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Abstract 
Simultaneous Multi-threading (SMT) architectures open 

up new avenues for datapath optimizations due to the 
presence of thread-level parallelism (TLP). One recent 
proposal for exploiting such parallelism is the 2OP_BLOCK 
scheduler design, which completely avoids the dispatch of 
instructions with two non-ready source operands into the 
issue queue. This technique reduces the scheduler complexity 
and also provides performance benefits for workloads with 
sufficient TLP, as the issue queue is more efficiently utilized. 

In this paper we first revisit the 2OP_BLOCK scheduler 
and show that this design actually results in performance 
losses for workloads with a limited number of threads 
because the constraints imposed on the exploitable ILP 
within each thread outweigh its advantages. To balance the 
ILP and TLP in SMT processors supporting such schedulers, 
we propose out-of-order dispatch of instructions within each 
thread. This simple augmentation naturally allows the 
2OP_BLOCK scheduler to perform well even when the 
number of threads is small. Furthermore, for environments 
with a larger number of threads, the out-of-order dispatch 
mechanism improves the performance of the original 
proposal by up to 15% on the average across simulated 
multithreaded mixes of SPEC 2000 benchmarks. 

1. Introduction and Motivation 
As traditional techniques attempting to increase processor 

performance through the extraction of Instruction-Level 
Parallelism (ILP) within applications have reached the point 
of diminishing returns, the research focus has shifted towards 
the designs that exploit the parallelism across multiple 
threads of control, or Thread-Level Parallelism (TLP). 
Current designs realize TLP either through the use of 
Simultaneous Multithreading (SMT), where multiple threads 
execute together on a slightly enhanced superscalar core and 
share its key resources, or through the use of Chip 
Multiprocessing (CMP) when multiple processor cores, 
along with the cache memory subsystem and the 
interconnection fabric, are placed on a single die. Often, the 
two paradigms are combined such that each core of a CMP is 
also multithreaded. For example, IBM Power 5 is dual-core 
CMP, with each core being 2-way SMT [20]. The Intel 
Pentium Extreme Edition is also a dual-core processor 
supporting up to two simultaneous threads per core [19], and 
Intel’s Montecito processor is a dual-core, dual-thread 
implementation of the Itanium Processor [18]. 

As the number of transistors available on a chip will 
continue to increase in future technologies, it is likely that a 
higher degree of multithreading will be supported within 
each core of future CMPs or within single-core SMT 
processors [22].  Therefore, it is important to consider 
techniques for increasing the efficiency of SMT-enabled 
cores, either in single or multi-core designs.  

The SMT processors trade the ILP that can be 
momentarily extracted from within each thread for the larger 
amounts of TLP that are harvested across all threads. An 
optimized SMT design should carefully balance both the ILP 
and the TLP in order to achieve the best performance. For 
example, previous studies show that the techniques mostly 
relying on TLP (by disallowing speculative execution or 
limiting the instruction issue within each thread to be strictly 
in-order [21]) significantly underperform the techniques 
which support more complex scheduling mechanisms. On 
the other hand, an attempt to extract too much ILP from one 
thread can result in the monopolization of shared resources 
(such as the issue queue) by instructions from that one 
thread, thus denying these valuable resources to the 
instructions from other threads and also degrading the overall 
throughout. 

The complex trade-offs between ILP and TLP in SMT 
processors are traditionally managed by the instruction fetch 
policies, which control the instruction delivery to the 
dynamic scheduling logic. Various fetching mechanisms 
have been proposed in the literature with the goal of avoiding 
the resource monopolization by any one thread. The dynamic 
instruction scheduling logic can then simply extract the 
available ILP from within each thread using the instructions 
supplied by the fetch mechanism. For example, the I-Count 
fetching policy [16] gives priority to threads with fewer not-
yet-executed instructions that are already in the pipeline. 
Some optimizations to the I-Count policy that further 
increase the efficiency of the issue queue (IQ) usage have 
also been proposed. Fundamentally, these solutions attempt 
to avoid clogging the queue with instructions that reside 
there for a large number of cycles before being issued. For 
example, FLUSH [15], FLUSH++ [3] and the Data Miss 
Gating technique of [4] combine I-count with a special 
treatment of threads that experienced misses in various levels 
of the cache hierarchy. While all these mechanisms are 
effective to some extent, their inherent limitation lies in the 
reliance on information that is available at the time of 
instruction fetch.  



A  recent study [13] has shown that augmenting these 
fetch policies with another level of control at the time of 
instruction dispatch, taking into account the register status 
information available after register renaming, can result in  a 
more effective usage of shared datapath resources in SMT 
and higher performance in some configurations. The study of 
[13] showed that for an ISA with at most two source 
operands for each instruction,  the instructions with two non-
ready source operands at the time of dispatch spend a 
significantly larger number of cycles in the IQ than other 
instructions, and most of these cycles are spent waiting for 
the arrival of the first source. The authors of [13] then 
capitalized on this observation by proposing the 
2OP_BLOCK mechanism – a design that prevents the 
instructions with two non-ready sources at the time of 
dispatch from entering the IQ until one of these sources 
becomes available. Such instructions, along with all 
subsequent instructions from the same thread are instead 
stalled. 

