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Abstract 
 

We present an analytic performance model of a large-
scale hydrodynamics code developed at Los Alamos 
National Laboratory.  This modeling work is part of an 
ongoing effort to develop models and modeling 
techniques for large-scale codes and systems of interest to 
Los Alamos and the national laboratory community [3].  
Krak [1] comprises over 270,000 lines of source code and 
is capable of executing on a large number of parallel 
processors.  Developing an accurate model is 
complicated by the irregular partitioning of input spatial 
grid cells to processors and the various material 
properties assigned to each cell.  Model development 
proceeds by separating inter-processor communication 
from computation and modeling each individually.  In 
addition, several approximations concerning subgrid size, 
shape, and material composition are made which reduce 
modeling complexity without adversely impacting 
prediction accuracy.  We validate our model on several 
spatial grid sizes and processor configurations and 
demonstrate an accuracy at the largest scale on 512 
processors to within a 3% error. 
 
1. Introduction 
 

Expectation of future workload performance is often 
a primary criterion in the procurement of a new large-
scale parallel machine.  While reliance on developers 
performance estimations sufficed in the past, the 
development of modeling techniques has made possible 
quantitative performance analysis for both current and 
near-to-market parallel systems.  At Los Alamos National 
Laboratory (LANL) analytic performance modeling has 
proven useful in the study of future systems as well as in 
the optimization of systems after installation [5].  In 
addition, models can be useful for quantitatively 
evaluating the potential performance benefit of alterations 
to the application, such as the data-partitioning 
algorithms. 

An analytic performance model can be considered a 
static representation of a workload’s dynamic 
characteristics.  Such characteristics include single-
processor computation performance, inter-processor 
communication patterns, and the sizes of inter-processor 
messages.  Performance models relate these 

characteristics to features of the input deck (e.g., spatial 
grid size and data partitioning method), and provide a 
performance estimation given a mapping of tasks onto the 
physical machine resources.  Therefore, a performance 
model is dependent on both application and system 
characteristics. 

Performance models do not aim to capture the 
performance of every line or subroutine in the source 
application; instead the model captures the broad aspects 
of the workload that have the primary impact on overall 
runtime, such as single-processor computation and inter-
processor communication performance.  While accurately 
modeling single-processor performance from first 
principles is an active and important area of research, our 
goal is to accurately quantify application performance on 
large-scale systems.  Therefore, a scalability analysis is 
the focus of the model developed here. 

The application we describe is a hydrodynamics code 
developed at LANL called Krak which consists of over 
270,000 lines of source code in both Fortran and C, 
spread over more than 1,600 source files.  This is a large-
scale, production code capable of scaling to hundreds of 
processors by utilizing MPI for inter-processor 
communication.  Our contribution lies not only in the 
development of the analytic performance model of a 
significant application utilizing an irregular mesh 
partitioning [4], but in the demonstration that careful 
approximations can be used to accurately model the 
performance of complex applications at large scale.   

We begin our discussion in Section 2 with an 
overview of the application, including a description of the 
modeled input decks.  We describe how data is partitioned 
among processors and the ramifications of this 
partitioning strategy on the modeling effort.  We then 
discuss the development of the performance model, and 
proceed by separating the communication component 
from computation, and modeling each individually.  
Section 3 describes the performance model for 
computation, while Section 4 focuses on communication.  
We show that, although the application contains many 
variables such as the exact data partitioning among 
processors and the properties of the materials contained in 
the input deck, a generalized abstraction suffices to 
accurately model runtime, thus simplifying the model.  
Section 5 describes our work to validate the model, and 
we provide data to indicate our model closely predicts 



actual application performance.  Finally we draw 
conclusions in Section 6. 
 
2.  Krak Overview 
 

Krak simulates forces propagating through objects 
composed of various materials and is often used to 
simulate high-energy explosives and object penetrations.  
Objects are mapped onto a spatial grid of “cells”, with 
each cell being defined by (typically four) “faces”, which 
are in turn composed of connections between “nodes”.  
“Ghost nodes” are those nodes whose associated faces 
comprise boundaries between processors.  Each cell in the 
spatial grid is assigned exactly one material.  Krak is a 
Lagrangian code, meaning that the spatial grid deforms as 
forces propagate through the objects.  “Slip lines” allow 
segments of the spatial grid to slide past one another, 
allowing the computation to remain numerically stable.  
Computation progresses until a specified number of time-
steps or a given length of simulation time has passed. 
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Figure 1:  Example partitioning of 3200 cells on 16 
processors; colors represent processor subgrids and 
thick lines represent material boundaries (a); the 3D 

cylindrical domain after rotation (b) 

