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Abstract

Recently, Bloom filters have been widely used in dis-
tributed systems where they are replicated to process dis-
tributed queries. Bloom filter replicas become stale in a
dynamic environment. A good understanding of the impact
of staleness on false negatives and false positives can pro-
vide the system designers with important insights into the
development and deployment of distributed Bloom filters in
many distributed systems. To our best knowledge, this paper
is the first one that analyzes the probabilities of false nega-
tives and positives by developing analytical models, which
take the staleness into consideration. Based on the theoreti-
cal analysis, we proposed an updating protocol that directly
control the false rate. Extensive simulations validate the an-
alytical models and prove the updating protocol to be very
accurate and effective.

1 Introduction

A Bloom filter (BF) [1] is a lossy but succinct and ef-
ficient data structure to represent a set S, which processes
the membership query “is x in S?” for any given element
x with a time complexity of O(1). Its storage requirement
falls several orders of magnitude below the lower bounds
of error-free encoding structures. This space efficiency is
achieved at the cost of allowing a certain (typically none-
zero) probability of false positives, that is, it may incorrectly
return an “yes” although x is actually not in S. Tuning the
parameters of a BF can minimize this probability of false-
positive to a sufficiently small value so that benefits from
the space and time efficiency far outweigh the penalty in-
curred by false positives in many applications.

In fact, BFs have shown great potentials in many dis-
tributed systems where information physically disseminated
across the entire system needs to be shared. For example,
to reduce the message traffic, Ref. [2] proposes a web cache
sharing protocol that employs a BF to represent the content
of a cache in a web proxy and then periodically propagates

that filter to other proxies. If a cache miss occurs at a lo-
cal proxy, that proxy checks the BFs replicated from other
proxies to see whether they have the desired web objects
in their caches. Ref. [3, 4, 5, 6] use BFs to implement the
function of mapping logical data identities to their physical
locations in distributed storage systems. In such schemes,
each storage node constructs a Bloom filter that summa-
rizes the identities of data stored locally and broadcasts it
to other nodes. By checking all filters collected locally, a
node can locate the requested data without sending mas-
sive query messages to other nodes. Similar deployments
of BFs have been found in geographic routing in wireless
mobile systems [7]), P2P systems [8, 9, 10, 11] and naming
services [12].

A common characteristics of distributed applications of
BFs, including all those described above, is that a BF at a
local host is replicated to other remote hosts to efficiently
process distributed queries. In such dynamical distributed
applications, the information that a BF represents evolves
over time. However, the updating processes are usually de-
layed due to the network latency or the delay necessary in
aggregating small changes into single updating message in
order to reduce the updating overhead. Accordingly the
contents of the remote replicas may become partially out-
dated. This possible staleness in the remote replicas not
only changes the probability of false positive answers to
membership queries on the remote hosts, but also brings
forth the possibility of false negatives. A false negative oc-
curs when a BF replica answers “no” to the membership
query for an element while that element actually exists in
its host. It is generated when a new element is added to a
host while the changes of the BF of this host, including the
addition of this new element, have not been propagated to
its replicas on other hosts. In addition, this staleness also
changes the probability of false positives, an event in which
an element is incorrectly identified as a member. Through-
out the rest of this paper, the probabilities of false negatives
and false positives are referred to as the false negative rate
and false positive rate, respectively.

While the false negative and false positive rates for a BF



at a local host have been well studied in the context of non-
replicated BF [1, 13, 2, 14, 15], very little attention has been
paid to the false rates in the Bloom filter replicas in a dis-
tributed environment. In the distributed systems considered
in this paper, the false rates of the replicas are more impor-
tant since most membership queries are performed on these
replicas. A good understanding of the impact of the false
negatives and false positives can provide the system design-
ers with important and useful insights into the development
and deployment of distributed BFs in such important appli-
cations as distributed file, database, and web server manage-
ment systems in super-scales. Therefore, the first objective
of this paper is to analyze the false rates by developing ana-
lytical models and considering the staleness.