The 2OP_BLOCK mechanism reduces the complexity of 
the IQ, because only the capability to support instructions 
with at most 1 non-ready register source operand is needed. 
Consequently, the access delay and the power consumption 
of the IQ are reduced. Additionally, the throughput IPCs also 
improve for the 4-threaded workloads for some IQ 
configurations, as substantial TLP available from 4 thread 
contexts can be exploited.  

In this paper we revisit the 2OP_BLOCK design and 
show that it results in significant performance losses if the 
number of threads is limited (i.e. less than 4). We then 
propose a modification to the basic 2OP_BLOCK scheme 
that allows the instructions from each thread to be dispatched 
into the IQ out-of-order, while still maintaining the in-order 
register renaming process. 

In our modified design, the renamed instructions which 
are piled up behind the one with 2 non-ready register sources 
are still allowed to enter the IQ, thus exposing deeper ILP 
from this thread to the scheduling logic. Although this 
technique shows very significant performance gains all 
across the board, the improvements are especially remarkable 
in the environments with a limited amount of exploitable 
TLP (i.e. when only a few threads are available). The out-of-
order dispatch technique proposed in this paper achieves the 
following key results: 
• For 4-threaded workloads, the out-of-order dispatch 

mechanism results in the additional 15% IPC 
improvement over 2OP_BLOCK for 64-entry schedulers 
and outperforms both 2OP_BLOCK and traditional 
designs for larger scheduler sizes as well. In contrast, the 
basic 2OP_BLOCK scheme only outperforms the 
traditional designs for the scheduler sizes of up to 64 
entries. 

• For 2-threaded workloads, the 2OP_BLOCK design 
exhibits consistently lower performance than the baseline 
machine (due to the lack of TLP), while the out-of-order 
dispatch mechanism outperforms both 2OP_BLOCK and 
the traditional scheduler for the IQ sizes of up to 64-
entries (by exploiting deeper ILP within each thread). For 
64-entry IQs, the out-of-order dispatch improves the 

performance over 2OP_BLOCK by 22% and over 
traditional scheduler by 2%. 

• The behavior of 3-threaded workloads shows more 
complicated trends, combining the features observed in 2-
threaded and 4-threaded mixes. For 64-entry IQs, 
2OP_BLOCK again results in lower IPCs compared to 
the baseline machine, while the out-of-order dispatch 
outperforms the baseline case by 9%. The performance of 
out-of-order dispatch and traditional case roughly even 
out at 96-entry schedulers. 
The rest of the paper is organized as follows. Our 

simulation methodology is described in Section 2. Section 3 
examines the effectiveness of the previously proposed 
2OP_BLOCK mechanism on workloads with a limited 
number of threads. The out-of-order dispatch mechanism is 
introduced in Section 4. Section 5 presents the evaluation of 
the results, the related work is described in Section 6, and our 
concluding remarks are offered in Section 7. 

2. Simulation Methodology 
For estimating the performance impact of the schemes 

described in this paper, we used M-Sim [12]: a significantly 
modified version of the Simplescalar 3.0d simulator [1] that 
supports the SMT processor model. M-Sim implements 
separate models for the key pipeline structures such as the 
IQ, the reorder buffer, and the physical register file; it also 
explicitly models register renaming. In the SMT model, the 
threads share the IQ, the pool of physical registers, the 
execution units and the caches, but have separate rename 
tables, program counters, load/store queues and reorder 
buffers. Each thread also has its own branch predictor. The 
details of the studied processor configuration are shown in 
Table 1. In the baseline SMT model, the I-Count fetch policy 
[16] was implemented and fetching was limited to two 
threads per cycle. 

We simulated the full set of SPEC 2000 integer and 
floating point benchmarks [6], using the precompiled Alpha 
binaries available from the Simplescalar website [1]. We 
skipped the initialization part of each benchmark using the 
procedure prescribed by the Simpoints tool [14] and then 
simulated the execution of the following 100 million 
instructions. For multithreaded workloads, we stopped the 
simulations after 100 million instructions from any thread 
had committed. 

Our multithreaded workloads contain a subset of the 
possible combinations of the simulated benchmarks. In 
selecting the multithreaded workloads, we first simulated all 
benchmarks in the single-threaded superscalar environment 
and used these results to classify them as low, medium, and 
high ILP, where the low ILP benchmarks are memory bound 
and the high ILP benchmarks are execution bound. 

In total, we simulated 12 4-threaded workloads, 12 3-
threaded workloads and 12 2-threaded workloads. All 
workloads were created by mixing the benchmarks with 
different ILP levels in various ways. Tables 2, 3, and 4 depict 
the specific benchmarks that constituted each of our 
workloads. The ILP level of each benchmark is also shown. 