The input grid is partitioned into subgrids, with one 
subgrid assigned to each processor.  Krak executes in 
strong-scaling mode, meaning the size of each subgrid in 
terms of cells decreases as the number of processors 
increases.  Partitioning is performed using Metis [2] with 
an algorithm to balance cell counts on each processor 
while minimizing edge cuts.  The partitioning is done in 
an irregular fashion (Figure 1), meaning a varying number 
of cells of each material is assigned to each processor.  In 

addition, for a given input grid and processor count, the 
communication pattern between processors is not 
predictable without knowing precise partitioning 
information.   
 
2.1. Input Description 
 

We study three spatial grid sizes, which we term 
small (3200 cells), medium, (204,800 cells), and large 
(819,200 cells).  Each spatial grid contains the same 
proportion of four different materials:  a core of high 
explosive gas, a layer of aluminum, a layer of foam, and a 
second layer of aluminum (Figure 1).  The rectangular, 
2D spatial grid is rotated about a vertical axis so that the 
domain becomes a cylinder, with the high explosive gas 
forming an inner cylinder at the center.  An explosive 
detonator is placed on the axis of rotation, slightly below 
center. 
 
2.2. Iteration Composition 
 

An iteration is composed of a series of “phases” that 
are separated by one or more global reduction operations 
which act as synchronization points.  Such operations are 
used to combine data from every process, often for 
operations such as convergence testing or global error 
estimation.  Table 1 contains a brief description of each 
phase.  All phases contain some amount of computation, 
while several phases contain inter-processor 
communication as well.  In order to develop a 
performance model it is necessary to separate 
communication from computation and model each 
separately. 

Table 1:  Summary of Krak activities by phase 

Phase  
Number Action Sync 

Points 
1 Broadcast (4 bytes, 8 bytes) 2 

2 
Bcast (4 bytes, 8 bytes) 

Boundary exchange 
Gather (32 bytes) 

1 

3 Computation only 3 
4 Ghost node updates (8 bytes) 1 
5 Ghost node updates (16 bytes) 1 
6 Computation only 3 
7 Ghost node updates (16 bytes) 1 
8 Computation only 1 
9 Computation only 1 

10 Computation only 1 
11 Computation only 2 
12 Computation only 1 
13 Computation only 1 
14 Computation only 1 
15 Broadcast (4 bytes, 8 bytes) 2 
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Figure 2:  Computation time by phase on 256 
processors with a spatial grid of 65,536 cells 

 
Figure 2 depicts the time spent in each phase with an 

input spatial grid of 65,536 cells.  MPI communication 
time is not included.  Because of the fairly large processor 
count, subdomains are homogeneous in terms of 
materials.  It can be seen that the time required for certain 
phases (for instance, phase 14) is material dependent; 
computation varies across processors due to cells material 
composition.  In other phases the computation time is a 
function of only the number of cells allocated to a 
processor and not the material type of those cells.  Each 
phase is therefore modeled independently.   
 
3. Modeling Krak Computation 
 

The computation time for an iteration can be 
expressed as: 
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In Equation (1), Phases is an array of phase numbers, PEs 
is the array of processor IDs, and Cells is a matrix 
containing the material ID for each cell assigned to each 
processor (Cellij contains the material ID for local cell j 
found on processor i).   
 

The computation time for a single phase is stated as: 
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Here, T() returns the per-cell cost from a piecewise linear 
equation given the phase and material type.   

Combining Equation (1) with Equation (2) gives the 
total computation time for a single iteration: 
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Note that because phases are separated by global 
synchronization events, the time for a given phase is the 
maximum time over all processors in that phase. 

As described in Section 2, the distribution of 
materials within a spatial grid as well as the allocation of 
cells to processors has an impact on overall application 
performance.  Figure 3 illustrates this, indicating the 
computation time required per cell varies with both cell 
count (per processor) and, for some phases, material type.  
We therefore begin modeling computation by first 
developing a “mesh-specific” model, which utilizes 
precise knowledge concerning material and cell 
distribution. While the mesh-specific model should yield 
validation information, it is impractical for use in large-
scale scalability analysis and often relies on information 
that cannot be known in advance.  We then proceed to 
describe a “general” model in which several abstractions 
and simplifying assumptions are made.  The generalized 
model utilizes a simplified input which allows for more 
rapid model evaluation, making it more useful for 
studying application performance at large scale. 
 
