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Abstract— Resourcediscovery is the processof locating shared
resources on a computer network. Previously studied examples
include efficiently finding files with a given title on a file sharing
system. New developments in the application of networked
computers raise the issue of dynamic resource discovery, the
processof locating shared resources that are always changing.
An exampleapplication is peer-to-peer computing, where a user
wishesto locate idle CPU time anywhere on the network.

Peer-to-peer computing is an exciting new computing
paradigm. There are vast amounts of idle CPU resources scat-
tered thr ough the globe. We envision a peer-to-peer system to
harnessthoseresources,where every member of the network can
both share their own CPU and utilize others’ CPUs.In a network
of hundreds of thousandsof computers, resource discovery will
play an important role. To avoid debilitating amounts of excess
network traffic it is imperative that an efficient resourcediscovery
algorithm be chosen.

This paper’s contribution to this topic is the use of gossip
to reduce network traffic without sacrificing effectiveness.This
project has investigatedpiggybacking gossipmessageson other
communications to increasethe intelligence of searching proto-
cols. The overhead of piggybacking the small amount of data
neededis very small, and a casestudy by simulation shows that
it can reducenetwork traffic by 71-84 percent.

I . INTRODUCTION

Peer-to-peernetworks have proven to be a powerful and
popular tool for file sharing.In the future, it is not hard to
imaginefurtherapplicationsof thepeer-to-peerparadigm,such
asCPU cycle sharing.Projectslike SETI@HOME,Grid.org,
and Distributed.net have proven the immensepotential of
harnessingthevastamountof idle CPUresourcesin theworld
[1]–[3]. Unlike theseprojects,a peer-to-peersystemwould
offer theseCPU resourcesto anyoneon the network, instead
of a privilegedfew.

Resourcediscovery is theprocessof finding (or discovering)
somethingin a network. In file sharing,this is the processof
searchingfor files, where files are the resource. In peer-to-
peer computing, it is the processof searchingfor available
memory, disk space,and/or CPU cycles. Since sharedfiles
mostlikely never changewhenin thefile sharingsystem,they
aretermedstatic resources,whereasCPU cyclesaredynamic
becausetheir availability canchangefrequently.

Dynamic resourcespose an addedchallengeto resource
discovery, since they require keeping track of thosechang-
ing resources.For this reason, in large scale peer-to-peer
computing,resourcediscovery will be a critical component,
as an inefficient protocol would unnecessarilyconsumea
significantportionof network bandwidthaswell asCPUtime.

In file sharing,completelyflat and completelydecentralized
resourcediscoveryprotocolsareof interestbecausethey donot
requirenodesto volunteerfor specializedresponsibilities,and
they eliminate single points of failure. Again, thesebenefits
are multiplied when keeping track of changing resources.
Avoiding single points of failure, in addition to simplifying
membershipmanagementprotocols,is also a good reasonto
usean unstructurednetwork; unstructurednetworks arefairly
tolerantof nodefailuresaswell as targetedattacks[4].

In general,all resourcediscovery protocolsmust be push-
based,pull-based,or a combination of the two. A push-
basedprotocoladvertisesresourceavailability throughoutthe
network so that, upondemand,a resourcerequesterdoesnot
have to spendtime searchingfor it. However, it createsunnec-
essaryoverheadwhen demandis low. A pull-basedprotocol
eliminatesthis overheadby eliminating advertisements.The
drawbackis thatsearchmessagestake longerto find resources,
sincethey must travel blindly throughthe network.

Algorithms designedfor static resourcediscovery combine
push-andpull-basedtechniquesin clever waysto balancethe
tradeoffs mentionedabove.However, they will not likely prove
to be the best techniquesfor dynamic resources,as in peer-
to-peercomputing.For example,many of the besttechniques
propagatepointersto resourcesthroughthe network so that a
searchcan find any one of the pointersand be immediately
directedto theresource.However, thereis additionaloverhead
for keepingsuch pointersup-to-datefor dynamic resources,
which could easily renderthosetechniquesinefficient.

There is a large domain of dynamic resourcediscovery
possibilitiesto explore. Insteadof inventing an entirely new
protocol, this paperpresentsone stepinto that areaby offer-
ing a method to modify existing pull-basedprotocols.This
techniquepiggybacksadvertisements,in the form of gossip
messages,onto the packets generatedby those protocols.
Thoseadvertisementsarethenusedto re-directsearchpackets
generatedby thepull-basedprotocoltowardresourcesthatare
more likely available. Hopefully this work shedssomelight
into the dynamicresourcediscovery realm to help develop a
systematicnew protocol in the future.