 

 



Table 1: Configuration of the simulated processor. 
Parameter Configuration 

Machine 
width 

8-wide fetch, 8-wide issue, 8-wide commit 

Window size 
 

Issue queue – as specified, 48 entry 
load/store queue, 96–entry ROB per thread 

Function 
Units and Lat 
(total/issue) 

8 Int Add (1/1), 4 Int Mult (3/1) / Div (20/19), 4 
Load/Store (2/1), 8 FP Add (2), 4 FP Mult 
(4/1) / Div (12/12) / Sqrt (24/24) 

Physical 
Registers 

256 integer + 256 floating-point physical 
registers 

L1 I–cache 64 KB, 2–way set–associative, 128 byte line 

L1 D–cache 32 KB, 4–way set–associative, 256 byte line 

L2 Cache 
unified 

2 MB, 8–way set–associative, 512 byte line, 
10 cycles hit time 

BTB 2048 entry, 2–way set–associative 

Branch 
Predictor 

Per thread 2K entry gShare with 10-bit global 
history 

Pipeline 
Structure 

5-stage front-end (fetch-dispatch), 
scheduling, 2 stages for register file access, 
execution, writeback, commit. 

Memory 64 bit wide, 150 cycles access latency 

Table 2: Simulated 4-threaded workloads 

Classification Mix 
Name 

Benchmarks 

Mix 1 mgrid, equake, art, lucas 
4 LOW ILP 

Mix 2 twolf, vpr, swim, parser 

Mix 3 applu, ammp, mgrid, galgel 
4 MED ILP 

Mix 4 Gcc, bzip2, eon, apsi 

Mix 5 facerec, crafty, perlbmk, gap 
4 HIGH ILP 

Mix 6 wupwise, gzip, vortex, mesa 

Mix 7 parser, equake, mesa, vortex 2 LOW ILP + 
2 HIGH ILP Mix 8 parser, swim, crafty, perlbmk 

Mix 9 art, lucas, galgel, gcc 2 LOW ILP + 
2 MED ILP Mix 10 parser, swim, gcc, bzip2 

Mix 11 gzip, wupwise, fma3d, apsi 2 MED ILP + 
2 HIGH ILP Mix 12 vortex, mesa, mgrid, eon 

Table 3: Simulated 2-threaded workloads 

Classification Mix Name Benchmarks 

Mix 1 equake, lucas 
2 LOW ILP 

Mix 2 twolf, vpr 

Mix 3 gcc, bzip2 
2 MED ILP 

Mix 4 mgrid, galgel 

Mix 5 facerec, wupwise 
2 HIGH ILP 

Mix 6 crafty, gzip 

Mix 7 parser, vortex 1 LOW ILP + 
1 HIGH ILP Mix 8 swim, gap 

Mix 9 twolf, bzip2 1 LOW ILP + 
1 MED ILP Mix 10 equake, gcc 

Mix 11 applu, mesa 1 MED ILP + 
1 HIGH ILP Mix 12 ammp, gzip 

 
We used several metrics for evaluating the performance 

of the multithreaded workloads throughout this paper. The 
first metric is the total throughput in terms of the commit IPC 

rate. However, this metric does not accurately reflect changes 
that favor a thread with high IPC at the expense of 
significantly hindering a thread with low IPC [8, 16]. 
Therefore, we also present the “fairness” metric of 
“harmonic mean of weighted IPCs” [8, 16], which accounts 
for individual per-thread performance. 

Table 4: Simulated 3-threaded workloads 

Classification 
Mix 

Name Benchmarks 

Mix 1 mgrid, equake, art 
3 LOW ILP 

Mix 2 twolf, vpr, swim 

Mix 3 applu, ammp, mgrid 
3 MED ILP 

Mix 4 gcc, bzip2, eon 

Mix 5 facerec, crafty, perlbmk 
3 HIGH ILP 

Mix 6 wupwise, gzip, vortex 

2 LOW ILP + 1 HIGH ILP Mix 7 parser, equake, mesa 

1 LOW ILP + 2 HIGH ILP Mix 8 perlbmk, parser, crafty 

2 LOW ILP + 1 MED ILP Mix 9 art, lucas, galgel 

1 LOW ILP + 2 MED ILP Mix 10 parser, bzip2, gcc 

2 MED ILP + 1 HIGH ILP Mix 11 gzip, wupwise, fma3d 

1 MED ILP + 2 HIGH ILP Mix 12 vortex, eon, mgrid 

3. 2OP_BLOCK Scheduler Design for SMT and 
its Limitations  

Several instruction scheduler designs with a reduced 
number of tag comparators per entry have been proposed in 
the recent literature [5,11,13]. Of those, the design of [13] 
specifically targets the SMT processors. The scheduler 
proposed in [13], called 2OP_BLOCK, capitalizes on the 
observation that instructions which enter the IQ with two 
non-ready sources typically wait for a much larger number of 
cycles before being issued compared to all other instructions. 
Therefore, if an abundant supply of instructions from 
multiple threads is available for dispatch, then it is 
advantageous for performance to avoid dispatching the 
instructions with two non-ready source operands into the IQ 
and instead make such instructions (and all subsequent 
instructions from the same thread) wait in the dispatch stage 
until at least one of the source operands becomes available.  
Such a dispatch mechanism results in more efficient use of 
the IQ, as the same IQ entry can be reused multiple times by 
different instructions instead of being hogged for a long time 
by an instruction entering the queue with two non-ready 
source operands. Consequently, both the throughput IPC and 
the fairness metric can be improved. At the same time, this 
design also results in a less complex, more power-efficient 
and faster IQ, as each IQ entry only needs one tag 
comparator.  