3.1. “Mesh-Specific” Model Development 
 

A contrived spatial grid is used to determine how 
computation time scales with grid size, and thereby, 
through a linear regression, determine the computation 
cost per cell of each material.  Two processes are 
required; in order for a detonation to occur, high-
explosive gas must be present.  However, the gas can be 
isolated to a single process while the material on the 
second process varies.  In theory, this allows for the 
construction of a piecewise linear equation to describe the 
time required for a cell of each material in each phase, 
given the number of cells of each material in the local 
subgrid.  By summing these times, the computation time 
required for each subgrid can be calculated. 

In practice, this is not always the case.  From Figure 
3 (center), it can be seen that the cost per cell often 
appears constant for larger subgrid sizes.  However, as 
subgrid size decreases, the cost per cell increases until the 
computation time per subgrid approaches a constant 
regardless of the number of cells.  Capturing the behavior 
at the knee of this curve has proven difficult, as the 
validation results presented in Section 5 will attest. 
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Figure 3:  Per-cell computation times for Phase 1 
(top), Phase 2 (center), and Phase 7 (bottom) 

 
An alternative method for modeling computation 

utilizes the actual input domain (not a contrived grid as 
previously described) and involves the construction and 
solution of a series of linear equations with four variables 
(the computation time per cell of each material).  A linear 
equation is constructed for each phase on each processor; 
the solution of this system of equations will provide a per-
cell computation cost (in terms of time) that can then be 
fed into the model.  Again, it is possible to construct a 
piecewise linear equation to allow for interpolation 

between measured values.  This second method is used 
for the validation results presented below.   Total 
computation time is calculated using Equation (3). 
. 
3.2. “General” Model Development 
 

The “general” model differs from the mesh-specific 
model in that, instead of examining each subgrid 
generated by the Metis [2] mesh partitioning algorithm, 
the input domain is classified as either heterogeneous or 
homogeneous, and the ratio of materials in each subgrid 
remains fixed as the number of processors increases.  As 
before, Equation (3) is used to calculate the total 
computation time.  A feature of strong-scaling execution 
is that as the number of processors scales, the size of each 
subgrid decreases, making it more likely that a subgrid 
will contain only cells of a single material.  Table 2 
defines the ratio of materials in these two cases for the 
global spatial grid.  The ratio of materials used in 
heterogeneous mode is derived from the input deck shown 
in Figure 1 and would therefore vary from one input to 
another.  For homogeneous mode, it is assumed that for 
each material a subgrid exists that is composed 
exclusively of cells of that material.  By calculating which 
material results in the longest computation time, the time 
required for each phase of computation can be 
determined. 
 

Table 2:  Ratio of materials in Krak general model 

Type H.E. 
Gas 

Aluminum 
(Inner) Foam Aluminum

(Outer) 
Hetero. 39.1% 17.2% 20.3% 23.4% 
Homo. 100% 100% 100% 100% 

 
In reality, because Krak operates in strong-scaling 

mode, as the number of processors increases the size of 
each processor’s subdomain becomes smaller. The 
material composition of each processor’s subdomain 
transitions from being more heterogeneous (with the ratio 
of materials matching the ratio of materials in the global 
spatial grid when only a single processor is used) to more 
homogeneous.  The Krak model does not yet have a way 
to model this transition; however, at large processor 
counts, the homogeneous case seems to adequately model 
true application behavior. 

Each processor’s subdomain is assumed to contain an 
equal number of cells.  In addition, each subdomain is 
assumed to be square, so that each boundary between 

processors contains PEsCells faces.  Boundary 
faces are divided equally among the materials in use.  The 
number of ghost nodes on each boundary is one more than 
the number of boundary faces, and half of the ghost nodes 
on each boundary are “local” (i.e., owned by the local 



processor) with the remaining half “remote” (owned by 
the neighboring processor). 
 
4. Modeling Krak Parallel Communication 
 

Communication during a single program iteration 
falls into three categories: 

1. Boundary exchanges, in which the size of each 
message is dependent upon the number of shared 
message faces 

2. Ghost node updates, in which the size of each 
message is dependent upon the number of ghost 
nodes that are “owned” by each member of a 
processor pair 

3. Collective communications, in which the number 
and size of messages are independent of the 
spatial grid size and number of processors. 