Since different application may desire a different trade-
off between false rate (e.g, miss/fault penalty) and update
overhead (e.g., network traffic and processing due to broad-
casting of updates), it is very important and significant for
the systems overall performance to be able to control such
a tradeoff for a given application adaptively and efficiently.
The second objective is to develop an adaptive control algo-
rithm that can accurately and efficiently maintain a desirable
level of false rate for any given application by dynamically
and judiciously adjusting the update frequency.

The primary contribution of this paper is its develop-
ments of accurate closed-form expressions for the false neg-
ative and false positive rates in BF replicas, and the devel-
opment of an adaptive replica-update control, based on our
analytical model, that accurately and efficiently maintains a
desirable level of false rate for any given application. To the
best of our knowledge, this study is the first of its kind that
has considered the impact of staleness of replicated BF con-
tents in a distributed environment, and developed a mecha-
nism to adaptively minimize such an impact so as to opti-
mize systems performance.

The rest of the paper is organized as follows. Section 2
outlines the basic mathematical foundations of BFs. Sec-
tion 3 presents our analytical models that theoretically de-
rive false negative and false positive rates of a BF replica,
as well as the overall false rates in distributed systems. Sec-
tion 4 validates our theoretical results by comparing them
against results obtained from extensive experiments. The
adaptive updating protocols based on our theoretical anal-
ysis models are presented in Section 5 and Section 6 con-
cludes the paper.

2 Standard (non-replicated) Bloom Filters

To better present our analysis, we begin by introducing
the basics of the standard (i.e., non-replicated) BFs, follow-
ing the analysis and framework of Ref. [15] and [2].

A BF is essentially a bit vector B with m bits that facil-
itates membership test to a finite set S = {x1, x2, . . . , xn}

of n elements from a universeU . It uses a set H(x) of k uni-
form and independent hash functions to map the universe U
to the bit address space [1, m], shown as follows,

H(x) = {hi(x) | 1 ≤ hi(x) ≤ m for 1 ≤ i ≤ k} (1)

Definition 1. For all x ∈ U , B[H(x)] ≡ {B[hi(x)] | 1 ≤
i ≤ k}.

This notation facilitates the description of operations on
the subset of B addressed by the hash functions. For exam-
ple, B[H(x)] = 1 represents the condition in which all the
bits in B at the positions of h1(x), . . . , and hk(x) are “1”.
“Setting B[H(x)]” means that the bits at these positions in
B are set to “1”.

Representing the set S using a BF B is fast and simple.
Initially, all the bits in B are set to “0”. Then for each x ∈ S,
an operation of setting B[H(x)] is performed. Given any
element x, to check whether x is in S, one only needs to
test whether B[H(x)] = 1. If no, then x is said to be out of
S; If yes, x is conjectured to be in S.

A non-replicated BF has two important properties that
are described by the following two theorems respectively.

Theorem 1 (Impossible false negative). For any x ∈ U , if
B[H(x)] �= 1, then x �∈ S.

The proof is trivial and is not presented here.

Theorem 2 (Possible false positive). For any x ∈ U , if
B[H(x)] = 1, then there is a small probability f+ that
x �∈ S. This probability is called the false positive rate and
f+ ≈ (1− e−kn/m)k. Given a specific ratio of m/n, f+ is
minimized when k = (m/n)ln2 and f+

min ≈ (0.6185)m/n.

Proof: The proof is based on the mathematical model pro-
posed in Ref. [16, 15]. Detailed proof can be found in
Ref. [2] and [14]. For the convenience of the reader, the
proof is abbreviated and presented here.

After inserting n elements into BF, the probability that a
bit is still not set is given by

P0(n) =
(

1 − 1
m

)kn

≈ e−kn/m (2)

Thus the probability that k bits are set to 1 is

P (k bits set) =

(
1 −

(
1 − 1

m

)kn
)k

≈ (1 − e−kn/m)k.