The rest of this paperis structuredas follows: SectionII
discussesotherwork relatedto resourcediscovery, sectionIII
lays out the assumptionsmadefor the systemmodel usedto
evaluatethis work, sectionIV describesthe useof gossipin
detail,sectionV shows theresultsof experimentalevaluations,
followed by concludingremarksin sectionVI.



I I . RELATED WORK

A. File Sharing

In consideringdynamicresourcediscovery, there is much
to learn from work that has been done for static resource
discovery, usuallydonein the context of file sharingsystems.
Many of the techniquesemployed there can easily be mod-
ified to accommodatedynamic resourcediscovery, but leave
room for improvementdue to differencesin the application
environment.

Of particular interest is the work done to improve the
resourcediscovery protocolof the Gnutellanetwork. Gnutella
becamefamousasa popularfile sharingapplication,andinfa-
mousfor its inefficient resourcediscovery. However, it proved
the viability of a large, completelyunstructurednetwork.

One suggestionto improve Gnutella’s resourcediscovery
efficiency comesfrom the observation that unstructurednet-
works roughly follow a power-law distribution, where few a
nodesconnectto many neighborsand many nodesconnect
to a few neighbors[5]. This work suggeststhat all nodes
keeptrack of the resourcesheld by their neighbors,so each
nodecan answera query for itself and its neighbors.Using
this techniquetestswere run using a simple randomrequest
forwardingscheme,andresultsshow surprisingefficiency.

Anotherwork furtherimprovedthatideausingthefollowing
principle: the nodeswith the highest connectivity (greatest
numberof immediateneighborsin the overlay network) keep
track of the contentof the greatestnumberof nodesin the
network [6]. Therefore,the more high-connectivity nodesa
querypassesthrough,themoreof thenetwork it will cover. So
queriesarealwaysforwardedto the neighborwith the highest
connectivity. This leveragesthe heterogeneityin connectivity
of a power-law network’s nodes.Mechanismsfor topology
adaptationand flow control further refined this approachin
[6].

Directly applyingany of thesesearchtechniquesto dynamic
resourcesraisesan immediateproblem: how should a node
keep track of its neighbors’ resources?With somethingas
volatile as CPU availability, it is clear that a simple pointer
cannotbe kept for very long to resourcesat any neighboring
node.This is the exact problemthis work tackles.

Another idea for resourcesdiscovery in unstructurednet-
works is called percolation-basedsearching[7], [8]. While
[8] claims this is superior to the solution describedabove
becauseof greaternetwork coverage,this is not actuallyvery
helpful in somethinglike a cycle-sharingenvironment. File
sharingsystemsquery for a resourceheld only one or a few
nodes,whereascycle-sharingsystemsqueryfor a resourcethat
resides(at times) on very many, if not all of the nodes.If it
is necessaryto query large portions of the network to find
this type of resource,it must be that a very large portion of
the network is heavily loaded.Therefore,therewill be many
otherhostsalsolooking for resources.With somany machines
sendingqueries,any free resourceswill be found by nearby
neighbors,eliminating the needfor queriesto reachfar into
the network.

B. Peer-to-Peer Computing

Applicationslike SETI@HOME[1], Grid.org [2] andDis-
tributed.net [3] already exist that leverage idle computing
resourcesscatteredover the globe. They do not, however,
addressthe goals of peer-to-peer computing. Instead, they
provide massive amounts of parallelism to no more than
a few applicationsat a time, which requiresdevelopersto
write software with this massive parallelism in mind. This
paperseeksto provide for a systemtrue to the peer-to-peer
architecture,where every memberof the network can both
offer resourcesand utilize thoseof othermembers.

Lanfermannet al. describework which meetsthesecriteria
[9], [10]. The systemthey discussallows executing entities
to migrate from one machineto another, as more desirable
resourcesbecomeavailable. This conceptis easily extended
to the type of systemthis paperdescribes;in fact it is part of
the groundwork on which it is based.The ultimategoal is to
allow users’programs,or programmodules,to float anywhere
on the network, wherever available computationalpower is
found.However, like theexistingapplicationsdiscussedabove,
the resourcediscovery activities for these systemsrely on
a centralizedserver. Of course,any time centralizedservers
areused,scalability is compromisedsincethe capacityof the
centralizedservers will always dictate a maximum network
size,anda singlepoint of failure is introduced.

