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ABSTRACT

Partial replication is one type of optimization to speed up execu-
tion of queries submitted to large datasets. In partial replication, a
portion of the dataset is extracted, re-organized, and re-distributed
across the storage system. In this paper we investigate methods
for efficient execution of queries when replicas of a dataset ex-
ist; we assume the replicas have already been created and do not
target the replica creation problem. We propose a cost model and
algorithm for combined use of space partitioned and attribute par-
titioned replicas for executing data subsetting range queries. We
extend the cost model and propose a greedy algorithm to address
range queries with aggregation operations. The extended replica
selection algorithm allows uneven partitioning of replicas across
storage nodes. Different replicas can be partitioned across differ-
ent subsets of storage nodes. We have implemented these tech-
niques as part of an automatic data virtualization system and have
evaluated the benefits of our techniques using this system. We
demonstrate the efficacy of the algorithms on parallel machines
using queries on datasets from oil reservoir simulation studies and
satellite data processing applications.

1. INTRODUCTION

Efficient querying and analysis of large datasets is an impor-
tant step in scientific research. In many scientific applications,
the size of datasets and the nature of data access patterns pose
many challenges. Our ability to capture and generate very large
scientific datasets have improved significantly. Moreover, faster,
interactive response times are increasingly expected in data anal-
ysis queries on very large datasets. As a result, support for effi-
cient analysis of data has become more challenging. Our work is
concerned with execution of data subsetting and data aggregation
queries on a large, disk-resident dataset when there are multiple
partial replicas of the dataset.

Partial replication is one of the several optimization techniques
to achieve good I/0 bandwidth and reduce query execution time.
A single organization of a dataset (i.e., partitioning of the dataset
into a set of chunks, the layout of chunks on disk, and the distribu-
tion of chunks across storage nodes) may not be most efficient for
all types of queries. On the other hand, it can be very expensive
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to create multiple instances of a very large dataset with different
data organizations. To alleviate the high cost of replication and
achieve good response across different query times, creating par-
tial replicas of a dataset can be a viable solution. In partial repli-
cation, one or more subsets of the dataset is extracted, partitioned
into chunks, distributed across the system, and indexed.

In this work, we address the challenging issue of efficiently ex-
ecute a query when multiple partial replicas of a dataset exist. We
assume the partial replicas of a given dataset have already been
created. That is, we do not target the problem of replica creation,
but focus on query execution with partial replicas. Since repli-
cated subsets of the dataset may have been organized in different
ways, there may not be a one-to-one mapping between different
replicas or chunks in different replicas (as well as the original
dataset). In addition, the cost of extracting the data of interest
from a given replica can be different from another replica because
of differences in organization. We target data subsetting queries
and queries with aggregation operations:

SELECT < Attributes > (or Aggregate(< Attributes >))
FROM Dataset
WHERE < Predicate Expression >

Here, < Attributes > is a subset of the attributes of the
dataset and corresponds to a projection operation (i.e., a sub-
set of attributes of the dataset is returned to the client). If the
query is an data subsetting with aggregation query, Aggregate(<
Attributes >) represents the aggregation operation on the se-
lected subset of data. The < Predicate Expression > specifies
range selection on one or more attributes of the dataset.

Our previous work [19] developed a novel compiler and run-
time approach to select the best combination of space partitioned
replicas to minimize the execution time of data subsetting queries
on a distributed system. A space partitioned partial replica con-
tains all the dataset attributes of a subset of data elements. This
subset corresponds to a rectilinear section in the underlying multi-
dimensional space of the dataset. In the earlier work, we assumed
all of the replicas were space partitioned replicas and each data
chunk was partitioned across all of the storage nodes in the sys-
tem. This paper extends our previous work and makes the follow-
ing contributions:

First, we propose a cost model and algorithm for combined
use of space partitioned and attribute partitioned replicas for ex-
ecuting data subsetting range queries. An attribute partitioned
partial replica contains a subset of attributes, either for all data
elements or for data elements in a hot region, defined by a multi-
dimensional window. Second, we propose a dynamic program-

ming based approach for selecting the best set of attribute-partitioned



partial replicas. Third, based on a cost model for comparing dif-
ferent choices of partial replicas, we implement a greedy replica
selection algorithm to determine a candidate combination from
the set of space-partitioned replicas and attribute-partitioned repli-
cas to answer the query. Like the algorithm in [19], this algorithm
assumes that a chunk in any replica is partitioned evenly across all
storage nodes in the system. Fourth, we extend the cost model
and develop a new replica selection algorithm to address range
queries with aggregation operations. When a range query with
aggregation operations is executed in the system, it is desirable
to carry out as much aggregation on data as possible on storage
nodes before transferring the results to the client. This reduces
both the volume of data transfer and the amount of aggregation
the client has to perform. The extended cost model takes into
account both the I/O costs as well as load balance among stor-
age nodes and the amount of data reduction. The new replica
selection algorithm allows uneven partitioning of replicas across
storage nodes. Different replicas can be partitioned across dif-
ferent subsets of storage nodes. Within each replica a chunk is
partitioned across all of the storage nodes in the corresponding
subset.

We have implemented these techniques as part of an automatic
data virtualization system [18] and have evaluated the benefits of
our techniques using this system. We demonstrate the efficacy
of the algorithms on parallel machines using queries on datasets
from oil reservoir simulation studies and satellite data process-
ing applications. Our results show the following: 1) when data
transfer bandwidth is the limiting factor, using a combination
of space- and attribute-partitioned replicas should be preferred,
2) the proposed cost models are capable of estimating execution
time trends, 3) the greedy algorithm can choose a good set of can-
didate replicas that decrease the query execution time, and 4) our
implementations show good scalability.

2. RELATED WORK

In the context of replication, most of the previous work targets
issues like data availability during disk and/or network failures, as
well as to speed up I/O performance by creating exact replicas of
the datasets [5, 6, 7, 13, 15, 17]. File level and dataset level repli-
cation and replica management have been well studied topics [7,
13]. In the area of partial replication [5, 6, 17] the focus had been
on creating exact replicas of portions of a dataset to achieve better
I/0 performance. In this work, however, the goal is to investigate
strategies for evaluating queries when there are (partial) replicas
stored. Our work also targets queries involving data subsetting
via multi-dimensional ranges and data aggregation operations

In multi-disks system with replicated data [2, 3, 1, 11, 5], achiev-
ing load balance across disks and processor to retrieve data in
parallel is the main focus. During the data retrieval, a heuristic
approach is often used to determine from which disk to retrieve
a data page from multiple disks so as to get good load balance.
In this work, replicas may have been reorganized into different
groups of chunks and redistributed, one-to-one mapping between
original data chunks and those in replicas may not exist. Thus, we
do not select one best copy out of multiple duplicated ones. We
need to choose the best combination of the replicas (possibly in-
cluding the original dataset) based on their different shapes, sizes
and dimension orders, and information about the current state of
work-load in all nodes.

In data caching context, several techniques have been proposed

for using aggregate memory and managing cooperative caches to
speed up query execution [8, 9, 16]. While these approaches can
be employed for management and replacement of replicas, our
work focuses on improving query performance by re-organization
of portions of input datasets. Finally, in our earlier work, we con-
sidered a much restricted version of the problem considered here,
where only space-partitioned partial replicas were allowed [19].

3. SYSTEM OVERVIEW AND APPLICA-
TIONS

The runtime support for servicing range queries in the presence
of partial replicas draws from a middleware framework, referred
to as STORM [12], and extensions to handle partial replicas [?].
STORM consists of a suite of services that collectively provide
basic database support for scientific datasets stored in files on a
storage cluster and for parallel data transfer. In STORM, both
data and task parallelism can be employed to execute data extrac-
tion and selection operations in a distributed manner.

A high-level overview of our system is shown in Figure 1. The
underlying runtime system, STORM, requires users to provide
an index function and an extractor function. The index func-
tion chooses the file chunks that need to be processed for a given
query. The extractor is responsible for processing the file chunks
and creating a virtual table. The replica selection algorithm uses
the replica information file to find out which partial replicas ex-
ist. Based on this information and a given range query, it chooses
an execution plan for answering the query. This module then in-
teracts with the modules for code generation, which generate the
index and extractor functions using metadata about dataset lay-
out [18]. When no single replica can fully answer a given query,
it is necessary to generate subqueries for each selected replica
that partially answers the query. A subquery corresponds to the
use of one replica (or the original dataset) for answering a part of
the query.