When one thread is blocked at the dispatch stage waiting 
for one of the source operands of its oldest non-dispatched 
instruction to become available, the other threads can 
continue processing through the front end as long as they do 
not encounter instructions with two non-ready sources.  
Since typically the thread processing is split in the front end 
(e.g. each thread uses its own rename table), it is easy to 
block only the progress of one specific thread. Every cycle 
when the instructions from this particular thread are 



considered for dispatching, the ready bits associated with the 
source operand registers of the blocked instruction are re-
examined. If one of these registers becomes ready, the thread 
is unblocked and further fetches, renames, and dispatches 
from that thread resume. Such checks are not unique to this 
scheme; they are routinely performed in the baseline 
machine to determine the status of the source register 
operands before the instruction is moved into the IQ. 

In essence, the 2OP_BLOCK design attempts to 
maximize the exploitation of TLP at the expense of 
temporarily limiting the amount the ILP that can be extracted 
from the individual threads, even compared to the baseline 
SMT. While indeed providing performance improvement in 
some configurations, the 2OP_BLOCK design can result in 
significant performance losses when the limitations on ILP 
(e.g. percentage of cycles when dispatch stalls due to all 
threads having instructions with two non-ready sources) 
outweighs the potential benefits attributed to higher TLP 
(e.g. more efficient usage of the queue). This is especially 
true if the number of simultaneous threads is limited.  
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Figure 1: IPC speedup (harmonic mean across all mixes) of the 
2OP_BLOCK scheduler compared to the traditional IQ of the same 

capacity for various IQ sizes. 

The work of [13] only considered 4-threaded workloads, 
and it is therefore not surprising to see positive results 
reported in that paper. However, the current commercial 
implementations of SMT rarely support more than two 
threads [18,19,20]. We analyzed the performance of the 
2OP_BLOCK scheduler for 2-threaded, 3-threaded, and 4-
threaded workloads for various IQ sizes and arrived at some 
interesting conclusions. The main results of these simulations 
are summarized in Figure 1. In each case, we compare the 
performance of the 2OP_BLOCK schedulers against 
traditional schedulers of the same overall capacity. For the 4-
threaded workloads, the 2OP_BLOCK scheduler provides 
significant speedups over the traditional queue for schedulers 
up to 64-entries – these results are in line with those 
presented in [13]. For schedulers larger than 64 entries, 
however, even the presence of 4 concurrent threads does not 
provide sufficient TLP to sustain the performance, and 
therefore the 2OP_BLOCK scheduler performs worse than 
the traditional IQ by 14% and 21% for 96-entry and 128-
entry schedulers, respectively. Furthermore, the workloads 
with 2 threads experience performance degradations 
compared to the traditional scheduler for all sizes of the IQ – 
by as much as 19% on the average for the 64-entry 
schedulers. The situation with 3-threaded workloads is 
somewhere in between, with 2OP_BLOCK outperforming 
the traditional queue of the same capacity for 32-entry 

queues and breaking even for 48-entry queue. After that 
point, the performance degrades. 

To understand these trends, it is useful to examine the 
statistics pertaining to the percentage of cycles when the 
dispatch of all threads stalls due to the conditions imposed by 
2OP_BLOCK scheduling. For example, for a 64-entry 
queue, the average percentage of such stalled cycles is 7% 
for 4-threaded workloads, it increases to 17% for 3-threaded 
workloads, and balloons to 43% for 2-threaded workloads. 
This significant hindering of each thread’s ILP is the main 
reason for the performance losses in various configurations 
examined in Figure 1. Therefore, we conclude that the 
2OP_BLOCK scheduler design as proposed in [13] does not 
scale well with either the number of threads, or the size of 
the IQ. To address this deficiency, in the next section we 
explore a technique to balance ILP and TLP and therefore 
provide a more attractive scheduling solution in the presence 
of the IQ with a reduced number of tag comparators. 

4. Augmenting 2OP_BLOCK with Out-of-
Order Dispatch 

As shown in the previous section, the 2OP_BLOCK 
scheduler increases the efficiency of the IQ usage but relies 
on the abundant instruction supply from multiple threads to 
overcome the performance barriers imposed by blocking the 
instruction dispatching from some threads for possibly 
prolonged periods of time. With a small number of threads to 
choose the instructions from, such a limitation can have a 
huge impact on the performance (as shown in Figure 1).   

