was used in [5], where the scheduler design with reduced
number of comparators was proposed. In that scheme, some
IQ entries have two comparators, others have just one
comparator, and yet others have zero comparators. While the
work of [5] statically partitions the queue into the groups of
entries with various numbers of tag comparators, the
instruction packing technique proposed in [11], achieves this
partitioning dynamically, by sharing one IQ entry between
two instructions, each with at most one non-ready source
operand at the time of dispatch.

In [7], the tag buses within the IQ were categorized into
fast buses and slow buses, such that the tag broadcast on the
slow bus takes one additional cycle. While the technique
proposed in [7] can be trivially adapted to SMT, the design
proposed in this paper completely eliminates the second set
of comparators and therefore obviates the need to perform
last-tag speculation and maintain fast and slow wakeup
buses. The capacitive loading on all tag buses is reduced,
because half of the comparators are offloaded from every tag
bus.

7. Concluding Remarks
In this paper, we proposed out-of-order instruction

dispatching to supplement the existing scheduling technique
(2OP_BLOCK) that disallows the dispatching of instructions
with two non-ready register source operands. Our proposal
effectively balances the exploitation of ILP within each
thread and TLP across multiple threads, resulting in
significant performance improvements over the basic
2OP_BLOCK scheme for 2-threaded, 3-threaded and 4-
threaded workloads for various issue queue sizes.

In summary, the performance of 2OP_BLOCK with out-
of-order dispatch scales much better with both the number of
threads and the IQ size compared to either the traditional
design or 2OP_BLOCK alone. Our proposed design
significantly reduces the complexity, access delay and power
consumption of the dynamic scheduling logic in SMT
processors, while achieving the same and in many cases
significantly better throughput IPC and fairness compared to
the baseline machine.

8. References
[1] D. Burger, T. Austin. "The SimpleScalar tool set: Version 2.0.” Tech.
Report, Dept. of CS, Univ. of Wisconsin-Madison, June 1997 and
documentation for all Simplescalar releases.
[2] F. Cazorla, et al. “Dynamically Controlled Resource Allocation in SMT
Processors.” in Proc International Symposium on Microarchitecture, 2004.
[3] F. Cazorla, et al. “Improving Memory Latency Aware Fetch Policies for
SMT Processors.” in Proc Intl Symp. on High Perf. Computing, 2003.
[4] A. El-Moursy, D.Albonesi. “Front-End Policies for Improved Issue
Efficiency in SMT Processors.” in Proc. International Symposium on High-
Performance Computer Architecture (HPCA), 2003.

[5] D. Ernst, T. Austin. “Efficient Dynamic Scheduling Through Tag
Elimination.” in Proc. Int’l Symp on Comp. Architecture (ISCA), 2002.
[6] J. Henning, “SPEC CPU2000: Measuring CPU Performance in the New
Millennium”, in the IEEE Computer, 33(7):28-35, July 2000.
[7] I.Kim, M.Lipasti. “Half-Price Architecture.” in Proc International
Symposium on Computer Architecture (ISCA), 2003.
[8] K. Luo, et al. “Balancing Throughput and Fairness in SMT Processors.”
in Proc Intl. Symp. on Performance Analysis of Systems and Software,
2001.
[9] S. Raasch et al. “The Impact of Resource Partitioning on SMT
Processors.” in Proc. PACT, 2003.
[10]B. Robatmili et al. “Thread-Sensitive Instruction Issue for SMT
Processors.” Computer Architecture News, 2004.
[11]J. Sharkey, et al. “Instruction Packing: Reducing Power and Delay of
the Dynamic Scheduling Logic.” in Proc. of the International Symposium on
Low Power Electronics and Design (ISLPED), 2005.
[12]J. Sharkey. “M-Sim: A Flexible, Multi-threaded Simulation
Environment.” Tech. Report CS-TR-05-DP1, Department of Computer
Science, SUNY Binghamton, 2005.
[13]J. Sharkey, D. Ponomarev, “Efficient Instruction Schedulers for SMT
Processors”, in 12th Intl. Symp. on High Performance Computer
Architecture (HPCA), 2006.
[14]T. Sherwood, et al. “Automatically Characterizing Large Scale Program
Behavior.” Proc. ASPLOS, 2002.
[15]D. Tullsen, et al. “Handling Long-Latency Loads in a Simultaneous
Multi-threaded Processor.” in Proc of International Symposium on
Microarchtiecture, 2001.
[16]D. Tullsen, et al. “Exploiting Choice: Instruction Fetch and Issue on an
Implementable Simultaneous Multithreading Processor.” in Proc
International Symposium on Computer Architecture, 1996.
[17] D. Tullsen, et al. “Simultaneous Multithreading: Maximizing on-chip
Parallelism.” in Proc of Intl Symposium on Computer Architecture, 1995.
[18] C. McNairy, R. Bhatia. “Montecito: A Dual-Core, Dual-Thread
Itanium Processor.” IEEE Micro, Volume 25, Issue 2, March-April 2005.
Pages 10–20.
[19] “IA-32 Intel Architecture Sofrware Developers Manual: Basic
Architecture”, Volume 1, January 2006.
[20]R. Kalla, B. Sinharoy, and J. M. Tendler. “IBM Power5 Chip: A Dual
Core Multithreaded Processor.” IEEE Micro, 24(2):40–47, Mar/Apr 2004.
[21]S. Swanson, et al. “An Evaluation of Speculative Instruction Execution
on Simultaneous Multithreaded Processors”, IEEE Transactions on
Computer Systems, 21(3), 2003.
[22]A. El-Moursy et al, “Partitioning Multi-Threaded Processors with a
Large Number of Threads”, in Proc. of ISPASS 2005.