(3)
Assuming each element is equally likely to be accessed

and usually |S| � |U|, then the false positive rate is

f+ =
(

1 − |S|
|U|
)

P (k bits set) ≈ (1 − e−kn/m)k. (4)

Given a specific ratio of m
n , i.e, the number of bits per

element, it is easy to prove that the false positive rate f+ is



minimized when k = m
n ln2 and the minimal false positive

rate is [14]

f+ ≈ 0.5k = (0.6185)m/n (5)

�
Appropriately adjusting m and k can make the false pos-

itive rate sufficiently small.
Ref. [2] proposes to use a vector with m counters to facil-

itate deleting an element x from BF B. More specifically,
let Γ = {τj | 1 ≤ j ≤ m} denote such a counter vec-
tor and the counter τj represents the difference between the
number of settings and the number of unsettings made to
the bit B[j]. All counters τj for 1 ≤ j ≤ m are initial-
ized to zero. When an element x is inserted or deleted, the
counters Γ[H(x)] are increased or decreased by one accord-
ingly. If τj changes its value from one to zero, B[j] is reset
to zero. While this counter vector consumes some mem-
ory space, Ref. [2] also shows that 4 bits per counter will
guarantee the probability of overflow minuscule even with
several hundred million elements in a BF.

3 Bloom Filters in Distributed Systems

In many distributed systems, the information about what
data objects can be accessed through a host or where data
objects are located usually needs to be shared to facilitate
the lookup. To provide high scalability, this information
sharing usually takes a decentralized approach, to avoid po-
tential performance bottleneck and vulnerability of a cen-
tralized architecture such as a dedicated server. While BFs
were initially used in non-distributed systems to save the
memory space in the 1980’s when memory was considered
a precious resource [17, 16], they have recently been exten-
sively used in many distributed systems as a scalable and
efficient scheme for information sharing, due to their low
network traffic overhead.

The inherent nature of such information sharing in al-
most all these distributed systems, if not all, can be ab-
stracted as a location identification, or mapping problem,
which is described next. Without loss of generality, the
distributed system considered throughout this paper is as-
sumed to consist of a collection of γ autonomous data-
storing host computers dispersed across a communication
network. These hosts partition a universe U of data objects
into γ subsets S1,S2, . . . ,Sγ , with each subset stored on
one of these hosts. Given an arbitrary object x in U , the
problem is how to efficiently identify the host that stores x
from any one of the hosts.

BFs are useful to solve this kind of problems. In a typical
approach, each host constructs a BF representing the subset
of objects stored in it, and then broadcasts that filter to all
the other hosts. Thus each host keeps γ − 1 additional BFs,
one for every other host. Figure 1 shows an example of a

Host 1

2B̂

3B̂

1B

2B

Host 2

1B̂

Host 3
3B

Network

Original Bloom Filter
iB Bloom Filter Replica

3B̂
2B̂
1B̂

ˆ
iB

Figure 1. An example of the application of Bloom
filters in a distributed system with 3 hosts.

system with three hosts. Note that a filter B̂i is a replica of
Bi from Host i and B̂i may become outdated if the changes
to Bi are not propagated instantaneously. While the solu-
tion to the above information sharing problem can imple-
mented somewhat differently giving rise to a number of so-
lution variants [4, 6], the analysis of false rates presented in
this paper can be easily applied to these variants.

The detailed procedures of the operations of insertion,
deletion and query of data objects are shown in Figure 2.
When an object x is deleted from or inserted into Host i,
the values of the relevant filters Γi[H(x)] and bits Bi[H(x)]
are adjusted accordingly. When the fraction of modified
bits in Bi exceeds some threshold, Bi is broadcast to all the
other hosts to update B̂i. To look up x, Host i performs the
membership tests on all the BFs kept locally. If a test on
Bi is positive, then x can potentially be accessed locally. If
a test in the filter B̂j for any j �= i is positive, then x is
conjectured to be on Host j with high probability. Finally,
if none of the tests is positive, x is considered nonexistent
in the system.

We begin the analysis by examining the false negative
and false positive rate of a single BF replica in Section 3.1.
Then Section 3.2 presents the analysis of the overall false
rates of all BFs kept locally on a host. The experimental
validations of the analytical models are presented in Sec-
tion 4.

