
A Performance Model of the Krak Hydrodynamics Application

Kevin J. Barker, Scott Pakin, and Darren J. Kerbyson
Performance and Architecture Laboratory (PAL)
Computer and Computational Sciences (CCS-3)

Los Alamos National Laboratory
{kjbarker, pakin, djk}@lanl.gov

Abstract

We present an analytic performance model of a large-
scale hydrodynamics code developed at Los Alamos
National Laboratory. This modeling work is part of an
ongoing effort to develop models and modeling
techniques for large-scale codes and systems of interest to
Los Alamos and the national laboratory community [3].
Krak [1] comprises over 270,000 lines of source code and
is capable of executing on a large number of parallel
processors. Developing an accurate model is
complicated by the irregular partitioning of input spatial
grid cells to processors and the various material
properties assigned to each cell. Model development
proceeds by separating inter-processor communication
from computation and modeling each individually. In
addition, several approximations concerning subgrid size,
shape, and material composition are made which reduce
modeling complexity without adversely impacting
prediction accuracy. We validate our model on several
spatial grid sizes and processor configurations and
demonstrate an accuracy at the largest scale on 512
processors to within a 3% error.

1. Introduction

Expectation of future workload performance is often
a primary criterion in the procurement of a new large-
scale parallel machine. While reliance on developers
performance estimations sufficed in the past, the
development of modeling techniques has made possible
quantitative performance analysis for both current and
near-to-market parallel systems. At Los Alamos National
Laboratory (LANL) analytic performance modeling has
proven useful in the study of future systems as well as in
the optimization of systems after installation [5]. In
addition, models can be useful for quantitatively
evaluating the potential performance benefit of alterations
to the application, such as the data-partitioning
algorithms.

An analytic performance model can be considered a
static representation of a workload’s dynamic
characteristics. Such characteristics include single-
processor computation performance, inter-processor
communication patterns, and the sizes of inter-processor
messages. Performance models relate these

characteristics to features of the input deck (e.g., spatial
grid size and data partitioning method), and provide a
performance estimation given a mapping of tasks onto the
physical machine resources. Therefore, a performance
model is dependent on both application and system
characteristics.

Performance models do not aim to capture the
performance of every line or subroutine in the source
application; instead the model captures the broad aspects
of the workload that have the primary impact on overall
runtime, such as single-processor computation and inter-
processor communication performance. While accurately
modeling single-processor performance from first
principles is an active and important area of research, our
goal is to accurately quantify application performance on
large-scale systems. Therefore, a scalability analysis is
the focus of the model developed here.

The application we describe is a hydrodynamics code
developed at LANL called Krak which consists of over
270,000 lines of source code in both Fortran and C,
spread over more than 1,600 source files. This is a large-
scale, production code capable of scaling to hundreds of
processors by utilizing MPI for inter-processor
communication. Our contribution lies not only in the
development of the analytic performance model of a
significant application utilizing an irregular mesh
partitioning [4], but in the demonstration that careful
approximations can be used to accurately model the
performance of complex applications at large scale.

We begin our discussion in Section 2 with an
overview of the application, including a description of the
modeled input decks. We describe how data is partitioned
among processors and the ramifications of this
partitioning strategy on the modeling effort. We then
discuss the development of the performance model, and
proceed by separating the communication component
from computation, and modeling each individually.
Section 3 describes the performance model for
computation, while Section 4 focuses on communication.
We show that, although the application contains many
variables such as the exact data partitioning among
processors and the properties of the materials contained in
the input deck, a generalized abstraction suffices to
accurately model runtime, thus simplifying the model.
Section 5 describes our work to validate the model, and
we provide data to indicate our model closely predicts

actual application performance. Finally we draw
conclusions in Section 6.

