Using Gossipfor Dynamic ResourceDiscovery

Eric Simonton,Byung Kyu Choi, and Steven Seidel
Departmeniof ComputerScience
Michigan TechnologicalUniversity
Houghton,MI 49931
Email: {ersimont,bkchoi, stere} @mtu.edu

Abstract— Resource discovery is the processof locating shared
resourceson a computer network. Previously studied examples
include efficiently finding files with a given title on a file sharing
system. New developments in the application of networked
computers raise the issue of dynamic resource discovery, the
processof locating shared resourcesthat are always changing
An example application is peerto-peer computing, where a user
wishesto locate idle CPU time anywhere on the network.

Peerto-peer computing is an exciting new computing
paradigm. There are vast amounts of idle CPU resources scat-
tered through the globe. We ervision a peerto-peer systemto
harnessthoseresources,where every member of the network can
both share their own CPU and utilize others’ CPUs.In a network
of hundreds of thousandsof computers, resource discovery will
play an important role. To avoid debilitating amounts of excess
network traffic it isimperativethat an efficient resourcediscovery
algorithm be chosen.

This paper’s contribution to this topic is the use of gossip
to reduce network traffic without sacrificing effectiveness.This
project has investigated piggybacking gossip messagen other
communications to increasethe intelligence of searching proto-
cols. The overhead of piggybacking the small amount of data
neededis very small, and a casestudy by simulation shaws that
it can reducenetwork traffic by 71-84 percent.

|. INTRODUCTION

Peerto-peer networks have proven to be a powerful and
populartool for file sharing.In the future, it is not hard to
imaginefurtherapplicationsof the peerto-peermparadigmsuch
as CPU cycle sharing.Projectslike SETI@HOME, Grid.org,
and Distributed.nethave proven the immense potential of
harnessinghe vastamountof idle CPU resourcesn theworld
[1]-[3]. Unlike theseprojects,a peerto-peersystemwould
offer theseCPU resourcego anyone on the network, instead
of a privileged few.

Resoucediscoveryis the processf finding (or discovering)
somethingin a network. In file sharing,this is the processof
searchingfor files, wherefiles are the resouce In peerto-
peer computing, it is the processof searchingfor available
memory disk space,and/or CPU cycles. Since sharedfiles
mostlikely never changewhenin the file sharingsystemthey
aretermedstatic resourceswhereasCPU cycles are dynamic
becauseheir availability can changefrequently

Dynamic resourcespose an added challengeto resource
discovery, since they require keepingtrack of those chang-
ing resources.For this reason,in large scale peerto-peer
computing, resourcediscovery will be a critical component,
as an inefficient protocol would unnecessarilyconsumea
significantportion of network bandwidthaswell asCPUtime.

In file sharing,completelyflat and completelydecentralized
resourcaliscovery protocolsareof interestbecausehey do not
requirenodesto volunteerfor specializedesponsibilitiesand
they eliminate single points of failure. Again, thesebenefits
are multiplied when keeping track of changingresources.
Avoiding single points of failure, in additionto simplifying
membershipmanagemenprotocols,is also a good reasonto
usean unstructurechetwork; unstructurechetworks arefairly
tolerantof nodefailuresaswell astargetedattacks[4].

In general,all resourcediscovery protocolsmust be push-
based, pull-based,or a combination of the two. A push-
basedprotocol adwertisesresourceavailability throughoutthe
network so that, upon demand a resourcerequesterdoesnot
have to spendtime searchindor it. However, it createsunnec-
essaryoverheadwhen demandis low. A pull-basedprotocol
eliminatesthis overheadby eliminating adwertisementsThe
drawbackis thatsearchmessagetake longerto find resources,
sincethey musttravel blindly throughthe network.

Algorithms designedfor static resourcediscovery combine
push-and pull-basedechniquesn clever waysto balancethe
tradeofs mentionedabove. However, they will notlikely prove
to be the besttechniquesfor dynamicresourcesasin peer
to-peercomputing.For example,mary of the besttechniques
propagatepointersto resourceghroughthe network so thata
searchcan find ary one of the pointersand be immediately
directedto the resourceHowever, thereis additionaloverhead
for keepingsuch pointersup-to-datefor dynamic resources,
which could easily renderthosetechniquednefficient.

There is a large domain of dynamic resourcediscovery
possibilitiesto explore. Insteadof inventing an entirely new
protocol, this paperpresentne stepinto that areaby offer-
ing a methodto modify existing pull-basedprotocols. This
techniquepiggybacksadwertisementsjn the form of gossip
messagespnto the paclets generatedby those protocols.
Thoseadwertisementsrethenusedto re-directsearchpaclets
generatedy the pull-basedprotocoltoward resourceshatare
more likely available. Hopefully this work shedssomelight
into the dynamicresourcediscovery realmto help develop a
systematicnew protocolin the future.

The rest of this paperis structuredas follows: Sectionll
discusse®therwork relatedto resourcediscovery, sectionlll
lays out the assumptionsnadefor the systemmodel usedto
evaluatethis work, sectionlV describeghe use of gossipin
detail,sectionV shawstheresultsof experimentakvaluations,
followed by concludingremarksin sectionVI.

Il. RELATED WORK

A. File Sharing

In consideringdynamicresourcediscovery, thereis much
to learn from work that has been done for static resource
discovery, usuallydonein the contet of file sharingsystems.
Many of the techniqguesemployed there can easily be mod-
ified to accommodatalynamic resourcediscovery, but leave
room for improvementdue to differencesin the application
ervironment.