Until recentlywe have foundvery little work thataddresses
fully distributed, dynamic resourcediscovery. Fairly simple,
local algorithmsfor this purposewerepresentedin 2001,but
that work was carried no further [11]. Recentpaperswhich
addressthesecriteriaappearedin 2004[12], [13]. Thesepapers
addressthepreciseresearchproblemthis papertakesup. They
provide a goodstart for finding a suitableprotocol,but there
is still more work to be done. They evaluatedexpanding-
ring searches,purely advertisement-basedsearches,and ren-
dezvouspoint searches.Basedon their results,they favoredthe
rendezvous point protocol. Although their simulation results
do show excellent performancethrough rendezvous points,
rendezvouspointsaremoreor lesscentralizedservers.Though
many may be used,which avoids a singlepoint of failure, the
practicedoesnot fully leverageall the benefitsthat can be
found in a pure peer-to-peerarchitecture,whereall members
of the network shareequalresponsibility.

More recently, Nandyet al. addressesthe topic of resource
discovery in a cycle-sharingnetwork [14]. They use gossip
to maintain distance-vector routing tables that point toward
availableresources.This is very promisingwork, which could
benefitfrom incorporatingsomeof the ideaspresentedin this
paper. Oneweaknessit possessesis theassumptionthatnodes
only communicatewith their immediate neighbors.When
consideringa peer-to-peernetwork laid over the internet,this
is a very restrictive assumption.

This paperjoins [14] in offering a scalable,fully decentral-
ized, truly peer-to-peer techniquefor dynamic resourcedis-
covery. Unlike [14], however, it is not a stand-aloneprotocol.
Insteadit shows how to modify existing pull-basedprotocols



to increasetheir efficiency in a dynamicresourceenvironment.
This work takes one stepout of the realm of static resource
discovery protocolsinto that of dynamicresourcediscovery,
instead of proposing an entirely new approach.It is also
flexible enoughaccommodateboth walker-type protocolsand
flooding-typeprotocols.Walker-type protocolsgenerallycre-
atemuchlessnetwork traffic, while maintainingequallygood
performancewhensearchingfor a single resource.Flooding-
typeprotocols,however, areusefulfor finding many resources
at once,perhapswhen finding many CPUson which to run
many parallel tasks.

I I I . SYSTEM MODEL

This sectiondescribesthesystemmodelusedfor this work.

A. TheNetwork
� Thereis no packet loss.
� Every nodein the network is always reachable.
� The network latency betweentwo nodesfollows a uni-

form randomdistribution for every packet,between�����	�
and �
���� milliseconds.Note that this allows for out-of-
orderdelivery and jitter.

� Nodes join and leave the network over time creating
network churn,but stayin thenetwork at leastaslong as
the averagetime requiredto completeone task.Session
times follow a power-law distribution, which appearsto
be a propertyof all peer-to-peernetworks regardlessof
their application[15].

� A hypotheticalmembershipmanagementprotocolis used
which maintainsa power-law distribution of nodes’out-
degrees,a well-known characteristicof unstructuredpeer-
to-peer networks [7], [16], [17]. In simulations, this
hypotheticalprotocolinstantlyconnectsnew nodesto the
network anddoesnot affect network traffic statistics.

� Nodes gain connectionswith time, so that the oldest
nodesin the network have the largestout-degree.

� Nodesnever fail; they alwaysgo througha disconnection
processto leave the network.

� When a node leaves the network it doesnot query for
new nodesto finish the tasks in its CPU queue;they
aresimply droppedandrecordedasa churn failure. This
simplifies the simulation but still provides a fair com-
parisonbetweendifferent resourcediscovery protocols.
Churn failuresarenot reflectedin this paper’s results.

B. TheCPU/TaskModel

A very simpleCPU model is usedfor a dynamicresource.
� Every nodeon the network hasoneCPU which it shares

openly for as long as it remainsin the network.� CPUspeedsfollow a Weibull distribution [18] with shape
parameter= 2.� CPUsusesimple,non-preemptive,first-come-first-served
schedulingwith no conceptof taskpriority.

� EachCPU hasa task queuewith spacefor one waiting
task in addition to one executing task. In this work a
CPU’s availability is definedas the numberof tasksit
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Fig. 1. The main ideathis paperpresentscanbe seenasa new sub-layerin
the network protocol stack,labeledhereas the “GossipLayer”.

canaccept;i.e. zeroif therearetasksboth executingand
waiting, oneif thereis only oneexecuting,and2 if there
areno tasksin the CPU.