All point-to-point communication operations utilize 
asynchronous send operations coupled with blocking 
receives.  Messages to multiple neighbors are therefore 
overlapped: asynchronous sends to each neighbor are 
posted, followed by operations to ensure the send 
operations have completed, and finally, blocking receives 
are posted to receive messages from neighboring nodes. 

Basic point-to-point message passing time is modeled 
using the following piecewise linear equation: 
 
  (4) )()()( STSSLST Bmsg ⋅+=
 
The term L(S) describes the start-up cost for a message of 
S bytes, while TB(S) is the bandwidth cost to send a single 
byte between nodes.  
 
4.1. Boundary Exchange 
 

Because the spatial domain is partitioned among 
processors in an irregular fashion, each processor has N 
neighbors, where N varies across processors.  Boundary 
exchanges consist of a step for each material, plus one 
additional phase.  Each phase consists of six messages per 
neighboring process.  For each pair of processors, 
message sizes are a function of both the number of shared 
faces of a given material and of the number of ghost 
nodes on those faces which are associated with more than 
one material.   

The first two messages in each set of six are of size 
12 bytes times the number of faces of the corresponding 
material plus 12 bytes for each ghost node touching more 
than one material.  The remaining four messages contain 
only 12 bytes times the number of faces of the 
corresponding material.  The six messages in the final, 
additional phase are of size 12 bytes times the total 
number of faces (independent of material) on the process 
boundary.  Identical materials (such as the two aluminum 

materials in our input deck) are treated as one during 
boundary exchanges. 
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Figure 4:  Processor boundary with four materials 

As an example, consider Figure 4, in which the 
boundary between two processes comprises 3 faces of 
high explosive gas, 2 faces of aluminum, 3 faces of foam, 
and 2 more faces of aluminum. The message sizes and 
tallies are shown in Table 3. 

The time required to complete a boundary exchange 
operation for one processor with a single neighbor can be 
described as: 
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where  Faces[] is an array containing the number of 
boundary faces for each material type, Tmsg

  is the time 
required to send a message of a given size (defined in 
Section 4.4), and |Materials| is the number of materials in 
the input spatial grid.  Tmsg is defined by Equation (4) and 
describes the time required to send a message of S bytes 
between processors.  Note that Equation (5) does not 
account for overlapping of messages between different 
neighbors, for combining like materials, or for increasing 
the size of messages due to ghost nodes lying on material 
boundaries. 

Table 3:  Boundary exchange example 

Material Msg. 
Count Size of Each Msg (bytes) 

2 48 = 3·12 + 1·12 H.E. Gas 
4 36 = 3·12 
2 84 = 2·12 + 2·12 + 3·12 Aluminum 

(both) 4 48 = 2·12 + 2·12 
2 60 = 3·12 + 2·12 Foam 4 36 = 3·12 

All 6 120 = (2+3+2+3)·12 
 
 
 
 
 
 



4.2. Ghost Node Updates 
 

Every ghost node is considered to be “local” to (i.e., 
owned by) exactly one processor.  All other processors 
which share this node consider it to be “remote”.  Ghost 
node updates take place in phases 4, 5, and 7 from Table 
1.  Each phase requires two messages between each 
neighboring processor; one for local ghost node updates 
and one for remote.  In phase 4, 8 bytes are transferred for 
each ghost node (Equation 6), and 16 bytes are transferred 
for each ghost node in each of phases 5 and 7 (Equation 
7). 

( ) ( ) ( RmsgLmsgRLGNPhase NTNTNNT 88,4 += )  (6) 

( ) ( ) ( )RmsgLmsgRLGNPhase NTNTNNT 1616,7,5 += (7) 
 
Again, note that Equations (6) and (7) do not consider the 
overlapping of messages between different neighbors. 
 
4.3. Collective Communication 
 

There are three types of collective communication 
operations which take place during each iteration.  The 
number of operations and size of each message are fixed 
and do not vary with problem size or number of 
processors.  These operations are described in Table 4. 

Table 4:  Collective communication operations per 
iteration 

Type Count Size (bytes) 
3 4 MPI_Bcast() 
3 8 
9 4 MPI_Allreduce() 13 8 

MPI_Gather() 1 32 
 

Collective communication is modeled as either “fan-
out”, “fan-in”, or “fan-in and fan-out” pattern with 
messages reaching every node over a binary-tree 
structure.  Therefore, a one-to-all communication requires 
log(P) messages, and a synchronization point requires 
2log(P) messages.  The time required for the collective 
operations described in Section 4.3 is modeled as: 
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( ) ( ) (32log msgPEPEGather TNNT =  (10) 
 
 
 
 

5.  Model Validation 
 

From Sections 3 and 4, an “input-specific” and 
“general” performance model encompassing computation 
and communication can be constructed.  In both cases, 
computation time is given by Equation (3).  
Communication is given by the summation of Equations  
(5 – 10).  It is assumed that computation does not overlap 
with communication; the overall runtime is the 
summation of the computation and communication 
components. 
 