Our case studies in this work involve queries to datasets gen-
erated in simulation-based oil reservoir management studies [14]
and a satellite data processing application [4]. A dataset from
simulations in the oil reservoir management application consists
of 21 dimensions (17 simulated variables plus 3 spatial and 1 time
dimensions). The dataset is partitioned into a set of chunks and
the chunks are distributed across storage units. Data elements are
grouped into chunks along «, y, and z dimensions of the grid as
well as the time dimension (i.e., 4-dimensional rectangles). The
satellite data processing application processes data gathered by
sensors on satellites. Each sensor reading is associated with a lon-
gitude and latitude coordinate on the planet surface and the time
of the recording. Chunks are created by partitioning the dataset
along longitude, latitude, and time dimensions. In both applica-
tions, chunks are stored in data files on disk. A chunk has a mini-
mum bounding box in the underlying multidimensional space and
a size. Additional information about the chunk includes the name
of the file that contains the chunk and offset in the file. A R-
Tree index [10] can be built on the minimum bounding boxes of
chunks. Queries in these applications specify a bounding box
along multiple dimensions and may involve user-defined aggre-
gation operations such as computing average of simulation values
at each grid point over many time steps or the maximum sensor
reading value taken at the same location over multiple times.
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Figure 1: System Overview.

4. REPLICA SELECTION AND QUERY EX-

ECUTION WITH PARTIAL REPLICAS

This section presents our new algorithms for selecting among
the partial replicas. As compared to our previous work [19], we
make three important contributions. First, we allow both space-

partitioned and attribute-partitioned replicas. In a space-partitioned

replica, all attributes are stored for each data element. An attribute-
partitioned partial replica, on the other hand, stores a subset of all
the attributes in the hot region. Second, we consider not only the
data subsetting operations, but also queries that perform aggre-
gation operations on data subsets. Finally, we consider uneven
declustering of partial replicas, i.e., different replicas may be par-
titioned across different subset of nodes in a cluster.

For the purposes of this paper, we assume that partial replicas
have been created for one or more rectilinear spatio-temporal hot
regions, and information about them is stored in a replica infor-
mation file. A hot region is a region that is expected to be queried
multiple times hence it has been replicated to improve query ex-
ecution time. The data in a partial replica is further partitioned
into chunks and these chunks are distributed across the storage
system. A chunk is the unit of data retrieval from disks. Dif-
ferent replicas can have different chunk shape and size, even if
they cover the same rectilinear section. A replica information file
captures metadata about each partial replica. This metadata in-
cludes the multi-dimensional range covered by each replica, the
size and shapes of chunks in the replica, the dimension order for
the layout of the chunks, the subset of attributes that are stored in
a chunk, and the ids of the storage nodes across which the chunks
are partitioned.

4.1 Uniformly Partitioned Chunks and Se-
lect Queries

We describe a dynamic programming based approach for ex-

ecution of range selection queries when both space-partitioned

and attribute-partitioned replicas exist. This algorithm assumes

that each chunk of a replica is uniformly partitioned across all of
the nodes in the system.

4.1.1 Cost Function

Our goal is to minimize the total query execution time. To
that end, we introduce a cost metric referred to as the goodness
value. Because a chunk is the basic unit of data retrieval, the
goodness value is calculated on chunks. The cost metric takes
into account both the cost of reading a chunk from disk and what
percentage of data contained in the chunk satisfies the query. The
first factor directly depends on the size of the chunk. The second
factor depends on both the attributes that are useful and the ratio
of data elements in the chunk that are needed by the query to the
total amount of data elements in the chunk. Thus, the goodness
value for a given chunk is:

goodness = useful dataper—chunk/COStper—chunk

The retrieval cost of a chunk is computed as:

COStpe'rfchunk = tread X Nread T+ tseek

Here, nyeqq is the number of disk blocks fetched from disk
when retrieving a chunk and t,.qq is the average read time for a
disk block. Since chunk is assumed to be continuous unit of I/0,
we also add seek time, ¢scek, to the cost of retrieving a chunk.