Of particular interestis the work done to improve the
resourcediscovery protocolof the Gnutellanetwork. Gnutella
becamdamousasa popularfile sharingapplication,andinfa-
mousfor its inefficient resourcediscovery. However, it proved
the viability of a large, completelyunstructurechetwork.

One suggestionto improve Gnutellas resourcediscovery
efficiency comesfrom the obsenation that unstructurednet-
works roughly follow a power-law distribution, wherefew a
nodesconnectto mary neighborsand mary nodesconnect
to a few neighbors[5]. This work suggeststhat all nodes
keeptrack of the resourcesheld by their neighbors,so each
node can answera query for itself and its neighbors.Using
this techniguetestswere run using a simple randomrequest
forwarding scheme and resultsshown surprisingefficiency.

Anotherwork furtherimprovedthatideausingthefollowing
principle: the nodeswith the highest connectvity (greatest
numberof immediateneighborsin the overlay network) keep
track of the contentof the greatesthumberof nodesin the
network [6]. Therefore,the more high-connectiity nodesa
guerypasseshrough,the moreof the network it will cover. So
gueriesare alwaysforwardedto the neighborwith the highest
connectvity. This leveragesthe heterogeneityin connectvity
of a power-law network’s nodes.Mechanismsfor topology
adaptationand flow control further refined this approachin
[6].

Directly applyingary of thesesearchtechnique$o dynamic
resourcegaisesan immediateproblem: how should a node
keep track of its neighbors’ resourcesWith somethingas
volatile as CPU availability, it is clearthat a simple pointer
cannotbe kept for very long to resourcesat ary neighboring
node.This is the exact problemthis work tackles.

Another idea for resourcesdiscovery in unstructurednet-
works is called percolation-basedsearching[7], [8]. While
[8] claims this is superiorto the solution describedabove
becausef greaternetwork coverage this is not actually very
helpful in somethinglike a cycle-sharingenvironment. File
sharingsystemsguery for a resourceheld only one or a few
nodeswhereagycle-sharingsystemsyueryfor aresourcehat
resides(at times) on very mary, if not all of the nodes.If it
is necessanto query large portions of the network to find
this type of resourcejt mustbe that a very large portion of
the network is heavily loaded.Thereforetherewill be mary
otherhostsalsolooking for resourceswith somary machines
sendingqueries,ary free resourceswill be found by nearby
neighbors,eliminating the needfor queriesto reachfar into
the network.

B. Peerto-Peer Computing

Applicationslike SETI@HOME([1], Grid.org [2] and Dis-
tributed.net[3] already exist that leverageidle computing
resourcesscatteredover the globe. They do not, however,
addressthe goals of peerto-peer computing. Instead, they
provide massie amountsof parallelismto no more than
a few applicationsat a time, which requiresdevelopersto
write software with this massve parallelismin mind. This
paperseeksto provide for a systemtrue to the peerto-peer
architecture,where every memberof the network can both
offer resourcesand utilize thoseof othermembers.

Lanfermannret al. describework which meetsthesecriteria
[9], [10]. The systemthey discussallows executing entities
to migrate from one machineto another as more desirable
resourcesbecomeavailable. This conceptis easily extended
to the type of systemthis paperdescribesijn factit is part of
the groundwork on which it is based.The ultimate goal is to
allow users’programspr programmodulesto float anywhere
on the network, wherever available computationalpower is
found.However, lik e theexisting applicationgdiscussed@bove,
the resourcediscovery actiities for these systemsrely on
a centralizedsener. Of course,ary time centralizedseners
are used,scalabilityis compromisedsincethe capacityof the
centralizedseners will always dictate a maximum network
size,and a single point of failure is introduced.

Until recentlywe have found very little work thataddresses
fully distributed, dynamicresourcediscovery. Fairly simple,
local algorithmsfor this purposewere presentedn 2001, but
that work was carried no further [11]. Recentpaperswhich
addresshesecriteriaappeared 2004[12], [13]. Thesepapers
addresgshe preciseresearciproblemthis paperntakesup. They
provide a good startfor finding a suitableprotocol, but there
is still more work to be done. They evaluated expanding-
ring searchespurely adwertisement-basedearchesand ren-
dezwuspointsearchesBasedon their results they favoredthe
rendezwus point protocol. Although their simulation results
do shav excellent performancethrough rendezwous points,
rendezwuspointsaremoreor lesscentralizedseners.Though
mary may be used,which avoids a single point of failure, the
practicedoesnot fully leverageall the benefitsthat can be
found in a pure peerto-peerarchitecturewhereall members
of the network shareequalresponsibility

More recently Nandyet al. addresseghe topic of resource
discovery in a cycle-sharingnetwork [14]. They use gossip
to maintain distance-ector routing tablesthat point toward
availableresourcesThis is very promisingwork, which could
benefitfrom incorporatingsomeof the ideaspresentedn this
paper Oneweaknesst possesseis the assumptiorthatnodes
only communicatewith their immediate neighbors. When
consideringa peerto-peernetwork laid over the internet,this
is a very restrictve assumption.