2. Krak Overview

Krak simulates forces propagating through objects
composed of various materials and is often used to
simulate high-energy explosives and object penetrations.
Objects are mapped onto a spatial grid of “cells”, with
each cell being defined by (typically four) “faces”, which
are in turn composed of connections between “nodes”.
“Ghost nodes” are those nodes whose associated faces
comprise boundaries between processors. Each cell in the
spatial grid is assigned exactly one material. Krak is a
Lagrangian code, meaning that the spatial grid deforms as
forces propagate through the objects. “Slip lines” allow
segments of the spatial grid to slide past one another,
allowing the computation to remain numerically stable.
Computation progresses until a specified number of time-
steps or a given length of simulation time has passed.

H
igh-E

xplosive G
as

Aluminum
Foam

Aluminum
H

igh-E
xplosive G

as

Aluminum
Foam

Aluminum

 (a) (b)

Figure 1: Example partitioning of 3200 cells on 16
processors; colors represent processor subgrids and
thick lines represent material boundaries (a); the 3D

cylindrical domain after rotation (b)

The input grid is partitioned into subgrids, with one
subgrid assigned to each processor. Krak executes in
strong-scaling mode, meaning the size of each subgrid in
terms of cells decreases as the number of processors
increases. Partitioning is performed using Metis [2] with
an algorithm to balance cell counts on each processor
while minimizing edge cuts. The partitioning is done in
an irregular fashion (Figure 1), meaning a varying number
of cells of each material is assigned to each processor. In

addition, for a given input grid and processor count, the
communication pattern between processors is not
predictable without knowing precise partitioning
information.

2.1. Input Description

We study three spatial grid sizes, which we term
small (3200 cells), medium, (204,800 cells), and large
(819,200 cells). Each spatial grid contains the same
proportion of four different materials: a core of high
explosive gas, a layer of aluminum, a layer of foam, and a
second layer of aluminum (Figure 1). The rectangular,
2D spatial grid is rotated about a vertical axis so that the
domain becomes a cylinder, with the high explosive gas
forming an inner cylinder at the center. An explosive
detonator is placed on the axis of rotation, slightly below
center.

2.2. Iteration Composition

An iteration is composed of a series of “phases” that
are separated by one or more global reduction operations
which act as synchronization points. Such operations are
used to combine data from every process, often for
operations such as convergence testing or global error
estimation. Table 1 contains a brief description of each
phase. All phases contain some amount of computation,
while several phases contain inter-processor
communication as well. In order to develop a
performance model it is necessary to separate
communication from computation and model each
separately.

Table 1: Summary of Krak activities by phase

Phase
Number Action Sync

Points
1 Broadcast (4 bytes, 8 bytes) 2

2
Bcast (4 bytes, 8 bytes)

Boundary exchange
Gather (32 bytes)

1

3 Computation only 3
4 Ghost node updates (8 bytes) 1
5 Ghost node updates (16 bytes) 1
6 Computation only 3
7 Ghost node updates (16 bytes) 1
8 Computation only 1
9 Computation only 1

10 Computation only 1
11 Computation only 2
12 Computation only 1
13 Computation only 1
14 Computation only 1
15 Broadcast (4 bytes, 8 bytes) 2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Phase Number

Ti
m

e
(s

) -
- N

o
M

PI

Aluminum (Outer)
Foam
Aluminum (Inner)
High-Explosive Gas

Figure 2: Computation time by phase on 256
processors with a spatial grid of 65,536 cells

Figure 2 depicts the time spent in each phase with an

input spatial grid of 65,536 cells. MPI communication
time is not included. Because of the fairly large processor
count, subdomains are homogeneous in terms of
materials. It can be seen that the time required for certain
phases (for instance, phase 14) is material dependent;
computation varies across processors due to cells material
composition. In other phases the computation time is a
function of only the number of cells allocated to a
processor and not the material type of those cells. Each
phase is therefore modeled independently.