4.1.2 Replica Selection Algorithm

The replica selection algorithm executes in two stages. Given

a range query, in the first stage, the algorithm identifies the in-
teresting fragments of partial replicas that could produce spatio-
temporal sub-regions of the given query with all the required at-
tributes. Here we define, a fragment as a group of chunks from a
replica that have the same goodness value, and an interesting frag-
ment is one with useful data for this query. In the second stage
first with a greedy algorithm a subset of the interesting fragments
is computed as candidate fragments, then this initial solution is
refined by eliminating chunks whose bounding box is subsumed
by other chunks. The rest of this section presents the details of
these stages.
Determining Interesting Fragments. The algorithm for this task
is shown in Figure 2. Let R = {r1,r2,...,7-} be set of repli-
cas and ® = {R;|R; C R} such that each R; contains either
a single space-partition replica or a group of attribute-partition
replicas covering one common spatio-temporal region. For space-
partitioned replicas, interesting fragments can be determined in a
straight-forward way; the entire If statement (steps 3-26) thus can
be skipped. For attribute-partitioned partial replicas, we need to
determine the subset of partial replicas which can be combined
at the lowest cost to generate the attributes specified in the query.
This selection and combination for attribute-partitioned replicas
is processed by the If statement (steps 3-26) in Figure 2.

To illustrate the operation of the algorithm, we consider an ex-
ample query (), which requires attribute list M = {A,C}. Let
the set of all attributes in the original dataset be (A, B,C, D, E, F)
and let there bi a single group of attribute-partitioned partial repli-
cas available

R; = {{A,B},{C,E,F},{A},{B,C},{A,C,D},{E,D, F}}

Steps 4-26 employ dynamic programming to compute the opti-
mal cost for a list of attributes by using a bottom-up approach. A
table structure cost;,; is used to store the retrieval cost per chunk
of M, ., where [ is the number of attributes in M and M,, ,, is
an attribute sub-list from u-th attribute to v-th attribute in the or-
dered list M. In the example, [ is 2 and our goal is to achieve



the minimum cost for computing M, >. Another structure loc;
helps to record whether M, ,, can be fetched from one replica and
which replica should be used. Note that for attribute-partitioned
replicas r; and r; of the same spatio-temporal region, when the
number of attributes in r; is less than that in 7;, the cost of using
r; is less than that of using ;. Furthermore, if a replica r; is al-
ready providing exactly all the attributes in M,, , combining two
or more replicas cannot be more efficient then using r; due to ex-
tra seek overheads. Hence, it is optimum for that spatio-temporal
region R; and we can continue with the foreach loop in step 10.
In step 18-23, other possible combinations are considered, since
the current combination may contain more redundant attributes.
In our example, { A}, { B, C'} could be one possible combination,
but extra seek operations makes it worse than { A, C, D}. In step
26, the table loc; ; is used to construct a solution by calling a pro-
cedure, Output. Based on the goodness values of each replica,
chunks that intersect the query are categorized into different frag-
ments. For a group of attribute-partitioned partial replicas, these
fragments comprise the set of interesting fragments output from
the first stage.

INPUT: Query Q; a given a set of group-of-partial replicas .
OUTPUT: A Set of Interesting Fragments.
1. F < 0 // Let F be the set of all fragments intersecting with the query boundary
2. Foreach R; € Rand R; N Q # 0
3. If R; is a group of attribute-partitioned partial replicas
/I Let I be the number of required attributes in Q) and
M ; be the required attribute list

4 Foreach j < 1tol

5 find 7; with the lowest costper—chunk in R; to fetch the j-th attribute
6. costj j < costper—_chunk for replica r;

7 locj,j.split < —1 and locy j.replica « r;

8. End Foreach

9. Foreach k «— 2 tol

10. Foreachuw «— 1tol — k + 1

11. ve—u+k—1

12. if there are replicas from R; containing all attributes in M, ,,
13. find r; with the lowest cost per—chunk in R;

14. costly oy < COSlper—chunk for replica r;

15. locy,v-split < —1 and locy ,.replica « r;
16. If r; contains exactly attributes in M., ,, then Continue
17. Else costy, , +— o0

18. Foreachp «— utov — 1

19. q « costy,p + costpit ,

20. Ifq < costy,

21. costy,p — q

22. locy,v.split < p and locy,.replica «— —1
23. End Foreach

24. End Foreach

25.  End Foreach

// call a sub-procedure to construct the optimal combination
26.  Output(locy ;)
27. Classify chunks that intersect the query into different fragments
28. Calculate the goodness value of each fragment
29. Insert the fragments of R; into F'
30. End Foreach