3.1 False Rates of Bloom Filter Replicas

Let B be a BF with m bits and B̂ a replica of B. Let n
and n̂ be the number of objects in the set represented by B
and by B̂, respectively. We denote �1 (�0) as the set of all
one (zero) bits in B that are different than (i.e., complement
of) the corresponding bits in B̂. More specifically,

�1 = {B[i] | B[i] = 1, B̂[i] = 0, ∀i ∈ [1, m]}
�0 = {B[i] | B[i] = 0, B̂[i] = 1, ∀i ∈ [1, m]}.

Thus, �1 + �0 represent the set of changed bits in B
that have not been propagated to B̂. The number of bits
in this set is affected by the update threshold and update
latency. Furthermore, if a nonempty �1 is hit by least one
hash function of a membership test on B̂ while all other



AddObject(Object x, Host i)
1. Set (Bi[H(x)]) to 1;

2. Increase Γi[H(x)] by 1;

3. if(the changed portion of Bi is larger than some threshold)

4. Multicast Bi to the other hosts;

DeleteObject(Object x, Host i)
1. Decrease Γi[H(x)] by 1;

2. for(j = 1; j ≤ k; j + +)

3. if(Γi[hj(x)] = 0)

4. Unset bit Bi[hj(x)] to 0;

QueryObject(Object x, Host i)
1. ψ = ∅;

2. /* check the BF of the local host */

3. if(Bi[H(x)] = 1)

4. ψ = {i};

5. /* check all BF replicas */

6. for(j = 1; j ≤ γ; j + +)

7. if(j �= i and B̂i[H(x)] = 1)

8. ψ = ψ ∪ {j}
9. return ψ;

Figure 2. Procedures of adding, deleting and
querying Object x at Host i

hash functions of the same test hit bits in B̂−�1−�0 with
a value of one, then a false negative occurs in B̂. Similarly,
a false positive occurs if the nonempty �1 is replaced by a
nonempty �0 in the exact membership test scenario on a B̂
described above.

Lemma 1. Suppose that the numbers of bits in �1 and in
�0 are mδ1 and mδ0, respectively. Then n̂ is a random
variable following a normal distribution with an extremely
small variance (i.e., extremely highly concentrated around
its mean), that is,

E(n̂) = −m

k
ln(e−kn/m + δ1 − δ0). (6)

Proof: In a given BF representing a set of n objects, each
bit is zero with probability P0(n), given in Equation 2, or
one with probability P1(n) = 1 − P0(n). Thus the average
fractions of zero and one bits are P0(n) and P1(n), respec-
tively. Ref. [14] shows formally that the fractions of zero
and one bits are random variables that are highly concen-
trated on P0(n) and P1(n) respectively.

1 0 1 1 0 1 1 0 1

1 0 1 1 0 1 1 0 1

1 1 1 1

0 0 0 0

0 0 0

1 1 1

1 0

1 01 0B̂ − −

1 0B − −

Figure 3. An example of a BF B and its replica B̂
where bits are reordered such that bits in �1 and
�0 are placed together.

Figure 3 shows an example of B and B̂ where bits in �1

and �0 are extracted out and placed together. The expected
numbers of zero bits in B−�1 −�0 and in B̂−�1 −�0

should be equal since the bits in them are always identical
for any given B and B̂. Thus for any given n, δ1 and δ0, we
have

P0(n) − δ0 = E(P0(n̂)) − δ1 (7)

Substituting Equation 2 into the above equation, we have

e−kn/m − δ0 = e−kE(n̂)/m − δ1 (8)

After solving Equation 8, we obtain Equation 6. �
Pragmatically, in any given BF with n objects, the values

of δ1 and δ0, which represent the probabilities of a bit falling
in �1 and �0 respectively, are relatively small. Theoreti-
cally, the number of bits in �1 is less than the total number
of one bits in B, thus we have δ1 ≤ 1−e−kn/m. In a similar
way, we can conclude that δ0 ≤ e−kn/m.

Theorem 3 (False Negative Rate). The expected false nega-
tive rate f̂− in the BF replica B̂ is P1(n)k−(P1(n) − δ1)

k,
where P1(n) = 1 − e−kn/m.