This paperjoins [14] in offering a scalablefully decentral-
ized, truly peerto-peertechniquefor dynamic resourcedis-
covery. Unlike [14], however, it is not a stand-alongrotocol.
Insteadit shonvs how to modify existing pull-basedprotocols

to increaseaheir efficiency in a dynamicresourceenvironment. Application | Higher Application Sub-Layers
il

This work takes one stepout of the realm of static resource Layer I
; ; ; ; Resource | sgng | | forward
discovery protocolsinto that of dynamicresourcediscovery, Discovery | query| | query
instead of proposingan entirely new approach.It is also Protocol i I
flexible enoughaccommodatdoth walker-type protocolsand Gossip modify
flooding-typeprotocols.Walkertype protocolsgenerallycre- Layer
atemuchlessnetwork traffic, while maintainingequally good [||
performancenvhen searchingfor a single resource Flooding- Lower Network Layers ‘

type protocols,however, areusefulfor finding mary resources

at once, perhapswhen finding mary CPUson which to run Fig. 1. The mainideathis paperpresentanbe seenasa nev sub-layerin
mary parallel tasks. the network protocol stack,labeledhereasthe “Gossip Layer”.

This sectiondescribeghe systemmodelusedfor this work.

I1l. SYSTEM MODEL
canaccept;.e. zeroif therearetasksboth executingand
waiting, oneif thereis only oneexecuting,and? if there

A. The Network areno tasksin the CPU.

B. The CPU/Task Model

« Resourcealiscorery commencesvhenever a taskis gen-
eratedat a nodewhoseCPU queueis full.

« Tasksare representedgimply by the numberof compu-
tational cycles requiredto completethem. Thesesizes
follow a Weibull distribution with shapeparameter= 1.

« Tasks enter the network from ary node, following a
uniform distribution.

Thereis no paclet loss.

Every nodein the network is alwaysreachable.

The network lateny betweentwo nodesfollows a uni-
form randomdistribution for every paclet, betweenl.,,,;,,

and L,,,... milliseconds.Note that this allows for out-of-
orderdelivery andjitter.

Nodes join and leave the network over time creating
network churn, but stayin the network atleastaslongas ¢, The Resouce Discovery Protocol
the averagetime requiredto completeone task. Session
timesfollow a powerlaw distribution, which appeargo

be a property of all peerto-peernetworks regardlessof

their application[15].

A hypotheticamembershipnanagemenprotocolis used
which maintainsa power-law distribution of nodes’out- IV. MAIN IDEA

degreesawell-known characteristiof unstructuregpeer This paperpresentshe useof gossipin a sub-layerof the

to-peer networks [7], [16], [17]. In simulations, this 5ppjicationlayer of the network protocol stack. SectionIV-A
hypotheticaprotocolinstantlyconnectsiev nodesto the gescribeshis sub-layetby example,sectionlV-B describeshe

« Any pull-basedresourcediscovery protocol may be em-
ployed, andwill be modified on-the-fly

« All nodes’clocksare roughly synchronized.

« All nodesusethe sameresourcediscovery protocol.

network and doesnot affect network traffic statistics. contentsof a gossipmessageandsectionsV-C, IV-D and V-
Nodes gain connectionswith time, so that the oldest g gescribethe algorithmicdetailsof the sub-layers functions.
nodesin the network have the largestout-degree. The threelatter sectionscontaina few simplificationsfor the

Nodesnever fail; they alwaysgo througha disconnection ¢4 of clarity, which are addressedh sectionlV-F.
procesgo leave the network.

When a node leaves the network it doesnot query for A. A Typical ScenarioUsing the 16-Walker Protocol

new nodesto finish the tasksin its CPU queue;they This scenariaillustratesthe functionsof the mainideathis
aresimply droppedandrecordedasa churn failure. This paperpresentswhenappliedto the K -walker protocol.Figure
simplifies the simulation but still provides a fair com- 1 shaws the flow of pacletsin this scenario.
parisonbetweendifferent resourcediscovery protocols. A userwishesto find an available CPU, which promptsthe
Churnfailuresare not reflectedin this papers results. Resouce Discovery Protocol to generatea querypacket for K
of its neighborschoserrandomly(perthe K -walker protocol).
It passedhat paclet andits list of destinationgo the Gossip

A very simple CPU modelis usedfor a dynamicresource. | ayer, which hasalreadybuilt up a list of gossip(called the

Every nodeon the network hasone CPU which it shares gossipqueug extractedfrom paclets it receved previously.
openlyfor aslong asit remainsin the network. Usingtheinformationin thatgossipqueue it modifiesthe list
CPUspeeddollow a Weibull distribution [18] with shape of destinationgto target nodeswhose CPUs are more likely
parameter 2. available. Before sendingthe K paclets over the network,
CPUsusesimple,non-preemptie, first-come-first-sered it must attachsome gossipmessageso them. One of these
schedulingwith no conceptof task priority. messagess aboutthe currentstateof the currentnode, and
EachCPU hasa task queuewith spacefor onewaiting the othersare copiesmadefrom the gossipqueue.

task in addition to one executing task. In this work a Now considerone of those K recipients.The gossiplayer
CPUr's availability is definedas the numberof tasksit atthatnoderecevesthe query paclet from its lower network

layersandextractsthe attachedyossipmessagesisingthemto

updateits gossipqueue.lt deliversthe paclet to the resource
discovery protocol(in this case,K -walker), which determines
that this nodes CPU is not available. It must then forward

the query paclet to anothernode. It choosesone neighbor
randomly (per the K-walker protocol), then passesit back
down to the gossiplayer asthe new destinationfor the query
paclet. The gossip layer may then modify the destination
basedon informationin its gossipqueue.Finally it attaches
gossipmessageto the paclet and sendsit.