Output(locy, )
1. Iflocy,v.split = —1
2. return locy ,.Teplica

3. Else
4. Output(locy, (tocy, ,.split))
5. Output(loc(ioe,, 4. sptit+1),v)

Figure 2: Dynamic Programming Algorithm for Determining
Fragments of Interest

Greedy Algorithm. The goal of the second stage is to compute
the list candidate fragments, S. We apply our greedy search over
the set F', which contains all of the interesting fragments selected
in the first stage. We choose the fragment with the largest good-
ness value, move it from F' to .S, and modify the query by sub-

tracting the bounding box of the fragment. If the bounding box of
a fragment in F' intersects with the bounding box of the selected
fragment, the area of overlap is subtracted from the bounding box
of the fragment in F' and the fragment’s goodness value is re-
computed. Fragments from the original dataset may need to be
included the initial solution, if the union of fragments in .S cannot
completely answer the query. The final step attempts to improve
the initial solution (i.e., the set .S). It tries to reduce the filtering
computations and the number of I/O operations. In this step, each
fragment in S, stored in decreasing order of their goodness val-
ues, is compared against other fragments. If the bounding box of
a chunk in the fragment is contained within the bounding box of
another fragment, the chunk is deleted from the fragment.

4.2 Uneven Partitioning and Aggregation Op-
erations
In this subsection, we generalize our work in two areas. First,
we consider an environment where each replica may be parti-
tioned only on a subset of nodes. Second, we consider queries
which involve aggregation operations. To address such scenarios,
our first step is to modify the cost function we use.

4.2.1 Cost Function

When the chunks of each replica are not partitioned across all
storage nodes, we need to consider load balance as an important
factor. Suppose we are given two replicas, 1 and r2, and both
replicas are identical except that r; is distributed across 4 nodes
and ry is distributed across 6 nodes. As potential candidates to
answer a given query, there may be a tie if we use the previous
goodness formula. To facilitate our evaluation, our goodness cal-
culation integrates the query execution with the degree of paral-
lelism while considering the current workload (Cur Load) across
all storage nodes caused by all previously chosen candidate repli-
cas.

> pep data(F)

maxpep(cost,(CurLoad) + costy(F))

)]
Here, data(F') denotes the useful data of fragment F, and costp ()
denotes the cost incured by = on storage node p € P. Because
different fragments could be retrieved from different subsets of
storage nodes and the operations are performed in parallel across
all of them, we use the maximum of the sum of cost,CurLoad
and cost, (F') across all nodes. Thus, every new candidate frag-
ment is chosen because it increases the amount of useful data as
much as possible and also increases the current execution time as
little as possible. In the event of a tie, the amount of useful data
is used to break the tie.

When computing the cost of a fragment, in addition to data re-
trieval time, we factor in three new components: the time for fil-
tering partial chunks, the time for calculating the aggregate func-
tion, and the time for transferring data from storage nodes to re-
mote clients. The cost of a fragment is computed as:

goodness(F) =

COStfragment - tread anead‘i’tseekz aneek‘i’t,filter anilter+

tagg X Nagg + tt'r X Ntrans

For a given fragment, nex is the number of seeks required to
read the chunks of that fragment, nfi¢¢, is the number of tuples
in all chunks and ¢ y;;¢er is the average filtering time for a tuple.



Nagg is the number of useful tuples and ¢,44 is the average aggre-
gate computation time for a tuple. n¢rans is the amount of data
after aggregation, and ¢, is the network transfer time for one unit
of data. To calculate n¢rqns, Wwe need to project the data of 1444
to the group-by attributes space of the aggregate function.

4.2.2 Modified Replica Selection Algorithm

The modified replica selection algorithm (Figure 3) also uses a
greedy heuristic, but takes load balance into account. Note that
for simplicity of presentation, we only consider space-partitioned
replicas in our description.

INPUT: An interesting fragment set F and the original dataset D.
OUTPUT: a set of candidate replicas (fragments) with or without the original dataset D
for answering the issued query.