Proof: As mentioned earlier, a false negative in B̂ occurs
when at least one hash function hits the bits in �1 in B̂
while the others hit the bits in B̂ −�1 − �0 with a value
of one. Hence, the false negative rate is

f̂− =
k∑

i=1

(
k

i

)
δi
1 (P1(n̂) − δ0)

k−i

= (P1(n̂) − δ0 + δ1)
k − (P1(n̂) − δ0)

k

Since P0(n) = 1 − P1(n) and P0(n̂) = 1 − P1(n̂), Equa-
tion 7 can be rewritten as,

E(P1(n̂)) = P1(n) + δ0 − δ1 (9)

Hence

E(f̂−) = (E(P1(n̂)) − δ0 + δ1)
k − (E(P1(n̂)) − δ0)

k

= P1(n)k − (P1(n) − δ1)
k (10)

�

Theorem 4 (False Positive Rate). The expected false
positive rate f̂+ for the Bloom filter replica B̂ is
(P1(n) + δ0 − δ1)

k, where P1(n) = 1 − e−kn/m.

Proof: If B̂ confirms positively the membership of an ob-
ject while this object actually does not belong to B, then a
false positive occurs. More specifically, a false positive oc-
curs in B̂ if for any x �∈ B, all hit bits by hash functions of
the membership test for x are ones in B̂ −�1 −�0, or for



any x ∈ U , all hit bits are ones in B̂ but at least one hit bit
is in �0. Thus, we find that

f̂+ =
(

1 − n

|U|
)

(P1(n̂) − δ0)
k +

k∑
i=1

(
k

i

)
δi
0(P1(n̂) − δ0)k−i

= P1(n̂)k − n

|U| (P1(n̂) − δ0)k (11)

Considering n � |U| and Equation 9, we have

E(f̂+) = (E(P1(n̂)))k − n

|U| (E(P1(n̂)) − δ0)k

= (P1(n) + δ0 − δ1)
k − n

|U| (P1(n) − δ1)k

≈ (P1(n) + δ0 − δ1)
k (12)

�

3.2 Overall False Rates

In there distributed system considered in this study, there
are a total of γ hosts and each host has γ BFs, with γ − 1 of
them replicated from the other hosts. To look up an object,
a host performs the membership tests in all the BFs kept
locally. This section analyzes the overall false rates on each
BF replica and each host.

Give any BF replica B̂, the events of a false positive and
a false negative are exclusive. Thus it is easy to find that the
overall false rate of B̂ is

E(foverall) = E(f−) + E(f+) (13)

where E(f−) and E(f+) are given in Equation 10 and 12
respectively.

On Host i, BF Bi represents all the objects stored locally.
While only false positives occur in Bi, both false positives
and false negatives can occur in the replicas B̂j for any j �=
i. Since the failed membership test in any BF leads to a
lookup failure, the overall false positive and false negative
rates on Host i are therefore

E(f+
host) = 1 − (1 − f+

i )
γ∏

j=1,j �=i

(1 − f̂+
j ) (14)

and

E(f−
host) = 1 −

γ∏
j=1,j �=i

(1 − f̂−
j ) (15)

where f+
i , f̂−

j and f̂+
j are given in Theorem 2, 3 and 4

respectively.
The probability that Host i fails a membership lookup

can be expressed as follows,

E(fhost) = E(f+
host + f−

host − f+
hostf

−
host). (16)

In practice, we can use the overall false rate of a BF
replica to trigger updating process and use the overall false
rate of all BFs on a host to evaluate the whole systems. In
a typical distributed environment with many nodes, the up-
dating of a Bloom filter replica B̂i stored on node j can be
triggered by either the home node i or the node j. Since
many nodes hold the replica of Bi, it is more efficient to let
the home node i to initiate the updating process of all repli-
cas of Bi. Otherwise, the procedure of checking whether an
updating is needed would be performed by all other nodes,
wasting both network and CPU resources. Accordingly, we
can only use the overall false rate of a BF replica E(foverall)
as the updating criteria. On the other hand, E(fhost) can be
used to evaluate the overall efficiency of all BFs stored on
the same host.