The recipientof that paclet then extractsthe gossip,mod-
ifies its gossipqueueaccordingly and delivers the paclet to
its resourcediscovery layer. This node determineghatit can
acceptthetask,soit reseresaslotin its CPU taskqueuefor
twice the maximum network lateng, 2L,,,, milliseconds.It
createsa pledgepaclet to sendto the originator of the query
thenthe gossiplayer attacheggossipand sendsit.

The originator of the query then receves the pledgeafter,
at most, L,,..Ms. It extracts the gossip,then packageshe
task into a task paclet to sendback to the pledging node.
The gossiplayer attachegyossipand sendsit. If othernnodes
alongthe path of ary of the other K — 1 query pacletsalso
pledgetheir CPUs this nodewill take noactionontheirpledge
paclets. This is of little consequencesince resenationsare
held for sucha shorttime.

B. The GossipMessae
Gossipmessagesontainfour fields:

« node: the node whose state information this message
contains.In an actual implementation,this field may
likely containan IP address.

« avail: somevalue indicating the availability of the re-
sourcebeing sharedwherea greatervalue indicatesthe
resourcds “more” available.In our simulationsthis field
containsthe numberof openslotsin nodés CPU queue
(at the time this messageavas created).

« create:the time at which this messagavas created.

o expire: the time at which this messagewill expire.
Simulationsshow that,in this work, thelifetime of gossip
messageseednot exceed110 secondgseeFigure 2).

In anactualimplementationgossipmessagesiay containfour

bytesfor node one for avail, and eight eachfor create and

expire. This is a total of 21 bytesfor eachgossipmessage.
Simulationsshov the maximum benefitfrom attachingthree
of thesemessagedo each paclet (see Figure 3). The total

of perhaps64 bytes (including a single, one byte length

field) piggybacled onto eachpaclet in the network creates
an overheadwhich we believe can easily be neglected.

C. Modifying Destination(s)
FunctionmodDests(Queryacket, Node List) modifiesthe
destination(spf an outboundquery paclket accordingto mes-

Gossip Lifetime vs. Search Failures, Network Traffic, Search Time, and CPU Idle Time
0.9 T T

T T T
Search Failures (percent), System Load = 0.5 —+—
System Load = 1.0 ---
System Load = 1.5 (100s) ---*---

Network Traffic (packets per search), System Load = 0.5 (10s)
yslem Load = 1.0 (100s) -
'm Load = 1.5 (1000s) -
Search Time (ms), System Load = 0.5 (1000s) -~
System Load = 1.0 (10000s) -
System Load = 1.5 (10000s) ---
CPU Idle Time (percent), Syslem Load = 0.5 (1005) -

System Load = 1.0 (10s) -

System Load = 1.5 -

x

yr‘z&éim*

™,

0.4 50> - -

N RS x>, P AN N v, v
e . f e T T T T

[A0S M FE B S SRR ST T T ¥
PP - 8§

e Biggsesses

ANBAZEREEL

X
oo K X X s XX

HEHAH

200 300

Gossip Lifetime (sec)

500 600

Fig. 2. This plot shaws the effectsof varying the lifetime assignedo gossip
messagest threesystemloads. Most metricsstabilizeat valuesgreaterthan
110, andsearchfailure increasepastthat point, so this is the valueis chosen
for further simulations.The units for the y-axis vary accordingto eachsetof

data(referto the legend).

Gossip Level vs. Search Failures, Network Traffic, Search Time & CPU Idle Time
0.9 . .

T T T
Search Failures (percent), System Load = 0.5 —+—
System Load = 1.0 ---
ystem Load = 1.5 (100s) ------
Network Traffic (packets per search) System Load = 0.5 (10s)

System Load = 1.0 (100s) -
System Load = 1.5 (1000s) -
Search Time (ms), System Load = 0.5 (1000s) -~
stem Load = 1.0 (10000s) -
ys\em Load = 1.5 (10000s) -~
CPU Idle Time (percent), Syslem Load = 0.5 (100s) —+—

System Load = 1.0 (10s) -

System Load = 1.5 -

x

yr‘z&éim*

0.6 |-

0.5

L e S e S—

U

0.3 §okeokndon ik *

o
,
L K
o ¢
s
pe

Gossip Level (messages per packet)

Fig.3. Thisgraphshavstheeffectsof varyingthe numberof gossipmessages
attachedo eachpaclet in the network at three systemloads. The datashav
no benefitin attachingmore than 3, which only costsabout 64 bytes per
paclet. The units for the y-axis vary accordingto eachset of data(refer to
the legend).

« gl.avail > g2.avail

« OR (gl.avail == g2.avail) AND (gl.expire > g2.expire)

e OR (gl.avail == g2.avail) AND (gl.expire == g2.expire)
AND (gl.create> g2.create)

gl is less-eliable than g2 when it is not more-reliable.
According to simulations,this is the optimal orderin which
to apply thesecomparisonsi.e. avalil first, expire secondand
createlast[19].