� Resourcediscovery commenceswhenever a task is gen-
eratedat a nodewhoseCPU queueis full.� Tasksare representedsimply by the numberof compu-
tational cycles required to completethem. Thesesizes
follow a Weibull distribution with shapeparameter= 1.

� Tasks enter the network from any node, following a
uniform distribution.

C. TheResource Discovery Protocol
� Any pull-basedresourcediscovery protocol may be em-

ployed, andwill be modifiedon-the-fly.� All nodes’clocksare roughly synchronized.
� All nodesusethe sameresourcediscovery protocol.

IV. MAIN IDEA

This paperpresentsthe useof gossipin a sub-layerof the
applicationlayer of the network protocolstack.SectionIV-A
describesthissub-layerby example,sectionIV-B describesthe
contentsof a gossipmessageandsectionsIV-C, IV-D andIV-
E describethealgorithmicdetailsof thesub-layer’s functions.
The threelatter sectionscontaina few simplificationsfor the
sake of clarity, which areaddressedin sectionIV-F.

A. A Typical ScenarioUsing the 16-Walker Protocol

This scenarioillustratesthe functionsof the main ideathis
paperpresents,whenappliedto the � -walker protocol.Figure
1 shows the flow of packets in this scenario.

A userwishesto find an availableCPU,which promptsthe
ResourceDiscoveryProtocol to generatea querypacket for �
of its neighbors,chosenrandomly(perthe � -walkerprotocol).
It passesthat packet and its list of destinationsto the Gossip
Layer, which hasalreadybuilt up a list of gossip(called the
gossipqueue) extractedfrom packets it received previously.
Using the informationin thatgossipqueue,it modifiesthe list
of destinationsto target nodeswhoseCPUs are more likely
available. Before sendingthe � packets over the network,
it must attachsomegossipmessagesto them. One of these
messagesis about the currentstateof the current node,and
the othersarecopiesmadefrom the gossipqueue.

Now considerone of those � recipients.The gossiplayer
at that nodereceivesthe querypacket from its lower network



layersandextractstheattachedgossipmessages,usingthemto
updateits gossipqueue.It deliversthe packet to the resource
discovery protocol(in this case,� -walker), which determines
that this node’s CPU is not available. It must then forward
the query packet to anothernode. It choosesone neighbor
randomly (per the � -walker protocol), then passesit back
down to the gossiplayer asthe new destinationfor the query
packet. The gossip layer may then modify the destination
basedon information in its gossipqueue.Finally it attaches
gossipmessagesto the packet andsendsit.

The recipientof that packet thenextractsthe gossip,mod-
ifies its gossipqueueaccordingly, and delivers the packet to
its resourcediscovery layer. This nodedeterminesthat it can
acceptthe task,so it reservesa slot in its CPU taskqueuefor
twice the maximumnetwork latency, ��� ���� milliseconds.It
createsa pledgepacket to sendto the originatorof the query,
then the gossiplayer attachesgossipandsendsit.

The originator of the query then receives the pledgeafter,
at most, � ���� ms. It extracts the gossip, then packagesthe
task into a task packet to sendback to the pledging node.
The gossiplayer attachesgossipand sendsit. If other nodes
along the path of any of the other ����� query packetsalso
pledgetheirCPUs,thisnodewill takenoactionontheirpledge
packets. This is of little consequence,since reservationsare
held for sucha short time.

B. TheGossipMessage

Gossipmessagescontainfour fields:
� node: the node whose state information this message

contains. In an actual implementation,this field may
likely containan IP address.

� avail: somevalue indicating the availability of the re-
sourcebeing shared,wherea greatervalue indicatesthe
resourceis “more” available.In our simulationsthis field
containsthe numberof openslots in node’s CPU queue
(at the time this messagewascreated).

� create: the time at which this messagewascreated.� expire: the time at which this messagewill expire.
Simulationsshow that,in this work, thelifetime of gossip
messagesneednot exceed110 seconds(seeFigure2).

In anactualimplementation,gossipmessagesmaycontainfour
bytes for node, one for avail, and eight eachfor createand
expire. This is a total of 21 bytes for eachgossipmessage.
Simulationsshow the maximumbenefit from attachingthree
of thesemessagesto eachpacket (seeFigure 3). The total
of perhaps64 bytes (including a single, one byte length
field) piggybacked onto eachpacket in the network creates
an overheadwhich we believe caneasilybe neglected.