1. S < @ //Let S be the candidate fragment set

2. Foreach F; € F

3. If F; dose not intersect with anyone in F' — {F}; }

4. S — SU{F;}

5. End Foreach

7. While F # 0

8. Calculate the current goodness value for each fragment in F;

9. Find the fragment F}; with the maximum goodness value (Eq. 1)

10. S — SU{F;}

1. F—F—{F;}

2. Q= Q-({F}NQ)

13. Foreach F; € F

14. If F; intersects with F;

15. Subtract the region of overlap from F;

16. End Foreach

17. End While

18.1fQ # 0

19. Use D to answer the subquery QQ

20. Append D for the range Q to S

Figure 3: Work-load Aware Greedy Algorithm

We initialize the candidate set .S using fragments that have no
intersection with others. Then, we apply our greedy search over
all remaining fragments of interest (steps 7-17). Our goal is to
judiciously select replicas which result in less I/O cost and good
load balance. In each iteration of the while loop, the algorithm
calculates the current goodness value of every fragment in F;.
This calculation makes use of not only the fragment itself, but
also information about the current state of workload on all storage
nodes and the characteristics of all previously chosen candidate
fragments (Eq. 1). As in the previous algorithm, we may need to
direct a subquery to the original dataset if the union range of S
cannot answer the submitted query completely (steps 18-20).

The algorithm further improves on the initial solution by de-
tecting redundant I/O operations. Because load balancing is an
important consideration, there is one important difference in how
such refinement step is applied. We transform the candidate set
S (the output of the modified replica selection algorithm ) into an
ordered list, which assigns overloaded nodes with higher priority
in the redundant I/O detection of the final stage.

5. EXPERIMENTAL RESULTS

We carried out the performance evaluation of the proposed al-
gorithms using large datasets that have characteristics similar to
datasets generated by oil reservoir simulations [14] and satellite
data processing applications [4]. All of the experiments were car-
ried out on a Linux cluster where each node has a PIII 933MHz
CPU, 512 MB main memory, and three 100GB IDE disks. The
nodes are inter-connected via a 100 Mbps Ethernet Switch. Be-
cause there is very limited communication involved in processing
queries using our approach, we expect very similar results even if
a higher bandwidth interconnection network was used.

rep. Ranges of Attributes Chunk
ID [ RID TIME X Y 4 Size (KB)
orig | 0:9:1  0:1999:1 0:16:17  0:64:65  0:64:65 6,033
1 0:1:2  1000:1799:40 0:7:4 0:31:4 0:31:4 430
2 0:1:2  1000:1799:40 4:15:6 34:63:6 34:63:6 1,451
3 0:1:2  1000:1799:40 4:11:8 16:47:8  16:47:8 3,440
4 0:1:2  1000:1799:40 0:15:4 0:15:4 0:63:16
Attributes
4a | all 1,720
4b X, Y, Z, rid, time 327
4c X, Y, Z, rid, time, coil, soil, poil, oilvx, oilvy, oilvz 819
4d oilvx, oilvy, oilvz, soil, poil, coil 491
4e | gasvx, gasvy, gaxvz, sgas, cgas, pgas 491
4f watvx, watvy, watvz, pwat, cwat 409
4g X, 0ilvx, gasvx, watvx 327
4h | vy, oilvy, gasvy, watvy 327
4i z, oilvz, gasvz, watvz 327
4 sgas, coil, pwat 245
4k | pgas, cwat 164
41 soil, cgas 164
5 0:1:2  1000:1799:40 0:15:16 0:7:4 0:7:4 1,720
6 0:1:2  1000:1799:40 0:15:4 0:63:16 0:15:4 1,720

Table 1: Properties of the original dataset and its replicas.

5.1 Combined Use of Space and Attribute
Partitioned Replicas

Our first set of experiments evaluates the efficiency of using
attribute-partitioned replicas along with space-partitioned repli-
cas. Table 1 displays the properties of the original oil reservoir
dataset and its replicas. The size of its original dataset is 120GB.
The columns, RID (realization id), TIME (time dimension) and
X, Y, and Z (three spatial dimensions), contain the realization id
and spatio-temporal ranges in each dimension. The row value
s : e : | shows the start value (s), the end value (e), and the length
of division () in the corresponding dimension. Each grid point
of the reservoir mesh is represented with a tuple containing 17
floats and 4 integers (a total of 21 attributes and 84 bytes per tu-
ple). We have created 12 replicas of region #4 (replica ID 4 in the
table). The first one (4a) is space-partitioned replica that contains
all of the attributes. The remaining 11 replicas (4b...41) of that
region are attribute-partitioned replicas. The list of the attributes
included in each of the 12 replicas are listed in the table along
with the approximate chunk size of each replica. We executed
five versions of the following query, each of which corresponds
to a different artrlist. Table 2 lists the subset of attributes used for
each query.