This function receves a list of destinationsfor a query
paclet from the resourcediscovery protocol. It then attempts
to replacethat list with its own of equalsize. If thereis not
enoughgossipto createa list that large, random elements

sagesn the gossipqueue.To decidewhich of thosemessages from the original list remainto make up the difference.Since

mostlikely point to available resourcesgconsiderthe relation
mote-reliable Gossip messagegl is more-reliable than g2
when:

the numberof destinationsdoesnot change,the flooding or
non-flooding behaior of the resourcediscovery protocol is
presered. Notice that only gossipmessagesvith a non-zero

. A querypaclet p to sendto a list of nodes
dests

Variable: mods aninitially emptylist of nodes

Variable: queue the gossipqueuekept at eachnode

Input

repeat
Let g be the “most-reliable” messagén queue

if g.avail == 0 then break
adjustg.avail asthoughthe querywill be filled
add g.nodeto mods
if destscontainsg then remove g from dests
else remove a randomnodefrom dests

until modssize== destssize

for eachn in destsdo attachGossigp, n)

for eachn in modsdo attachGossigp, n)

Function modDests(Queryacket, Node List) This func-
tion is called by the resourcediscovery protocol to send
a query paclet to a list of nodeson the network. It is
responsiblefor modifying the list accordingto gossipin
the gossipqueue.

valuein the avalil field are usedto influencethe destinationof
guery paclets. Also note that, given the natureof the more-
reliable relation, a messagereflecting zero availability will
only be encounteredhfter all non-zerovaluesare exhausted.

D. Attaching Gossip

FunctionattachGossip(&cket, Node)attachesomenumber
of gossip messagedo every outbound paclet, defined as
GOSSIPLEVEL The attachedmessageseflect the current
stateof the nodeitself andgossipmessagestoredin its gossip
gueue.To decidewhich messageso attachconsideranother
relationbetweergossipobjects spread-betterGossipmessage
gl is spread-betterthan g2 when:

o gl.avail > g2.avail

o OR (gl.avail == g2.avail) AND (gl.create> g2.create)

e OR (gl.avail == g2.avail) AND (gl.create== g2.create)

AND (gl.epire > g2.expire)
Again, simulationsshow thatthis is the optimal orderin which
to apply thesetests[19].

Whengiven a paclet to send,this function startsthe list of
message$o attachwith a new onereflectingthe currentstate
of the nodeitself. Thenthe spread-besbbjectsare dravn out
of the gossipqueueandaddedto thelist until eitherthe queue
is emptyor the list hasGOSSIPLEVEL objects.

E. Extracting Gossip

Input : A paclet p to sendto a nodedest

Variable: spread aninitially empty list of gossip
messages

Variable: queue the gossipqueuekept at eachnode

add gossipaboutthis nodeto spread
copy the “spread-bestmessagen queueto spread

while spreadsize< GOSSIPLEVEL do
L if everythingin queueis in spread then break

copy next “spread-bestmessagen queueto spread
attachspreadto p

sendp to the lower network layers

Function attachGossip(@@cket, Node) This function is
called by the resourcediscovery protocol and by mod-
Dests(QueryPacket, Node List) to send paclets to the
lower network layers. It is responsiblefor adding gossip
to thosepaclets.

Input : A paclet p that hasarrived at the node
Variable: queue the gossipqueuekept at eachnode

for eachg in p.gossipdo
if qgueuecontainsh whereh.node== g.nodethen
| if goutdatesh then replaceh with g

L else addg to queue

while queuesize> MAX_Q do
| remove the “gueue-worst” messagdrom queue

deliver p to the resourcediscorery protocol

Function extractGossip(Bcket p) This function is called
by a lower layer to deliver a packet to the resource
discovery protocol. It is responsiblefor extracting and
processinggossipmessagesattachedo the paclet.

« AND (gl.create> g2.create)

Whengivena paclet this function stepsthroughits attached
gossip messagesreplacing messagesalready in the queue
with new onesthat outdatethem and simply addingthe rest.
Afterward,if therearemorethanMAX Q objectsin the queue,
it trims off the least-reliablemessagesintil the queueis no
longerover-sized.

F. RemainingDetails

SectionsIV-C, IV-D and IV-E describethe functions of
the gossiplayer in detail, but with some simplificationsfor
the sale of clarity. The algorithmic descriptionsdo not take
into accountthe fact that gossipmessagegxpire, nor that a
node need not keep gossip aboutitself. Simulationshandle
the former by discardingexpired messagesvhenever they are

Function extractGossip(Bclet) extracts gossip messages encounteredTo correctthe latter, a gossipmessagés never

from inboundpacletsto populatethe gossipqueue The queue
hasa maximumsize, MAX Q. Also, the queuenever contains
multiple gossip messagesbout the samenode, but instead
retainsonly the mostup-to-dateinformation possible.To that
end,considera third relationbetweergossipobjects,outdates
suchthat gossipmessageyl outdatesg2 when:

e gl.node== g2.node

sentto the nodeit describesnor are newly generatedyossip

messagesver copiedbackinto their own nodes’gossipqueue.
V. EVALUATION

A. SimulationSetting

The mainideapresentedn this paperwastestedby simula-
tionsrun on anetwork of 12,000nodesfor 24 simulatechours.

Details of the simulators designbeyond whatis describedn

this papercan be obtainedfrom [19]. Simulationsare based
on a discreteevent simulator which handlespaclet delivery
between nodes. Network latencies are generatedbetween
Lpmin = 10 and L,,., = 100ms using a uniform random
distribution. To simplify simulation, thereis no memory of

differing latenciesbetweerdiffering pairsof nodes;all paclets
are deliveredusing the samelateng distribution. Also, there
is no paclet loss.

Every nodekeepsalist of neighborsfor useby theresource
discovery protocol, forming a powerlaw overlay topology
Neighborconnectionsare alwaysbi-directional. The simulator
generatesndmaintainsheseconnectionsandomly maintain-
ing a powerlaw exponentof 2.0 throughoutthe simulation,
which is within the rangesobsened for the Gnutellanetwork
[7], [16], [17].