C. Modifying Destination(s)

FunctionmodDests(QueryPacket, NodeList) modifiesthe
destination(s)of an outboundquerypacket accordingto mes-
sagesin thegossipqueue.To decidewhich of thosemessages
most likely point to available resources,considerthe relation
more-reliable. Gossip messageg1 is more-reliable than g2
when:
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Fig. 2. This plot shows theeffectsof varying the lifetime assignedto gossip
messagesat threesystemloads.Most metricsstabilizeat valuesgreaterthan
110,andsearchfailure increasepastthat point, so this is the value is chosen
for further simulations.The units for the y-axis vary accordingto eachsetof
data(refer to the legend).
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Fig. 3. Thisgraphshows theeffectsof varyingthenumberof gossipmessages
attachedto eachpacket in the network at threesystemloads.The datashow
no benefit in attachingmore than 3, which only costsabout 64 bytes per
packet. The units for the y-axis vary accordingto eachset of data(refer to
the legend).

� g1.avail � g2.avail
� OR (g1.avail == g2.avail) AND (g1.expire � g2.expire)� OR (g1.avail == g2.avail) AND (g1.expire == g2.expire)

AND (g1.create� g2.create)

g1 is less-reliable than g2 when it is not more-reliable.
According to simulations,this is the optimal order in which
to apply thesecomparisons,i.e. avail first, expire second,and
createlast [19].

This function receives a list of destinationsfor a query
packet from the resourcediscovery protocol. It thenattempts
to replacethat list with its own of equalsize. If thereis not
enoughgossip to createa list that large, random elements
from the original list remainto make up the difference.Since
the numberof destinationsdoesnot change,the flooding or
non-floodingbehavior of the resourcediscovery protocol is
preserved. Notice that only gossipmessageswith a non-zero



Input : A querypacket p to sendto a list of nodes
dests

Variable: mods, an initially empty list of nodes
Variable: queue, the gossipqueuekept at eachnode

repeat
Let g be the “most-reliable”messagein queue
if g.avail == 0 then break
adjustg.avail as thoughthe querywill be filled
addg.nodeto mods
if destscontainsg then remove g from dests
else remove a randomnodefrom dests

until mods.size== dests.size

for eachn in destsdo attachGossip(p, n)
for eachn in modsdo attachGossip(p, n)

Function modDests(QueryPacket, Node List) This func-
tion is called by the resourcediscovery protocol to send
a query packet to a list of nodeson the network. It is
responsiblefor modifying the list accordingto gossipin
the gossipqueue.

valuein theavail field areusedto influencethedestinationof
query packets. Also note that, given the natureof the more-
reliable relation, a messagereflecting zero availability will
only be encounteredafter all non-zerovaluesareexhausted.

D. Attaching Gossip

FunctionattachGossip(Packet,Node)attachessomenumber
of gossip messagesto every outbound packet, defined as
GOSSIPLEVEL. The attachedmessagesreflect the current
stateof thenodeitself andgossipmessagesstoredin its gossip
queue.To decidewhich messagesto attachconsideranother
relationbetweengossipobjects,spread-better. Gossipmessage
g1 is spread-betterthang2 when:
� g1.avail � g2.avail
� OR (g1.avail == g2.avail) AND (g1.create� g2.create)
� OR (g1.avail == g2.avail) AND (g1.create== g2.create)

AND (g1.expire � g2.expire)

Again,simulationsshow thatthis is theoptimalorderin which
to apply thesetests[19].

Whengiven a packet to send,this function startsthe list of
messagesto attachwith a new onereflectingthe currentstate
of the nodeitself. Thenthe spread-bestobjectsaredrawn out
of thegossipqueueandaddedto the list until eitherthequeue
is emptyor the list hasGOSSIPLEVEL objects.

E. Extracting Gossip

Function extractGossip(Packet) extracts gossip messages
from inboundpacketsto populatethegossipqueue.Thequeue
hasa maximumsize,MAX Q. Also, the queuenever contains
multiple gossipmessagesabout the samenode, but instead
retainsonly the mostup-to-dateinformationpossible.To that
end,considera third relationbetweengossipobjects,outdates,
suchthat gossipmessageg1 outdatesg2 when:
� g1.node== g2.node

Input : A packet p to sendto a nodedest
Variable: spread, an initially empty list of gossip

messages
Variable: queue, the gossipqueuekept at eachnode

addgossipaboutthis nodeto spread
copy the “spread-best”messagein queueto spread
while spread.size � GOSSIPLEVEL do

if everything in queueis in spread then break
copy next “spread-best”messagein queueto spread

attachspread to p
sendp to the lower network layers

Function attachGossip(Packet, Node) This function is
called by the resourcediscovery protocol and by mod-
Dests(QueryPacket, Node List) to send packets to the
lower network layers. It is responsiblefor addinggossip
to thosepackets.