SELECT attrlist FROM IPARS
WHERE rid in [0,1] AND time in [1000,1399]
ANDx >=0AND x <=11 AND y >= 0 AND y <= 28
AND z >= 0 AND z <= 28;

Figure 4 displays the execution time, the amount of data pro-
cessed, and the number of seeks for each of the queries in Ta-
ble 2. The bars corresponding to attr+space part in the graphs
were obtained from experiments using the replicas listed in the
third column of the table. The results show that in 3 out of 5
queries, using attribute- and space-partitioned replicas in combi-

nation (attr+space part) performs better than using space-partitioned

replicas only (space part). We should note that as is seen from the
last column in the table and the graphs, our algorithm selects the
combination of replicas that results in less execution time, when




Query [ attrlist Using all replicas | Using all replicas | Using all
but 4(a) but 4(b...1) replicas
1 X, y, Z, rid, time, soil, sgas 1,3,4(b,j,I),6 1,3,4(a),6 1,3,4(b,j,1),6
2 X, Y, Z, rid, time, poil, pwat, pgas 1,3,4(b,d,j,k),6 1,3,4(a),6 1,3,4(a),6
3 X, Y, Z, rid, time, oilvx, oilvy, oilvz, soil 1,3,4(¢c),6 1,3,4(a),6 1,3,4(c),6
4 X, Y, Z, rid, time, oilvx, gasvy, watvz, coil, pwat 1,3,4(b.f,g,h,)),6 1,3,4(a),6 1,3,4(a),6
5 X, Y, Z, rid, time, gasvx, gasvy, gasvz, sgas, cgas, pgas | 1,3,4(b,e),6 1,3,4(a),6 1,3,4(b,e),6

Table 2: List of attributes for different queries and the combinations of replica selected by the algorithm.
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Figure 6: Query execution time as the number of nodes is
varied.

all the replicas are considered. In most cases, attr+space part re-
sults in less I/0 volume. We observed that the amount of data read
from replicas decreased by 37% compared to the space part case.
However, query execution time does not depend only on the total
volume of data read from disk; it is also affected by how many
chunks need to be retrieved. When attribute-partitioned replicas
are selected, the number of seek operations increases. This is
because the artrlist requested by the query should be composed
from chunks in multiple replicas, resulting in additional seek op-
erations. The experimental results indicate that when data trans-
fer bandwidth is the limiting factor (e.g., moving data over a slow
network), using a combination of space- and attribute-partitioned
replicas will achieve good performance. On the other hand, if
disk latency is the dominant cost, then better performance can be
achieved using space-partitioned replicas only.

Figure 5 shows the scalability of our method with increasing
data size. In these experiments, both the original dataset and the
replicas were distributed across 8 nodes of the cluster. In all cases,
the execution time and the amount of data processed are reduced,
when partial replicas are used. When the query is executed us-
ing the original dataset only, more data is retrieved from disk and
has to be filtered out. When partial replicas are used, the filtering
operations are not completely eliminated, but they are reduced
significantly. Figure 6 demonstrates the performance of the pro-
posed method when the number of nodes is varied. Query execu-
tion time scales almost linearly upto 4 nodes and sub-linearly on
8 or more nodes. The sub-linear scaling is mainly because of the
seek overheads. When a partial replica is created, each chunk in
the replica is partitioned across all of the nodes in the system. In
this way, a chunk can be retrieved in parallel. When chunks are
not large enough to result in a good-sized chunk on each disk, the
seek time starts dominating the I/O overhead, resulting in poor
I/0 performance. For the chunk sizes used in our experiments,
partitioning the chunks on 8 or more processors resulted in high
seek overheads.