4 Validation of the Theoretic Models via Ex-
periments

This section validates our theoretical framework devel-
oped in this paper by comparing the analytical results pro-
duced by our models with experimental results obtained
through real experiments.

We begin by examining a single BF replica. Initially the
Bloom filter replica B̂ is exactly the same as B. Then we
artificially change B by randomly inserting new objects into
B or randomly deleting existing objects from B repeatedly.
For each specific modification made to B, we calculate the
corresponding δ1 and δ0 and use 100,000 randomly gener-
ated objects to test the memberships against B̂. Since the
actual objects represented in B are known in the experi-
ments, the false negative and positive rates can be easily
measured.
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Figure 4. Comparisons of estimated and experi-
mental f̂− of B̂ when k is 6 and 8 respectively.
The initial object number in both B and B̂ is 25,
75, 150 and 300 (m = 1200).

Figure 4 compares analytical and real false negative
rates, obtained from the theoretic models and from exper-
iments respectively, by plotting the false negative rate in B̂
as a function of δ1, a measure of update threshold, for differ-
ent numbers of hashing functions (k = 6 and k = 8) when



Table 1. False positive rates comparisons when
k is 6 and 8 respectively (m = 1200).

f̂+ (percentage)
k n̂ δ0 δ1 Estimated Experimental
6 25 0.0942 0.2042 0.0002 0
6 25 0.0800 0.3650 0.0002 0
6 25 0.0600 0.4875 0.0001 0
6 75 0.0800 0.1608 0.0934 0.1090
6 75 0.0600 0.2833 0.0794 0.1090
6 75 0.0483 0.3758 0.0799 0.1090
6 150 0.0533 0.1042 2.2749 2.6510
6 150 0.0400 0.1800 2.3540 2.6510
6 150 0.0325 0.2508 2.1872 2.6530
6 300 0.0250 0.0417 23.6555 25.4790
6 300 0.0183 0.0692 25.4016 25.4710
6 300 0.0117 0.1000 24.7241 25.4750
8 25 0.1083 0.2425 0.00002 0
8 25 0.0792 0.4192 0.00002 0
8 25 0.0550 0.5425 0.00002 0
8 75 0.0792 0.1767 0.0525 0.0540
8 75 0.0550 0.3000 0.0504 0.0540
8 75 0.0425 0.3917 0.0506 0.0540
8 150 0.0475 0.1050 2.5163 2.5770
8 150 0.0350 0.1758 2.6783 2.5780
8 150 0.0283 0.2367 2.5384 2.5790
8 300 0.0192 0.0333 33.2078 33.2580
8 300 0.0133 0.0558 34.4915 33.2550
8 300 0.0083 0.0817 32.1779 33.2550

Table 2. Overall false rate comparisons under
optimum initial operation state when k is 6 and
8 respectively. 100 new objects are added on
each host and then a set of existing objects are
deleted from each host. The number of deleted
objects increases from 10 to 100 with a step
size of 10. (m = 1200) In the first group, ini-
tially Initially n = 150 and m/n = 8; in the
second group, n = 100 and m/n = 12 initially.

foverall (percentage)
k δ0 δ1 Estimated Experimental
6 0.0100 0.1705 46.2259 45.2200
6 0.0227 0.1657 42.4850 40.6880
6 0.0347 0.1627 38.7101 37.2420
6 0.0458 0.1582 34.9268 33.8460
6 0.0593 0.1545 31.3748 30.4540
6 0.0715 0.1497 27.8831 27.3700
6 0.0837 0.1445 24.5657 24.8000
6 0.0938 0.1392 21.2719 22.5560
6 0.1045 0.1340 18.2490 20.4520
6 0.1165 0.1300 15.5103 18.7540
8 0.0123 0.2375 30.9531 29.6280
8 0.0255 0.2275 25.7946 23.6280
8 0.0413 0.2180 21.0943 18.0000
8 0.0552 0.2123 16.7982 14.6720
8 0.0658 0.2043 12.9800 12.0040
8 0.0772 0.1965 9.7307 9.7320
8 0.0920 0.1900 7.1016 7.7520
8 0.1075 0.1848 4.9936 6.1280
8 0.1237 0.1788 3.4031 4.8400
8 0.1377 0.1732 2.2034 3.8160

the initial number of objects in B are 25, 75, 150 and 300
respectively. Since the false negative rates are independent
of δ0, only object deletions are performed in B.