3. Modeling Krak Computation

The computation time for an iteration can be
expressed as:

()∑

=

=
Phases

i
iphase

comp

CellsPEsPhasesT

CellsPEsPhasesT

1
,,

),,(
 (1)

In Equation (1), Phases is an array of phase numbers, PEs
is the array of processor IDs, and Cells is a matrix
containing the material ID for each cell assigned to each
processor (Cellij contains the material ID for local cell j
found on processor i).

The computation time for a single phase is stated as:

()

(())∑
=<≤

=
jCells

k
jjk

PEsj

phase

CellsCellsPhaseT

CellsPEsPhaseT

1||0
,,max

,,
 (2)

Here, T() returns the per-cell cost from a piecewise linear
equation given the phase and material type.

Combining Equation (1) with Equation (2) gives the
total computation time for a single iteration:

()

()∑ ∑
= =

<≤

=
Phases

i

Cells

k
jjki

PEsj

comp

j

CellsCellsPhasesT

CellsPEsPhasesT

1 1||0
,,max

,,
 (3)

Note that because phases are separated by global
synchronization events, the time for a given phase is the
maximum time over all processors in that phase.

As described in Section 2, the distribution of
materials within a spatial grid as well as the allocation of
cells to processors has an impact on overall application
performance. Figure 3 illustrates this, indicating the
computation time required per cell varies with both cell
count (per processor) and, for some phases, material type.
We therefore begin modeling computation by first
developing a “mesh-specific” model, which utilizes
precise knowledge concerning material and cell
distribution. While the mesh-specific model should yield
validation information, it is impractical for use in large-
scale scalability analysis and often relies on information
that cannot be known in advance. We then proceed to
describe a “general” model in which several abstractions
and simplifying assumptions are made. The generalized
model utilizes a simplified input which allows for more
rapid model evaluation, making it more useful for
studying application performance at large scale.

3.1. “Mesh-Specific” Model Development

A contrived spatial grid is used to determine how
computation time scales with grid size, and thereby,
through a linear regression, determine the computation
cost per cell of each material. Two processes are
required; in order for a detonation to occur, high-
explosive gas must be present. However, the gas can be
isolated to a single process while the material on the
second process varies. In theory, this allows for the
construction of a piecewise linear equation to describe the
time required for a cell of each material in each phase,
given the number of cells of each material in the local
subgrid. By summing these times, the computation time
required for each subgrid can be calculated.

In practice, this is not always the case. From Figure
3 (center), it can be seen that the cost per cell often
appears constant for larger subgrid sizes. However, as
subgrid size decreases, the cost per cell increases until the
computation time per subgrid approaches a constant
regardless of the number of cells. Capturing the behavior
at the knee of this curve has proven difficult, as the
validation results presented in Section 5 will attest.

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1 10 100 1000 10000 100000 1000000

Cells Per Processor

Ti
m

e
(s

)
HE Gas
Aluminum (Inner)
Foam
Aluminum (Outer)

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1 10 100 1000 10000 100000 1000000

Cells Per Processor

Ti
m

e
(s

)

HE Gas
Aluminum (Inner)
Foam
Aluminum (Outer)

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1 10 100 1000 10000 100000 1000000

Cells Per Processor

Ti
m

e
(s

)

HE Gas
Aluminum (Inner)
Foam
Aluminum (Outer)

Figure 3: Per-cell computation times for Phase 1
(top), Phase 2 (center), and Phase 7 (bottom)

An alternative method for modeling computation

utilizes the actual input domain (not a contrived grid as
previously described) and involves the construction and
solution of a series of linear equations with four variables
(the computation time per cell of each material). A linear
equation is constructed for each phase on each processor;
the solution of this system of equations will provide a per-
cell computation cost (in terms of time) that can then be
fed into the model. Again, it is possible to construct a
piecewise linear equation to allow for interpolation

between measured values. This second method is used
for the validation results presented below. Total
computation time is calculated using Equation (3).
.
3.2. “General” Model Development