Simulationsachiesze network churn by schedulingthe time
betweennodebirths and deathsdrawing from an exponential
distribution so that sessiortimes averageone hour, and very
few arelessthanfive minutes(the time requiredto complete
one average-sizetask). To start each of these events the
simulatorrandomlychoosesvhetherit will beabirth or death,
weightedto keepthe network size near 12,000 nodes.If it
choosesa death,it also chooseswhich node shoulddie such
thatit approximates power-law distribution for sessiortimes.
When a nodedies, it breaksdown its neighborconnections,
then continuesforwarding paclets until all gossipit spread
aboutitself expires.In this way, nodesalwaysdie nicely; they
never fail. Additionally, they simply drop ary tasksthey own
atthetime of death ratherthanstartingnen queriesfor them.
This also simplifies simulation without compromising the
fairnessof comparisorbetweendifferentsimulations’results.

The simulator containsa single task generatorwhich pro-
ducesall the tasksthat enterthe network. Eachtask consists
simply of a value indicating the numberof CPU cycles that
must be spentto completeit. This value is dravn from a
Weibull distribution with shapeparameter= 3 so that, on
average,they take five minutesto executeon a 3GHz CPU.
Eachtaskis assignedo aninitial node,choserfrom a uniform
random distribution. If possiblethat node acceptsthe task
itself, i.e. if its CPU queueis not full. Thesecasesgenerate
no network traffic. Whena nodecannotaccepta tasklocally,
it initiatesresourcediscovery.

Simulationsusea form of the K -walker algorithmfor their
resourcediscovery protocol. Using that algorithm, a node
wishingto searchthe network for anavailable CPU choosed<
of its neighborsto which to senda query packet, duplicating
choiceswhenererit haslessthan K neighborslf, whenanode
recevesa querypacket, it hasenoughspacen its CPU queue
to acceptanothertask, it reseresa slot in its CPU queuefor
2Lma: = 200ms andreturnsa pledgepaclet to the inquirer.
This guaranteeshat the inquirer can receve the pledgeand
respondbefore the resenation expires. If the queried node
cannotacceptthe taskitself, it choosesa randomneighborto
which to forward the query paclet. Eachquery paclket canbe
forwardedup to 24 times, allowing it 25 hopstotal, according

to the findingsin [19]. The inquiring node sendsthe task to
the first node from which it recevesa pledgepaclet. In the
eventthatnoneof the querypacletselicit a responsethe task
is dropppedafter a settime.

B. SimulationMetrics

Four metricsare chosento evaluatethe succesf the new
gossiplayer: searchfailure rate, network traffic, searchtime,
andCPU idle time. A seach encompassesll of the resource
discovery actiity initiated by a nodeat onetime. So, for the
K-walker protocol,all K walkersarepartof the samesearch.
Failure rate is the percentagef searchesvhich do not find
ary availableresourcesNetworktraffic is measuredn terms
of the averagenumberof pacletsgenerategper searchSeach
time is the time betweena newly generatedaskarriving at a
node which cannotacceptit locally and enteringthe CPU
gueueof anothernodeon the network. Searcheghat fail are
not includedin this metric. CPU idle time is measuredsthe
percentof the total CPU time in the network which was spent
idle. Note thatlower valuesare more desirablefor all of these
metrics. The aim of thesesimulationsis to determinehow
much network traffic the gossiplayer could eliminatewithout
increasingsearchfailures.

C. SimulationResults

Figure 4 hasfour graphscontainingthe resultsof simula-
tions that usethe 16-walker protocol. 16 is within the range
for K recommendedy [20] for static resourcediscovery.
Simulationsindicate that by addingthe gossiplayer all four
metricscanbeslightly improved,or K canbereducedo 5 for
dramaticreductionin network traffic and no increasein ary
other metric. Following is a discussionof eachof the four
graphs,then a brief overview of applyingthe gossiplayer to
flooding-styleprotocaols.

Figure 4(a) shavs the failure ratesfor simulationsunder
a rangeof systemloads. Systenload is the ratio of the total
cyclesrequiredto completeall tasksto the total cyclesoffered
by CPUsin thenetwork. So,a systemoad of 0.5indicateshat
the simulationgeneratecenoughtasksto consumehalf of the
availableCPU cyclesin the network. The moststriking feature
of this graphis that the searchfailure ratesfor 16-Walkers
without gossip and 5-Walkers with are virtually identical.
SearcHailuresreston zerountil the systemloadincreasepast
1.0, indicating that the protocolsare very effective at finding
resourcesven whenthey arerelatively scarce.This doesnot
mean,however, that they find resourcesvheneer they exist.
Notice from Figure 4(d) that CPUsare still 4.5 percentidle
when the systemload is 1.0. This is possible becausel5
perceniof tasksin thenetwork aredroppedbecaus®f network
churn at this systemload. As shouldbe expected,the search
failuresin 4(a) increasealmostlinearly after x = 1.0.

Figure4(b) shavs the network traffic generatedy thethree
protocolsunderarangeof systemloads.Whenz < 1.0, while
virtually all searchessucceedthe network traffic increases
following the equationK (hops + 1) + 1, where hopsis the
average number of hops each walker takes before finding

System Load vs Search Failures
35

! 16-walker, no‘gossip —
16-walker, with gossip ------
5-walker with gossip %x -

30

25

" l
10
5 /

0.4 0.6 0.8 1 1.2 1.4 16
System Load

Search Failures (percent)

(a) SystemLoad vs. SearchFailure Rate

System Load vs Search Time
800

T T
16-walker, no gossip —+—
16-walker, with gossip ---*---
5-walker with gossip ;;----
700

600

500

400

Average Search Time (ms)

300

200

100

0.4

.6 0.8 1 12 1.4 16
System Load

(c) SystemLoad vs. SearchTime

Fig. 4.