Table 1 compares the analytical and real false positive
rates of B̂ when k is 6 and 8 respectively. In these exper-
iments, both object deletions and additions are performed
in B while B̂ remains unaltered. It is interesting that the
false positive rates of B̂ is kept around some constant for

a specific n̂ although the objects in B changes in the real
experiments. It is true that if the number of objects in B
increases or decreases, the false positive rate in B̂ should
decrease or increase accordingly before the changes of B is
propagated to B̂. However, due to the fact that n is far less
than the total object number in the universe U , the change
of the false positive rate in B̂ is too small to be perceptible.
These tests are made accordant with the real scenarios of
BF applications in distributed systems. In such real appli-
cations, the number of possible objects is usually very large
and thus BFs are deployed to efficiently reduce the network
and network communication requirements. Hence, in these
experiments the number of objects used to test B̂ is much
larger than the number of objects in B or B̂ (100,000 ran-
dom objects are tested). Under such large size of testing
samples, the influence of the modification in B on the false
positive rate of B̂ is difficult to be observed.
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Figure 5. Comparisons of estimated and experi-
mental foverall in a distributed system with 5 hosts
when k is 6 and 8 respectively. The initial object
number n on each host is 25, 75, 150 and 300 re-
spectively. Then each host adds a set of new ob-
jects. The number of new objects on each host
increases from 50 to 300 with a step size of 50.
(m = 1200)

We also simulated the lookup problem in a distributed
system with 5 hosts. Figure 5 shows the comparisons of
the analytical and experimental average overall false rates
on each host. In these experiments, we only added new ob-
jects without deleting any existing items so that δ0 is kept
zero. The experiments presented in Table 2 considers both
the deletion and addition of objects on each host when the
initial state of BF on each host is optimized, this is, the num-
ber of hash functions is the optimal under the ratio between
m and the initial number of objects n. This specific setting
aims to emulate the real application where m/n and k are
usually optimally or sub-optimally matched by dynamically
adjusting the BF length m [3] or designing the BF length
according to the average number of objects [12, 6, 2, 4, 5].
All the analytical results have been very closely matched by
their real (experimental) counterparts consistently, strongly
validating our theoretical models.



5 Updating Protocol

To reduce the false rate caused by staleness, the remote
Bloom filter replica needs to be periodically updated. The
update process are typically triggered if the percentage of
dirty bits in a local BF exceeds some threshold. While
a small threshold causes large network traffic and a large
threshold increases the false rate, this tradeoff is usually
reached by a trial-and-error approach that runs numerous
(typically a large number of) trials in real experiments or
simulations [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

For example, in the summery cache study [2], it is rec-
ommended that if 10 percent of bits in a BF are dirty, then
the BF propagates its changes to all replicas. However, this
approach has the following disadvantages.

1. It cannot directly control the false rate. To keep the false
rate under some target value, complicated simulations or
experiments have to be conducted to adjust the threshold
for dirty bits. If the target false rate changes, this tedious
process has to be repeated to find a “golden” threshold.

2. It treats all dirty bits equally and does not distinguish the
zero-dirty bits from the one-dirty bits. In fact, as shown in
previous sections, the dirty one bits and the dirty zero bits
exert different impacts on the false rates.

3. It does not allow flexible update control. In many appli-
cations, the penalty of a false positive and a false nega-
tive are significantly different. For example, in summery
cache [2], a false positive occurs if a request is not a cache
hit on some web proxy when the corresponding Bloom fil-
ter replica confirms so. The penalty of a false positive is
a waste of query message to this local web proxy. A false
negative happens if a request can be hit in a local web
proxy but the Bloom filter replica mistakenly indicates
otherwise. The penalty of a false negative is a round-trip
delay in retrieving information from a remote web server
through the Internet. Thus, the penalty of a false negative
is much larger than that of a false positive. The updating
protocols based on the percentage of dirty bits do not al-
low one to place more weight on the false negative rate,
thus limiting the flexibility and efficiency of the updating
process.