To address the issues of 2OP_BLOCK performance in the 
environments with a limited number of threads, we propose 
the use of out-of-order dispatching of instructions within 
each thread, i.e. opening up the opportunities to dispatch 
instructions with some of their operands ready, which would 
have otherwise piled up behind the blocked instructions with 
2 non-ready sources. Such out-of-order dispatching naturally 
increases the ability to exploit deeper ILP within each thread.  

To support the discussions in the rest of the paper, we 
introduce the term Dispatchable Instruction (DI) – which 
refers to an instruction that is considered for dispatch in a 
given cycle and for which an appropriate IQ entry (one 
containing the necessary number of tag comparators required 
by this particular instruction) is also available. In general, the 
number of dispatchable instructions may be equal to the 
number of instructions considered for dispatch (when there is 
sufficient number of entries available in the IQ), or it may be 
less than the number of instructions considered for dispatch 
(i.e. due to the presence of instructions with more non-ready 
source operands than the number of tag comparators in the 
available IQ entries). For example, for the 2OP_BLOCK 
scheduler, only instructions with at most one non-ready 
source operand can be dispatchable. An instruction that is 
considered for dispatch in a given cycle, but for which an 
appropriate IQ entry is not available is termed Non-
Dispatchable Instruction (NDI) (for the 2OP_BLOCK 
scheduler, all instructions with 2 non-ready sources are 
NDIs). 

In a superscalar machine (with or without reduced-tag 
schedulers), instruction dispatch operates in program order 
each cycle until either W instructions have been dispatched 



(where W is the dispatch rate of the machine), or a non-
dispatchable instruction is encountered. The same semantics 
hold true for the instructions within each thread of an SMT 
processor - dispatch occurs in-order within each thread, 
although it can occur out of fetch order for instructions 
between different threads. Thus, a single non-dispatchable 
instruction within a thread will stall dispatch of the entire 
thread until it becomes dispatchable (i.e. when one of its 
source operands becomes available). The 2OP_BLOCK 
scheduler is able to sustain the rate of instruction dispatching 
unless all threads encounter a non-dispatchable instruction 
simultaneously, in which case the supply of instruction to the 
out-of-order core of the SMT pipeline comes to a halt. With 
a limited number of threads, however, such situations are 
very frequent and they impact the performance drastically, as 
seen in Figure 1. 

We now observe that, while a thread may contain one 
NDI in a given cycle, there may also be several DIs behind it 
in program order that are otherwise eligible for dispatch. In 
the basic 2OP_BLOCK design, the dispatch of this entire 
thread will stall, missing the opportunity to bring these DIs 
into the scheduling widow. These instructions are in a way 
hidden from the scheduler as an artifact of the in-order 
dispatch policy. In the rest of the paper, we call such 
instructions Hidden Dispatchable Instructions, or HDIs. In 
fact, we observe that almost 90% of instructions piled up 
behind the NDIs, can be classified as HDIs.  

Further, we observe that both the NDI and HDI 
instructions piled up behind it in the 2OP_BLOCK case 
would be considered DIs with regular schedulers (e.g., 
schedulers without reduced number of tag comparators), and 
could be dispatched into the IQ all together in the same cycle 
(at least in the absence of other instructions considered for 
dispatch from other threads). Therefore, all necessary 
connections and write ports to the IQ to allow the dispatch of 
the HDI instructions already exist – it is simply that the 
2OP_BLOCK scheduler does not make use of this hardware 
in an effort to increase the scheduler efficiency by exploiting 
TLP. The solution that we propose is to allow the dispatching 
of all HDIs into the IQ, effectively introducing out-of-order 
instruction dispatch from each thread. Notice that the register 
renaming, as well as the allocation of ROB and load/store 
queue entries, are still performed in program order within 
each thread, thus guaranteeing that all true data dependencies 
are still enforced correctly. In other words, the HDIs are 
dispatched from a buffer, which contains the instructions 
already in the renamed form.  

Figure 2 clarifies this classification through an example of 
specific code segment. In terms of the example of Figure 2, 
both instructions I3 and I4 will be dispatched into the IQ 
before the instruction I2. Notice that while I4 is dependent on 
I2 and I3 is not dependent on it, both I3 and I4 are still 
dispatched prior to I2. While it could be more efficient to 
only dispatch the NDI-independent instructions out-of-order, 
the logic to perform such filtering would be complicated and 
would almost certainly impact the cycle time. At the same 
time, our simulation results actually showed that even under 
the idealized assumption of perfect and zero-overhead 
filtering, the potential to further boost the IPC is very limited 
if such filtering is implemented – the IPCs only improved by 

about 1.2% on the average. This is because only about 10% 
of all HDIs which entered the IQ out of program order were 
directly or indirectly dependent on a prior NDI. Therefore, 
the performance impact of foregoing the filtering opportunity 
and blindly dispatching all HDIs into the IQ is minimal. 