5.1. “Input-specific” Model Validation 
 

Validation results are given in Table 5 for two spatial 
grid sizes on three different processor configurations.  
Validation runs were performed on a 256-node 
HP/Compaq machine consisting of ES-45 nodes (4 Alpha 
EV-68 processors running at 1.25 GHz), each with 16 GB 
of memory.  Nodes are connected using a Quadrics 
QsNet-I fat-tree network [6]. 
 

Table 5:  Validation results for mesh-specific model 

Problem
Size 

PE 
Count 

Meas. 
(ms) 

Pred. 
(ms) Error 

16 27 43 -59.0% 
64 88 41 52.7% Small 
128 28 30 -10.0% 
16 310 290 5.9% 
64 88 89 -0.8% Medium 
128 61 59 4.5% 

 
In two cases, the predicted runtime was in error by 

more than 50%.  This is the case near the knee of the per-
cell cost curve described in Section 3 and shown in Figure 
3, phase 2.  This large error indicates that the linear 
regression itself, or the linear interpolation between 
measured values in the cost curves are not accurate.  
However, for the local cell counts that would be seen 
when running a large problem on a large number of 
processors, the model is accurate to within 10%.  In 
addition, we will see in Section 5.2 that large errors are 
not observed when using the general model. 
 
5.2. “General” Model Validation 
 

Table 6 contains validation results using the 
“general” Krak model with a homogeneous material 
distribution.  We include only this case in the table as it 
more accurately describes material distribution at large 
scale; however validation results for both homogeneous 
and heterogeneous material distributions are shown in 
Figure 5.  As expected, the general model with a 
homogeneous material distribution validates well, 



particularly at larger processor configurations.  At large 
scale a heterogeneous material distribution is less 
accurate; due to the fixed global problem size, as the 
processor count increases subgrids become smaller and 
therefore more homogeneous.  This fact leads to an over-
prediction of runtime in the heterogeneous case caused by 
a misprediction in the communication cost.  Separate 
messages are required for each material that touches a 
processor’s subgrid boundary.  Because of the small size 
of these messages at large scale, the latency suffered by 
each message becomes significant.  In the homogeneous 
case, only a single material touches any subgrid boundary, 
meaning fewer boundary-exchange messages are 
required. 
 

Table 6:  Krak validation results for general model 

Problem 
Size 

PE 
Count 

Meas. 
(ms) 

Pred. 
(ms) Error 

128 61 66 -8.0% 
256 49 51 -4.0% Medium 
512 44 43 2.9% 
128 170 177 -4.3% 
256 95 100 -4.6% Large 
512 67 67 -1.0% 

 
6. Conclusions 
 

We have described the development of an analytic 
model of a complex hydrodynamics code.  This is part of 
an ongoing effort to develop models and techniques for 
modeling large-scale codes of interest to Los Alamos and 
the national laboratory community.  The performance of 
this particular code is challenging to model because of the 
irregular method of domain decomposition and variations 
in workload on a per-cell basis caused by differences in 
material properties. 

We began by developing an “input-specific” model 
which uses detailed information describing the spatial 
grid’s partitioning and material composition.  While this 
model can be used for validation purposes, it is unsuitable 
for scalability analysis.  A piecewise linear equation 
derived from a regression analysis is used to predict per-
cell computation costs for various materials and sub-sizes.  
However, it can be seen that this model suffers from 
inaccuracies for particular subdomain sizes. 

The observation that subdomains tend to become 
more homogeneous in terms of material composition as 
the number of processors increases led to the development 
of a second “general” model that can be used for rapid 
and accurate modeling at large scale.  Because each 
processor contains cells of only a single material, only the 
most computationally taxing material needs to be 
modeled, significantly simplifying the model’s structure 
and implementation.  We have observed that this is an 

accurate representation of reality at large processor 
counts.  We have validated the general model using two 
spatial grids, and have demonstrated that on 512 
processors,  model accuracy is within 3% (Table 6). 
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Figure 5:  General model validation for medium (top) 

and large (bottom) problems 
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