5.2 Aggregation Queries on Uneven Parti-
tioned Replicas

rep. Ranges of Attributes partitioned Chunk
ID | TIME X Y onnodes | Size (KB)

orig | 0:599:1 0:511:128 0:511:128 0-7 524
0 50:249:10  0:511:32 0:255:16 0,1,2,3,4 163
1 50:249:10  0:255:16 0:511:32 3,4,5,6,7 163
2 50:249:20  128:383:16  128:383:16 | 0,1,6,7 163
3 50:249:10  128:383:32  128:383:32 | 0-7 327
4 50:249:20  0:511:8 0:511:8 2,3,4,5 40

Table 4: Properties of replicas of the satellite dataset (TI-
TAN).

The last set of experiments were carried out using datasets from
both applications. Tables 3 and 4 display the properties of the
original dataset and its replicas that were used for the experi-
ments, for the oil reservoir management application (IPARS) and
the satellite data processing application (TITAN), respectively.
We used the IPARS dataset with 120GB raw data and the TITAN
dataset with 5GB raw data. Again, the row value s : e : [ shows
the start value (s), the end value (e), and the length of division
(1) in the corresponding dimension. The IDs of the machines (0
to 7), across which the replica is partitioned, are also listed in the
table.

We executed following subsetting queries with the aggregate
operations against the replicas (displayed in Tables 3 and 4) of
the IPARS and TITAN datasets.

SELECT =, y, z, ipars_bypass_sum(I PARS) FROM IPARS
WHERE rid in [0,0]

AND time in [1000,1399]
ANDz >=0AND z <= 11
ANDy >=0AND y <= 31
AND z >=0AND z <= 31
GROUP BY by z,y, 2;

SELECT z, y, ndvi-max(TIT AN) FROM TITAN
WHERE time >= 50 AND time <= 209
AND z >= 180 AND =z <= 335
AND y >= 0 AND y <= 511
GROUP BY z,y;

Figure 7 displays the estimated and real execution times for query
processing on data storage nodes using four different solutions
for each query. The first bar in each group, labeled as “Alg”,
represents the solution found by the modified replica selection
algorithm (Figure 3). The second bar, labeled as “Alg+Ref”, rep-
resents the solution after the refinement algorithm is applied. The
solutions, labeled as “Solution-1"" and “Solution-2”, were created
manually. These solutions represent alternative subsets of repli-
cas which can correctly answer the query. The goal was to assess
the accuracy of the cost model and the algorithm, and to see if the
algorithm could capture the trend in execution time even when it
is forced to evaluate a single solution.
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Figure 5: Query execution time and amount of data processed with and without replicas.

As is seen in the figure, the cost model is capable of estimating
the execution time trend. As also seen in the figure, the replica
selection algorithm coupled with the refinement algorithm could
produce much better execution times than the other alternatives
when a larger search space in terms of the set of replicas is pre-
sented to the algorithm. In the case of TITAN, the performance
improvement is much larger after employing the refinement step.
The amount of improvement depends on how well the proposed
algorithm can balance the load and on the amount of I/O overlap-
ping in the candidate replicas selected by only using the modified
replica selection algorithm for queries in the TITAN application.
By eliminating replica 0, the refinement algorithm was able to re-
duce the load on overloaded machines (0, 1, 2, 3, 4). This in turn
reduced the total execution time, which was dominated by the ex-
ecution time of nodes 3 and 4. In short, the proposed algorithm
is able to reduce the amount of data processing by selecting the
appropriate replicas, which will also result in computational load
balance.

6. CONCLUSIONS

This paper has focused on efficient execution of range queries
and aggregation operations when space- and attribute- partitioned
partial replicas of a dataset are available. Our contributions can be
summarized as follows: 1) an efficient cost model and algorithm
for combined use of space partitioned and attribute partitioned
replicas; 2) an extended cost model and a greedy algorithm to sup-
port range queries with aggregation operations; 3) a replica selec-
tion algorithm that allows uneven partitioning of replicas across
storage nodes. Based on our experimental evaluation, we draw
the following conclusions. Combined use of space-partitioned
and attribute-partitioned replicas results in more performance im-
provement than using space-partitioned replicas only. Partition-
ing chunks in a replica across all the nodes in the system achieves
good performance on small number of processors. However, in-
creased I/O overheads degrade performance as the number of pro-
cessors increases. This suggests that each replica should be par-
titioned across different numbers of processors based on the size

of chunks in the replica. In that case, the replica selection algo-
rithm should be modified to take load balance across processors
into account.
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