Input : A packet p that hasarrived at the node
Variable: queue, the gossipqueuekept at eachnode

for eachg in p.gossipdo
if queuecontainsh whereh.node== g.nodethen

if g outdatesh then replaceh with g
else addg to queue;

while queue.size � MAX Q do
remove the “queue-worst” messagefrom queue

deliver p to the resourcediscovery protocol

Function extractGossip(Packet p) This function is called
by a lower layer to deliver a packet to the resource
discovery protocol. It is responsiblefor extracting and
processinggossipmessagesattachedto the packet.

� AND (g1.create� g2.create)
Whengivena packet this functionstepsthroughits attached

gossip messages,replacing messagesalready in the queue
with new onesthat outdatethem and simply addingthe rest.
Afterward,if therearemorethanMAX Q objectsin thequeue,
it trims off the least-reliablemessagesuntil the queueis no
longerover-sized.

F. RemainingDetails

SectionsIV-C, IV-D and IV-E describethe functions of
the gossip layer in detail, but with somesimplificationsfor
the sake of clarity. The algorithmic descriptionsdo not take
into accountthe fact that gossipmessagesexpire, nor that a
node neednot keep gossipabout itself. Simulationshandle
the former by discardingexpired messageswhenever they are
encountered.To correct the latter, a gossipmessageis never
sentto the nodeit describes,nor are newly generatedgossip
messagesevercopiedbackinto theirown nodes’gossipqueue.

V. EVALUATION

A. SimulationSetting

Themain ideapresentedin this paperwastestedby simula-
tionsrun on anetwork of 12,000nodesfor 24 simulatedhours.



Detailsof the simulator’s designbeyond what is describedin
this papercan be obtainedfrom [19]. Simulationsare based
on a discreteevent simulator which handlespacket delivery
between nodes. Network latencies are generatedbetween
� ������� ��� and � ������ ����� ms using a uniform random
distribution. To simplify simulation, there is no memory of
differing latenciesbetweendifferingpairsof nodes;all packets
are deliveredusing the samelatency distribution. Also, there
is no packet loss.

Everynodekeepsa list of neighbors,for useby theresource
discovery protocol, forming a power-law overlay topology.
Neighborconnectionsarealwaysbi-directional.Thesimulator
generatesandmaintainstheseconnectionsrandomly, maintain-
ing a power-law exponentof 2.0 throughoutthe simulation,
which is within the rangesobserved for the Gnutellanetwork
[7], [16], [17].

Simulationsachieve network churnby schedulingthe time
betweennodebirths anddeathsdrawing from an exponential
distribution so that sessiontimes averageone hour, and very
few are lessthanfive minutes(the time requiredto complete
one average-sizetask). To start each of these events the
simulatorrandomlychooseswhetherit will bea birth or death,
weightedto keep the network size near 12,000 nodes.If it
choosesa death,it also chooseswhich nodeshoulddie such
thatit approximatesa power-law distribution for sessiontimes.
When a nodedies, it breaksdown its neighborconnections,
then continuesforwarding packets until all gossip it spread
aboutitself expires.In this way, nodesalwaysdie nicely; they
never fail. Additionally, they simply drop any tasksthey own
at the time of death,ratherthanstartingnew queriesfor them.
This also simplifies simulation without compromising the
fairnessof comparisonbetweendifferentsimulations’results.

The simulatorcontainsa single task generatorwhich pro-
ducesall the tasksthat enterthe network. Eachtask consists
simply of a value indicating the numberof CPU cycles that
must be spent to completeit. This value is drawn from a
Weibull distribution with shapeparameter= 3 so that, on
average,they take five minutesto executeon a 3GHz CPU.
Eachtaskis assignedto aninitial node,chosenfrom a uniform
random distribution. If possible that node acceptsthe task
itself, i.e. if its CPU queueis not full. Thesecasesgenerate
no network traffic. Whena nodecannotaccepta task locally,
it initiates resourcediscovery.