 
Figure 2: Example 

One potential problem with the out-of-order instruction 
dispatching is the possibility of a deadlock. Consider the 
situation where the oldest instruction in the ROB is blocked 
at dispatch because there are no available IQ entries and that 
all younger instructions from that thread that have already 
been dispatched out-of-order into the IQ are directly or 
indirectly dependent on this oldest instruction. If this 
scenario transpires simultaneously for all the threads, then 
the processor comes to a deadlock state and no instruction 
can be committed or dispatched. While such an occurrence 
would be extremely rare, it is necessary to provide a 
mechanism that either avoids such deadlocks, or detects and 
recovers from them. 

Several solutions are possible to address the deadlock-
related issues arising with the out-of-order dispatch. One 
alternative is to rely on a simple watchdog timer, which is a 
counter that counts down the number of cycles since the last 
instruction was dispatched. The timer can be initialized to a 
value exceeding the largest expected delay between 
consecutive dispatches in the course of normal execution 
(something in the order of 2 to 3 times more than the main 
memory access latency). This timer is decremented every 
cycle when no dispatches take place and it is reset back to its 
maximal value when a dispatch of an instruction occurs. 
When the value of the watchdog timer reaches zero, the PCs 
of all threads are reset to the addresses of the oldest 
instructions in the corresponding ROBs and the pipeline is 
flushed. While the implementation of this mechanism 
requires little additional hardware (only a small counter is 
needed; the capability to flush the pipeline is already present 
for handling branch mispredictions, exceptions, and 
interrupts), the performance penalty due to the pipeline 
flushes could be non-negligible. Therefore, in our 
evaluations we used a more elegant technique that does not 
require pipeline flushing when deadlocks are detected (as in 
watchdog timer design), but instead avoids the occurrence of 
deadlocks in the first place.  

This alternative method relies on the use of a small 
deadlock-avoidance buffer. This buffer is only used when a 
free IQ entry can not be allocated for an instruction that is 
the oldest in the ROB at the time of dispatch. In these cases, 
the instruction is placed in the deadlock avoidance buffer and 
will issue from there. Note that, since this instruction is the 
oldest in the ROB, it has all source operands ready by 
definition. Therefore, this deadlock-avoidance buffer is a 

Code Segment 
 

 I1: ADD P2, P4, P5  /* P2 = P4 + P5   */ 
 I2: SUB P3, P7, P6  /* P3 = P7 – P6   */ 
 I3: ADD P8, P7, P7  /* P8 = P7 + P7   */ 
 I4: MUL P9, P3, P5  /* P9 = P3 * P5   */ 

HIDDEN 
INSTRUCTIONS 

I4    I3    I2    I1

DI 

NDI 
HDI 

HDI 



simple RAM structure and does not require any CAM 
wakeup-logic. Instructions in this buffer can either arbitrate 
for selection with the instructions in the IQ, or can simply 
take precedence over the instructions in the IQ, in which case 
selection from the IQ is disabled when there are instructions 
present in the deadlock-avoidance buffer. Note that this latter 
alternative does not significantly impact performance since it 
is very unlikely that instructions will be able to issue out of 
the IQ anyway (especially in the deadlock cases).  We find 
that a simple one-entry deadlock-avoidance buffer is 
sufficient to prevent deadlocks with a minimal impact on 
performance. 

In summary, in terms of hardware implementation the 
changes to the basic 2OP_BLOCK design amount to the 
removal of the logic that enforces in-order dispatch within 
the threads and the addition of the logic to implement the 
deadlock avoidance mechanism.  

5. Results 
In this section, we present the results of the out-of-order 

dispatch mechanism for various sizes of the IQ and for the 
workloads with various numbers of threads. The results are 
presented both in terms of the overall processor throughput 
IPC and the fairness metric. All results are shown as 
harmonic means across the simulated multithreaded mixes. 

Figure 3 presents the speedup in throughput IPC for the 
traditional scheduler, the 2OP_BLOCK scheduler, and the 
2OP_BLOCK scheduler augmented with out-of-order 
instruction dispatch for various sizes of the IQ on the 
workloads with 2 threads. As seen from the graph, the use of 
out-of-order instruction dispatch increases the performance 
compared to the basic 2OP_BLOCK scheduler significantly 
for all IQ sizes – the gains are 12% for 32-entry schedulers, 
19% for 48-entry IQs, and 22% for 64-entry IQs. The large 
performance differences observed here are not surprising 
because the 2-threaded environment does not contain 
sufficient TLP to be harnessed by the 2OP_BLOCK design, 
and thus results in a significant number of cycles in which 
the dispatch is blocked due to the presence of instructions 
with 2 non-ready operands from both threads – this happens 
in 43% of the cycles, on the average. On the other hand, the 
ability to extract the deeper ILP within each thread afforded 
by the out-of-order dispatch mechanism almost eliminates 
the cycles in which dispatch is stalled for both threads 
simultaneously – this percentage drops to only 0.2% of the 
cycles on the average. Therefore, the out-of-order dispatch 
policy allows for the sustained performance even in the 
environment with a limited amount of TLP. In other words, 
where TLP can not be exploited, the scheduler focuses on 
harvesting the ILP within each thread. 
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Figure 3: Throughput IPC Speedup for 2-threaded Workloads 
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Figure 4:  Improvement in Fairness Metric for 2-threaded Workloads 