System Load vs Network Traffic
400 ' '
16-w
-walker, with gossip ---x---
5-walker with gossip ------

350

300

250

200

150 /

” / = e

50 oI

Average Packets per Search

0.4 0.6 0.8 1 12 1.4 1.6
System Load

(b) SystemLoad vs. Network Traffic

System Load vs CPU Idle Time
50

T T
16-walker, no gossip —+—
16-walker, with gossip ---x---

45 X 5-walker with gossip - %- |

40

35

30 \
25

20

15 N
\K\
10 ‘

CPU Idle Time (percent)

0.4 0.6 0.8 1 12 1.4 16
System Load

(d) SystemLoad vs. Idle Time

Under a variety of systemloads,a 16-Walker algorithm without gossipand a 5-Walker algorithm with gossipyield the samefailure rates(4(a)),

searchtimes (4(c)), and CPU utilization (4(d)), while a 16-Walker with gossipyields performsslightly better The 5-Walker algorithmwith gossipproduces

much fewer paclets than both 16-Walker algorithms(4(b)).

an available resource.Each walker which finds a resource
generate®ne paclket for eachhop it takes, then promptsthe

generationof exactly one pledgepaclet. So, a single walker

createshops + 1 packets.Sincethereare K walkersfor every

search,eachone producesK (hops + 1) paclets, and every

successfusearchadditionallyproducesonetaskpaclet. Since
adding the gossip layer to the 16-Walker protocol reduces
network traffic, asshown in the figure,and K is held constant,
the gossiplayer mustreducethe averagenumberof hopseach
walker takes. Reducing K to five of coursereducesnetwork

traffic by 11/16ths,andthe datashaw thatit actually reduces
it a little further The further reductioncan be explained by

the fact that fewer walkers will arrive in rapid successiorat

theimmediateneighborswvheninitiating queries sothatfewer

walkers will have to hop pastthe cpu resenations madeby

otherwalkersfrom the samesearchWhenz > 1.0, network

traffic asymptoticallyapproachethe pointwhereevery walker

fails after 25 hops,25 K. For both 16-Walker algorithms,this

asymptotes y = 400, andfor 5-Walkers,y = 130.

Figure5 shaws the percentreductionin network traffic that
5-Walkerswith gossipmakesover 16-Walkerswithout gossip.

Thedatarepresenteds oneminusthe averagetraffic generated
by a 5-Walker searchwith gossipdivided by the averagetraffic
generatedy a 16-Walker searchwithout gossip.It shows that
the gossipingprotocol yields betweena 70 and 85 percent
improvement,with the mostimprovementwhenresourcesre
scarce but still available.

Figure 4(c) shavs the length of time, on average,between
initiating a successfulsearchand its task's admittanceto a
CPU queue.Underall systemloads,the 16-Walker algorithm
with gossip out-performsboth others. During low system
loads,the 16-Walker protocolwithout gossipout-performshe
5-Walker. In this case,almost every neighbor has available
resourcessoit is simply a one-hopracebetweenthe walkers
to seewhich will find them first, and therewill more likely
be a fasterhop in a setof 16 than5. Oncethe systemload
increasespast 0.9, however, the 5-Walker protocol begins
out-performingthe 16-Walker without gossip. The average
difference betweenthe results for those two protocols is
13 milliseconds,favoring the 5-Walker. Thesedata shav a
transitionbetweertwo asymptotesAt low systemloads,when
resourcegsrealmostalwaysavailableat any nodes immediate

System Load vs. Network Traffic Reduction
84

T 82

3

I

]

=

€ 8

©

g

(2]

g / \

o 18

%

<

[«

o 76

g

T

g

< \

S 74

c

S

g \

S

3

g 72 \,\

—

70

0.4 0.6 0.8 1 12 1.4 1.6
System Load

Fig.5. Theimprovementin network traffic by decreasing< from 16to 5 and
addingthe gossiplayer, given by the equation:100 x (1 - {avg. paclets per
searchfor 16-Walker without gossig / {avg. paclets persearchfor 5-Walker
with gossig

neighborsyresourcediscorery completesafter threehops:one
eachby a querypaclet, pledgepaclet, andtaskpacket. Under
high systemloads,when resourcesare very scarce,so mary

walkers are in the network that the one that happendo visit

a nodeat the instantits CPU becomedree wins its resource.
Sincewe assumehatresourceavailability cannotbe predicted,
this must happencompletelyby chance.

Figure 4(d) shaws the averagepercentof time a CPU on
the network is idle. The three sets of data are nearly the
samewith the gossipingprotocolsslightly out-performingthe
non-gossipingone. The improvementcomesmostly from the
addition of gossip;the increaseof K from 5 to 16 makes
very little difference.ldle timesfall linearly whenz < 1.0,
andremainat almostO percentwhenz > 1.0.

Random-valk-styleprotocolsare bestsuitedfor finding one
or a few resourceson a network, but finding mary at once
for parallel tasks will be another perhapsmore important
applicationof resourcediscovery for peerto-peercomputing.
Simulationsof a home-gravn flooding-stylealgorithm shav
thatthe gossiplayeralsobenefitsthis classof protocols.Using
that algorithm gossip reducesaverage searchfailures by 7
percent,searchtime by 2 percent,and CPU idle time by 23
percent.Network traffic is slightly increasedut this could
be consideredbetter sincethe increasecomesentirely from
pledgepaclets. When the systemload is 1.0, searchfailures
improve by 29 percent,searchtime by 3 percent,and CPU
idle time by 26 percentReferto [19] for morea moredetailed
descriptionof theseresultsandthe protocol that was used.