Simulationsusea form of the � -walker algorithmfor their
resourcediscovery protocol. Using that algorithm, a node
wishingto searchthenetwork for anavailableCPUchooses�
of its neighborsto which to senda querypacket, duplicating
choiceswheneverit haslessthan � neighbors.If, whenanode
receivesa querypacket, it hasenoughspacein its CPUqueue
to acceptanothertask, it reservesa slot in its CPU queuefor
���
���� � � ��� ms and returnsa pledgepacket to the inquirer.
This guaranteesthat the inquirer can receive the pledgeand
respondbefore the reservation expires. If the queried node
cannotacceptthe task itself, it choosesa randomneighborto
which to forward the querypacket. Eachquerypacket canbe
forwardedup to 24 times,allowing it 25 hopstotal, according

to the findings in [19]. The inquiring nodesendsthe task to
the first nodefrom which it receives a pledgepacket. In the
event thatnoneof the querypacketselicit a response,the task
is dropppedafter a set time.

B. SimulationMetrics

Four metricsarechosento evaluatethe successof the new
gossiplayer: searchfailure rate,network traffic, searchtime,
andCPU idle time. A search encompassesall of the resource
discovery activity initiated by a nodeat one time. So, for the
� -walker protocol,all � walkersarepartof thesamesearch.
Failure rate is the percentageof searcheswhich do not find
any available resources.Networktraffic is measuredin terms
of theaveragenumberof packetsgeneratedpersearch.Search
time is the time betweena newly generatedtaskarriving at a
node which cannot accept it locally and entering the CPU
queueof anothernodeon the network. Searchesthat fail are
not includedin this metric. CPU idle time is measuredasthe
percentof the total CPU time in the network which wasspent
idle. Note that lower valuesaremoredesirablefor all of these
metrics. The aim of thesesimulationsis to determinehow
muchnetwork traffic the gossiplayer could eliminatewithout
increasingsearchfailures.

C. SimulationResults

Figure 4 has four graphscontainingthe resultsof simula-
tions that usethe 16-walker protocol. 16 is within the range
for � recommendedby [20] for static resourcediscovery.
Simulationsindicate that by adding the gossiplayer all four
metricscanbeslightly improved,or � canbereducedto 5 for
dramaticreductionin network traffic and no increasein any
other metric. Following is a discussionof eachof the four
graphs,then a brief overview of applying the gossiplayer to
flooding-styleprotocols.

Figure 4(a) shows the failure rates for simulationsunder
a rangeof systemloads.Systemload is the ratio of the total
cyclesrequiredto completeall tasksto thetotal cyclesoffered
by CPUsin thenetwork. So,asystemloadof 0.5indicatesthat
the simulationgeneratedenoughtasksto consumehalf of the
availableCPUcyclesin thenetwork. Themoststriking feature
of this graph is that the searchfailure ratesfor 16-Walkers
without gossip and 5-Walkers with are virtually identical.
Searchfailuresreston zerountil thesystemloadincreasespast
1.0, indicating that the protocolsare very effective at finding
resourceseven when they arerelatively scarce.This doesnot
mean,however, that they find resourceswhenever they exist.
Notice from Figure 4(d) that CPUsare still 4.5 percentidle
when the system load is 1.0. This is possiblebecause15
percentof tasksin thenetwork aredroppedbecauseof network
churn at this systemload. As shouldbe expected,the search
failuresin 4(a) increasealmostlinearly after ! � �#" � .

Figure4(b) shows thenetwork traffic generatedby thethree
protocolsundera rangeof systemloads.When !$�%�#" � , while
virtually all searchessucceed,the network traffic increases
following the equation �'&)(+*-,/.102� 3405� , wherehops is the
average number of hops each walker takes before finding
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Fig. 4. Under a variety of systemloads,a 16-Walker algorithm without gossipand a 5-Walker algorithm with gossipyield the samefailure rates(4(a)),
searchtimes (4(c)), andCPU utilization (4(d)), while a 16-Walker with gossipyields performsslightly better. The 5-Walker algorithmwith gossipproduces
much fewer packets thanboth 16-Walker algorithms(4(b)).

an available resource.Each walker which finds a resource
generatesone packet for eachhop it takes, then promptsthe
generationof exactly one pledgepacket. So, a single walker
creates(+*-,/.409� packets.Sincethereare � walkersfor every
search,eachone produces�'&:(;*-,;.<0=��3 packets, and every
successfulsearchadditionallyproducesonetaskpacket. Since
adding the gossip layer to the 16-Walker protocol reduces
network traffic, asshown in thefigure,and � is heldconstant,
thegossiplayermustreducetheaveragenumberof hopseach
walker takes.Reducing � to five of coursereducesnetwork
traffic by 11/16ths,andthe datashow that it actually reduces
it a little further. The further reductioncan be explainedby
the fact that fewer walkers will arrive in rapid successionat
the immediateneighborswheninitiating queries,sothat fewer
walkers will have to hop past the cpu reservationsmadeby
other walkers from the samesearch.When !>�?�#" � , network
traffic asymptoticallyapproachesthepoint whereevery walker
fails after 25 hops, ��@+� . For both 16-Walker algorithms,this
asymptoteis A �>B ��� , andfor 5-Walkers, A � ��C � .