The “general” model differs from the mesh-specific
model in that, instead of examining each subgrid
generated by the Metis [2] mesh partitioning algorithm,
the input domain is classified as either heterogeneous or
homogeneous, and the ratio of materials in each subgrid
remains fixed as the number of processors increases. As
before, Equation (3) is used to calculate the total
computation time. A feature of strong-scaling execution
is that as the number of processors scales, the size of each
subgrid decreases, making it more likely that a subgrid
will contain only cells of a single material. Table 2
defines the ratio of materials in these two cases for the
global spatial grid. The ratio of materials used in
heterogeneous mode is derived from the input deck shown
in Figure 1 and would therefore vary from one input to
another. For homogeneous mode, it is assumed that for
each material a subgrid exists that is composed
exclusively of cells of that material. By calculating which
material results in the longest computation time, the time
required for each phase of computation can be
determined.

Table 2: Ratio of materials in Krak general model

Type H.E.
Gas

Aluminum
(Inner) Foam Aluminum

(Outer)
Hetero. 39.1% 17.2% 20.3% 23.4%
Homo. 100% 100% 100% 100%

In reality, because Krak operates in strong-scaling

mode, as the number of processors increases the size of
each processor’s subdomain becomes smaller. The
material composition of each processor’s subdomain
transitions from being more heterogeneous (with the ratio
of materials matching the ratio of materials in the global
spatial grid when only a single processor is used) to more
homogeneous. The Krak model does not yet have a way
to model this transition; however, at large processor
counts, the homogeneous case seems to adequately model
true application behavior.

Each processor’s subdomain is assumed to contain an
equal number of cells. In addition, each subdomain is
assumed to be square, so that each boundary between

processors contains PEsCells faces. Boundary
faces are divided equally among the materials in use. The
number of ghost nodes on each boundary is one more than
the number of boundary faces, and half of the ghost nodes
on each boundary are “local” (i.e., owned by the local

processor) with the remaining half “remote” (owned by
the neighboring processor).

4. Modeling Krak Parallel Communication

Communication during a single program iteration
falls into three categories:

1. Boundary exchanges, in which the size of each
message is dependent upon the number of shared
message faces

2. Ghost node updates, in which the size of each
message is dependent upon the number of ghost
nodes that are “owned” by each member of a
processor pair

3. Collective communications, in which the number
and size of messages are independent of the
spatial grid size and number of processors.

All point-to-point communication operations utilize
asynchronous send operations coupled with blocking
receives. Messages to multiple neighbors are therefore
overlapped: asynchronous sends to each neighbor are
posted, followed by operations to ensure the send
operations have completed, and finally, blocking receives
are posted to receive messages from neighboring nodes.

Basic point-to-point message passing time is modeled
using the following piecewise linear equation:

 (4))()()(STSSLST Bmsg ⋅+=

The term L(S) describes the start-up cost for a message of
S bytes, while TB(S) is the bandwidth cost to send a single
byte between nodes.

4.1. Boundary Exchange

Because the spatial domain is partitioned among
processors in an irregular fashion, each processor has N
neighbors, where N varies across processors. Boundary
exchanges consist of a step for each material, plus one
additional phase. Each phase consists of six messages per
neighboring process. For each pair of processors,
message sizes are a function of both the number of shared
faces of a given material and of the number of ghost
nodes on those faces which are associated with more than
one material.

The first two messages in each set of six are of size
12 bytes times the number of faces of the corresponding
material plus 12 bytes for each ghost node touching more
than one material. The remaining four messages contain
only 12 bytes times the number of faces of the
corresponding material. The six messages in the final,
additional phase are of size 12 bytes times the total
number of faces (independent of material) on the process
boundary. Identical materials (such as the two aluminum

materials in our input deck) are treated as one during
boundary exchanges.