VI. CONCLUSION

This work presentsthe viability and effectivenessof in-
serting a new layer into the network protocol stack which
reducesthe amount of network traffic createdby resource
discovery. Using the K-walker protocol, the gossiplayer is
ableto reducethat traffic by 71-84 percentby decreasingk’
from sixteento five. This decreasaloesnot increasesearch
failures, searchtime, or CPU idle time. By all metrics it

alsoimprovesresultsfor aflooding-styleprotocol.Simulations
only generatednetwork traffic associatedwith the resource
discovery activities in the network; other packets can also
be passedthrough the gossip layer, which should improve
resourcediscovery actiities even further.

Overall, this work is oneimportantstepin the directionof a
resourcaliscovery protocoltailoredfor dynamicresourceswe
believe gossipcan play an importantrole in sucha protocol,
and we welcomefurtherimprovements.

REFERENCES

[1] “Seti@home:Searchfor extraterrestialintelligenceat home: [Online].
Available: http://setiathome.ssl.berkelegiu/

[2] “Grid.org - grid computing projets:
http://wwwgrid.oig/home.htm

[3] “Distributed.net:Node zero” [Online]. Available: http://distrituted.net/

[4] M. Ripeanu, “Peerto-peer architecture case study:
Gnutella network;’ 2001. [Online]. Available: cite-
seercsail.mit.edu/ripeanuOggtopea.html

[5] L.A. Adamic,R. M. Lukose,A. R. Puniyani,andB. Huberman,; Search
in powverlaw networks; Physical Review, vol. 64, pp. 46,135-46,143,
March 2001.

[6] Y. Chawathe, S. RatnasamyL. Breslau,N. Lanham,and S. Shenler,

“Making gnutella-lile p2p systemsscalablé, in SIGCOMM’03: Pro-

ceedingsof the 2003 confeenceon Applications,technolaggies, archi-

tectues, and protocolsfor computercommunications New York, NY,

USA: ACM Press, 2003, pp. 407—418.

F. Banaei-KasharmandC. Shahabi; Criticality-basedanalysisanddesign

of unstructuredpeerto-peernetworks as 'complex systems”, in CC-

GRID '03: Proceedingof the 3rd International Symposiunon Cluster

Computingand the Grid. Washington,DC, USA: IEEE Computer

Society 2003, p. 351.

[8] N. Sarshar P. V. Roychavdury, and O. Boykin, “Percolation-based
searchon unstructuredoeerto-peernetworks; in IPTPS 2003.

[9] G.LanfermannG. Allen, T. Radle, andE. Seidel,"Nomadic migration:

A new tool for dynamicgrid computing, in HPDC '01: Proceedings

of the 10th IEEE International Symposiunon High PerformanceDis-

tributed Computing (HPDC-10'01) Washington,DC, USA: |IEEE

ComputerSociety 2001, p. 429.

——, “Nomadic migration: Fault tolerancein a disruptive grid ernviron-

ment! in CCGRID, 2002, pp. 280-281.

A. lamnitchi and |. Foster “On fully decentralizedesourcediscorery

in grid ervironments, in International Workshopon Grid Computing

Derver, Colorado: |IEEE, November 2001. [Online]. Available:

citeseerst.psu.edu/iamnitg01full y.html

D. ZhouandV. Lo, “Cluster computingon thefly: resourceliscovery in

a cycle sharingpeerto-peersystent, in IEEE International Symposium

on luster Computingand the Grid, 2004 April 2004, pp. 19-22.

V. Lo, D. ZappalaD. Zhou, Y. Liu, andS. Zhao,“Cluster computingon

the fly: P2p schedulingof idle cyclesin the internet. in IPTPS 2004,

pp. 227-236.

S. Nandy L. Carter and J. Ferrante,“Guard: Gossip used for au-

tonomousresourcedetectior, in IPDPS 2005.

D. Stutzbachand R. Rejaie, “Characterizing churn in peerto-peer

networks; University of Oregon, Tech.Rep.CIS-TR-05-03 June2005.

[Online]. Available: http://wwwcs.uorgon.edu/ rez&UB/tr05-03.pdf

D. Zeinalipour and Y. T. Folias, “A quantitatve analysis

of the gnutella network trafic;’ 2002. [Online]. Available:

http://Iwwwcs.ucredu/"csyiaztcourses/cs204/poject/html/final. html

M. Jovanoric, F. Annexstein, and K. Berman,“Modeling peerto-peer

network topologiesthrough”small-world” modelsand power laws;" in

IX Telecommunicationforum, TELFOR2001, 2001.

“The weibull distribution?” [Online]. Available:

http://wwwweikull.com/LifeDataVébthe weihull _distribution.htm

E. Simonton, MS Thesis, Department of Computer Science,

Michigan Technological University Jan 2006. [Online]. Available:

http://Iwwwcs.mtu.edu/ ersimont/thegpdf

Q. Lv, P. Cao,E. CohenK. Li, andS. Shenler, “Searchandreplication

in unstructuredpeerto-peernetworks; in ICS’'02: Proceedingsof the

16th international confeence on Supecomputing New York, NY,

USA: ACM Press, 2002, pp. 84-95.

[Online]. Available:

(7]

[20]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