Compared to the traditional schedulers of the same 
capacity, the 2OP_BLOCK mechanism with out-of-order 
instruction dispatch increases the performance by 10%, 7%, 
and 2% for the 32-entry, 48-entry, and 64-entry schedulers, 
respectively, for 2-threaded workloads. Again, this is not 
surprising because the benefits of the 2OP_BLOCK 
mechanism are achieved (i.e., the IQ entries are used more 
efficiently), but the additional dispatch stalls introduced are 
minimal. Specifically, for the 64-entry schedulers, the 
average number of cycles that an instruction spends in the IQ 
drops from 21 cycles with the traditional scheduler to 15 
cycles for the 2OP_BLOCK scheduler with out-of-order 
instruction dispatch.  

However, for the larger scheduler sizes the traditional 
scheduler outperforms the 2OP_BLOCK with out-of-order 
dispatch slightly – by 4% for 96-entries and 5% for 128-
entries. It should be noted that the schedulers of these sizes 
(greater than 64 entries) are perhaps too large for 2-threaded 
workloads, at least in the framework of the simulated 
processor. Therefore, at these sizes the scheduler efficiency 
is not a concern even for the baseline design and the issues of 
delay and power consumption (which are addressed by our 
scheme directly) are likely to take a central role. Therefore, 
even in such cases where there is small performance 
degradation, the savings in delay and power may overshadow 
this and still provide an attractive design point. For detailed 
circuit delay and power-related analysis of the 2OP_BLOCK 
mechanism, we refer the readers to [13]. 

Figure 4 presents similar results in terms of the 
improvement in the fairness metric. The trends observed with 
respect to this metric are very similar to the previous results. 
Specifically, for the 64-entry schedulers, the out-of-order 
dispatch mechanism improves the fairness metric compared 
to the basic 2OP_BLOCK by 21% and over the traditional 
scheduler by 1%. 

We now examine the results for the 3-threaded workloads. 
Figure 5 presents these statistics in terms of the speedup in 
throughput IPC. Here, out-of-order dispatch increases the 
performance compared to the basic 2OP_BLOCK for all 
scheduler sizes and by as much as 21% for 64-entry 
schedulers. Compared to the traditional scheduler, the 
2OP_BLOCK with out-of-order dispatch increases 
performance by 20%, 16%, and 9% for the schedulers with 
32-entries, 42-entries, and 64-entries, respectively, and 
degrades performance by only 2% for 96-entries and 4% for 
128-entries. Once again, similar trends are observed in terms 
of the fairness metric, presented in Figure 6, where the 
improvements for 64-entry schedulers are 17% over the basic 
2OP_BLOCK and 6% over the traditional scheduler. 
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Figure 5: Throughput IPC Speedup for 3-threaded Workloads  
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Figure 6: Improvement in Fairness Metric for 3-threaded Workloads  
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Figure 7: Throughput IPC Speedup for 4-threaded Workloads  

Finally, we present the results for the workloads with 4 
simultaneous threads. Figure 7 presents these results in terms 
of the throughput IPC. As see from the graph, the use of out-
of-order instruction dispatch increases the performance 
compared to the basic 2OP_BLOCK scheduler for all IQ 
sizes larger than 32-entries – this increase is 5% for 48-entry 
schedulers, 14% for 64-entry IQs, and nearly 20% for both 
96 and 128-entry IQs. This shows that, even in the 
environments with 4-threaded workloads, the basic 
2OP_BLOCK design does not sufficiently balance TLP and 
ILP, resulting in a sub-optimal performance and there are 
significant opportunities for further improvements. The out-
of-order dispatch mechanism, on the other hand, better 
balances these two forms of parallelism and therefore 
realizes significant performance gains.  

Note that for the 32-entry schedulers, there is a slight 
performance degradation incurred by the use of out-of-order 
dispatch compared to the basic 2OP_BLOCK. This is 
because the amount of TLP available in 4-threaded 
workloads is quite sufficient to fill a small 32-entry 
scheduler, without relying on any additional mechanisms. An 
attempt to extract deeper ILP from within each thread in such 
situations hinders performance as it reduces the efficiency of 
2OP_BLOCK. It is only when the basic 2OP_BLOCK 
design is incapable of utilizing the IQ, the additional 
techniques actually pay off. Compared to the machine with 
the traditional scheduler, the out-of-order dispatch 
mechanism used with 2OP_BLOCK provides performance 
gains for all sizes of the IQ. Specifically, gains of 19% are 
realized for the 64-entry schedulers. The results showing the 
increase in the fairness metric are presented in Figure 8, 
where the same trends can be observed. In this case, for the 
64-entry schedulers, the improvement over the basic 