Based on the theoretic models presented in the previous
sections, an updating protocol that directly control the false
rate is designed in this paper. In a distributed system with
γ nodes where each node has a local BF to represent all
local elements, each node is responsible for automatically
updating its BF replicas. Each node estimates the false rate
of its remote BF replica and if the false rate exceeds some
desire false rate, as opposed to a predetermined threshold
on the percentage of dirty bits in the conventional updating
approaches, a updating process is triggered. To estimate the
false rate of remote BF replica B̂, each node has to record

the number of elements stored locally (n), in addition to a
copy of remote BF replica B̂. This copy is essentially the
local BF B when the last updating is made. It is used to
calculate the percentage of dirty one bits (δ1) and the dirty
zero bits (δ0). Compared with the conventional updating
protocols based on the total percentage of dirty bits, this
protocol only needs to record one more variable (n), thus it
does not significantly increase the maintenance overhead.

This protocol allows more flexible updating protocols
that considers the penalty difference between a false pos-
itive and a false negative. The overall false rate can be a
weighted sum of the false positive rate and the false nega-
tive rate, shown as follows:

E(foverall) = w+
E(f+) + w−

E(f−) (17)

where w+ and w− are the weights. The values of w+ and
w− depends on the applications and also the application en-
vironments.

We prove the effectiveness of this update protocol
through event driven simulations. In this simulation, we
made the following assumptions.

1. Each item is randomly accessed. This assumption may
not be realistic in some real workloads, in which an item
has a greater than equal chance of being accessed again
once it has been accessed. Though all previous theoretic
studies on Bloom filters assume a workload with uniform
access spectrum, further studies are needed to investigate
the impact of this assumption.

2. Each local node deletes or adds items at a constant rate. In
fact, the deletion and addition rate changes dynamically
throughout the lifetime of applications. This simplifying
assumption is employed just to prove our concept while
keeping our experiments manageable in the absence of a
real trace or benchmark.

3. The values of w+ and w− are 1. Their optimal values de-
pends on the nature of the applications and environments.

We simulate a distributed system with two nodes where
each node keeps a BF replica of the other. We assume the
addition and deletion are 5 and 2 per time unit respectively
and our desired false rate is 10%. Figure 6 shows the es-
timated false rate and the measured false rate of node 1
throughout the deletion, addition and updating processes.
Due to the space limitation, the false rate on node 2, which
is similar to node 1, is not shown in this paper. In addi-
tion, we have changed the addition rate and deletion rates.
Simulation results consistently indicate that our protocol is
accurate and effective in control the false rate.

6 Conclusions

In this paper, we have presented the theoretical analysis
of the impact of staleness existing in many distributed BF
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Figure 6. In an environment of two servers, the
figures show the overall false rate on one server
when the initial number of elements in one server
are 25 and 150 respectively. The ratio of bits per
element is 8 and 6 hash functions are used. The
rate for element addition and deletion are respec-
tively 5 and 2 per time unit on each server.

applications on the false negative and false positive rates,
and developed an adaptive update control mechanism that
accurately and efficiently maintains a desirable level of false
rate for a given application. To the best of our knowledge,
we are the first to derive accurate closed-form expressions
that incorporate the staleness into the analysis of the false
negative and positive rates of a single BF replica, the first
to develop the analytical models of the overall false rates of
BF arrays that have been widely used in many distributed
systems, and the first to develop an adaptively controlled
update process that accurately maintains a desirable level
of false rate for a given application. We have validated our
analysis by conducting extensive experiments. The theo-
retical analysis presented not only provides system design-
ers with significant theoretical insights into the development
and deployment of BFs in distributed systems, but also are
useful in practice for accurately determining when to trig-
ger the processes of updating BF replicas in order to keep
the false rates under some desired values, or, equivalently,
minimize the frequency of updates to reduce update over-
head.
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