Figure5 shows the percentreductionin network traffic that
5-Walkerswith gossipmakesover 16-Walkerswithout gossip.

Thedatarepresentedis oneminustheaveragetraffic generated
by a 5-Walkersearchwith gossipdividedby theaveragetraffic
generatedby a 16-Walker searchwithout gossip.It shows that
the gossipingprotocol yields betweena 70 and 85 percent
improvement,with the most improvementwhenresourcesare
scarce,but still available.

Figure 4(c) shows the lengthof time, on average,between
initiating a successfulsearchand its task’s admittanceto a
CPU queue.Underall systemloads,the 16-Walker algorithm
with gossip out-performsboth others. During low system
loads,the16-Walker protocolwithout gossipout-performsthe
5-Walker. In this case,almost every neighborhas available
resources,so it is simply a one-hopracebetweenthe walkers
to seewhich will find them first, and therewill more likely
be a fasterhop in a set of 16 than 5. Oncethe systemload
increasespast 0.9, however, the 5-Walker protocol begins
out-performing the 16-Walker without gossip. The average
difference between the results for those two protocols is
13 milliseconds,favoring the 5-Walker. Thesedata show a
transitionbetweentwo asymptotes.At low systemloads,when
resourcesarealmostalwaysavailableat any node’s immediate
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Fig. 5. Theimprovementin network traffic by decreasingE from 16 to 5 and
addingthe gossiplayer, given by the equation:100 F (1 - G avg. packetsper
searchfor 16-Walker without gossipH / G avg. packetspersearchfor 5-Walker
with gossipH

neighbors,resourcediscovery completesafter threehops:one
eachby a querypacket,pledgepacket, andtaskpacket. Under
high systemloads,when resourcesare very scarce,so many
walkers are in the network that the one that happensto visit
a nodeat the instantits CPU becomesfree wins its resource.
Sinceweassumethatresourceavailability cannotbepredicted,
this musthappencompletelyby chance.

Figure 4(d) shows the averagepercentof time a CPU on
the network is idle. The three sets of data are nearly the
same,with thegossipingprotocolsslightly out-performingthe
non-gossipingone.The improvementcomesmostly from the
addition of gossip; the increaseof � from 5 to 16 makes
very little difference.Idle times fall linearly when !%�I�J" � ,
andremainat almost0 percentwhen !9�=�#" � .

Random-walk-styleprotocolsarebestsuitedfor finding one
or a few resourceson a network, but finding many at once
for parallel tasks will be another, perhapsmore important
applicationof resourcediscovery for peer-to-peercomputing.
Simulationsof a home-grown flooding-stylealgorithm show
thatthegossiplayeralsobenefitsthis classof protocols.Using
that algorithm gossip reducesaveragesearchfailures by 7
percent,searchtime by 2 percent,and CPU idle time by 23
percent.Network traffic is slightly increased,but this could
be consideredbetter, since the increasecomesentirely from
pledgepackets.When the systemload is 1.0, searchfailures
improve by 29 percent,searchtime by 3 percent,and CPU
idle time by 26 percent.Referto [19] for morea moredetailed
descriptionof theseresultsand the protocol that wasused.

VI . CONCLUSION

This work presentsthe viability and effectivenessof in-
serting a new layer into the network protocol stack which
reducesthe amount of network traffic createdby resource
discovery. Using the � -walker protocol, the gossip layer is
able to reducethat traffic by 71-84 percentby decreasing�
from sixteento five. This decreasedoesnot increasesearch
failures, searchtime, or CPU idle time. By all metrics it

alsoimprovesresultsfor a flooding-styleprotocol.Simulations
only generatednetwork traffic associatedwith the resource
discovery activities in the network; other packets can also
be passedthrough the gossip layer, which should improve
resourcediscovery activities even further.

Overall, this work is oneimportantstepin thedirectionof a
resourcediscoveryprotocoltailoredfor dynamicresources.We
believe gossipcan play an importantrole in sucha protocol,
andwe welcomefurther improvements.
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