2OP_BLOCK is 11.6% and the improvement over the 
traditional scheduler is 13%, on the average. 
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Figure 8: Improvement in Fairness Metric for 4-threaded Workloads  

As was observed in Section 3, and can also be seen from 
the graphs in this section, the basic 2OP_BLOCK scheduler 
does not scale well with either the number of threads, or the 
size of the IQ. In contrast, the use of the out-of-order 
dispatch mechanism improves this scalability for both the 
number of threads and the size of the IQ. Furthermore, the 
scheduler using both 2OP_BLOCK and out-of-order 
instruction dispatching scales nearly as well or better than the 
traditional scheduler in terms of both throughput IPC and 
fairness with both the size of the IQ and the number of 
threads. 

6. Related Work 
The use of shared as well as partitioned resources in an 

SMT processor can be indirectly controlled by instruction 
fetching mechanisms. Various fetching policies have been 
proposed in the literature to provide the best supply of 
instruction mixes from multiple threads for building the most 
efficient execution schedules. The I-Count fetching policy 
[16] gives fetching priority to threads with fewer instructions 
in decode, rename and the IQ. The goal is to avoid clogging 
of the IQ with the instructions from one thread. Several 
optimizations of I-Count have also been proposed in an effort 
to avoid fetching the instructions that are likely to be stalled 
in the IQ for a large number of cycles. STALL [15] prevents 
the thread from fetching further instructions if it experienced 
an L2 cache miss. FLUSH [40] extends STALL by 
squashing the already dispatched instructions from such a 
thread, thus making the shared IQ resources available for the 
instructions from other threads. FLUSH++ [3] combines the 
benefits of STALL and FLUSH and uses the cache behavior 
of threads to dynamically switch between these two 
mechanisms. The Data Gating technique of [4] avoids 
fetching from threads that experience an L1 data miss. 

Several works proposed specific optimizations for the 
SMT processors. El-Moursy and Albonesi [4] explored new 
front-end policies that reduce the required integer and 
floating point IQ sizes in SMT architectures. Their 
techniques limit the number of non-ready instructions in the 
queue from each thread and also block further instruction 
fetching from a thread if that thread experiences an L1 cache 
miss. In [10], a partitioned version of the oldest-first issue 
policy is proposed, where separate IQs are used to buffer the 
instructions from different threads. In [9], the effect of 
partitioning the datapath resources, including the IQs, across 
multiple threads is discussed.  

In [2], a more fine grained dynamic control over SMT 
resources is proposed. The mechanism of [2] first classifies 
the threads according to their demands for the resources and 



based on this classification determines how the resources 
should be distributed among the threads. In contrast to the 
previous methods that stall or flush threads which have cache 
misses, the technique of [2] actually attempts to help these 
threads by providing more resources to them (if such 
resources are available) to increase the memory-level 
parallelism by overlapping multiple cache misses.  

The observation that many instructions are dispatched 
with at least one of their source operands ready is not new – 
it was used in [5], where the scheduler design with reduced 
number of comparators was proposed. In that scheme, some 
IQ entries have two comparators, others have just one 
comparator, and yet others have zero comparators. While the 
work of [5] statically partitions the queue into the groups of 
entries with various numbers of tag comparators, the 
instruction packing technique proposed in [11], achieves this 
partitioning dynamically, by sharing one IQ entry between 
two instructions, each with at most one non-ready source 
operand at the time of dispatch. 

In [7], the tag buses within the IQ were categorized into 
fast buses and slow buses, such that the tag broadcast on the 
slow bus takes one additional cycle. While the technique 
proposed in [7] can be trivially adapted to SMT, the design 
proposed in this paper completely eliminates the second set 
of comparators and therefore obviates the need to perform 
last-tag speculation and maintain fast and slow wakeup 
buses. The capacitive loading on all tag buses is reduced, 
because half of the comparators are offloaded from every tag 
bus. 

7. Concluding Remarks 
In this paper, we proposed out-of-order instruction 

dispatching to supplement the existing scheduling technique 
(2OP_BLOCK) that disallows the dispatching of instructions 
with two non-ready register source operands. Our proposal 
effectively balances the exploitation of ILP within each 
thread and TLP across multiple threads, resulting in 
significant performance improvements over the basic 
2OP_BLOCK scheme for 2-threaded, 3-threaded and 4-
threaded workloads for various issue queue sizes.  

In summary, the performance of 2OP_BLOCK with out-
of-order dispatch scales much better with both the number of 
threads and the IQ size compared to either the traditional 
design or 2OP_BLOCK alone. Our proposed design 
significantly reduces the complexity, access delay and power 
consumption of the dynamic scheduling logic in SMT 
processors, while achieving the same and in many cases 
significantly better throughput IPC and fairness compared to 
the baseline machine. 
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