A
lu

m
in

um

A
lu

m
in

um

Fo
am

H
ig

h
Ex

pl
os

iv
e

G
as

Processor PA

Processor PB A
lu

m
in

um

A
lu

m
in

um

Fo
am

H
ig

h
Ex

pl
os

iv
e

G
as

Processor PA

Processor PB

Figure 4: Processor boundary with four materials

As an example, consider Figure 4, in which the
boundary between two processes comprises 3 faces of
high explosive gas, 2 faces of aluminum, 3 faces of foam,
and 2 more faces of aluminum. The message sizes and
tallies are shown in Table 3.

The time required to complete a boundary exchange
operation for one processor with a single neighbor can be
described as:

()

[]

[]() []
∑

∑

=

=

⎩
⎨
⎧ >⋅

+⎟
⎠

⎞
⎜
⎝

⎛ ⋅

=

Materials

i

msg

Materials

i
msg

BE

otherwise
iFacesiFacesT

iFacesT

FacesT

0

0

0
0126

126 (5)

where Faces[] is an array containing the number of
boundary faces for each material type, Tmsg

 is the time
required to send a message of a given size (defined in
Section 4.4), and |Materials| is the number of materials in
the input spatial grid. Tmsg is defined by Equation (4) and
describes the time required to send a message of S bytes
between processors. Note that Equation (5) does not
account for overlapping of messages between different
neighbors, for combining like materials, or for increasing
the size of messages due to ghost nodes lying on material
boundaries.

Table 3: Boundary exchange example

Material Msg.
Count Size of Each Msg (bytes)

2 48 = 3·12 + 1·12 H.E. Gas
4 36 = 3·12
2 84 = 2·12 + 2·12 + 3·12 Aluminum

(both) 4 48 = 2·12 + 2·12
2 60 = 3·12 + 2·12 Foam 4 36 = 3·12

All 6 120 = (2+3+2+3)·12

4.2. Ghost Node Updates

Every ghost node is considered to be “local” to (i.e.,
owned by) exactly one processor. All other processors
which share this node consider it to be “remote”. Ghost
node updates take place in phases 4, 5, and 7 from Table
1. Each phase requires two messages between each
neighboring processor; one for local ghost node updates
and one for remote. In phase 4, 8 bytes are transferred for
each ghost node (Equation 6), and 16 bytes are transferred
for each ghost node in each of phases 5 and 7 (Equation
7).

() () (RmsgLmsgRLGNPhase NTNTNNT 88,4 +=) (6)

() () ()RmsgLmsgRLGNPhase NTNTNNT 1616,7,5 += (7)

Again, note that Equations (6) and (7) do not consider the
overlapping of messages between different neighbors.

4.3. Collective Communication

There are three types of collective communication
operations which take place during each iteration. The
number of operations and size of each message are fixed
and do not vary with problem size or number of
processors. These operations are described in Table 4.

Table 4: Collective communication operations per
iteration

Type Count Size (bytes)
3 4 MPI_Bcast()
3 8
9 4 MPI_Allreduce() 13 8

MPI_Gather() 1 32

Collective communication is modeled as either “fan-
out”, “fan-in”, or “fan-in and fan-out” pattern with
messages reaching every node over a binary-tree
structure. Therefore, a one-to-all communication requires
log(P) messages, and a synchronization point requires
2log(P) messages. The time required for the collective
operations described in Section 4.3 is modeled as:

()
() () () (8log34log3 msgPEmsgPE

PEBroadcast

TNTN
NT

+
=

)

)
)

 (8)

()
() () () (8log264log18 msgPEmsgPE

PEreduceAll

TNTN
NT

+
=−

 (9)

() () (32log msgPEPEGather TNNT = (10)

5. Model Validation

From Sections 3 and 4, an “input-specific” and
“general” performance model encompassing computation
and communication can be constructed. In both cases,
computation time is given by Equation (3).
Communication is given by the summation of Equations
(5 – 10). It is assumed that computation does not overlap
with communication; the overall runtime is the
summation of the computation and communication
components.

5.1. “Input-specific” Model Validation

Validation results are given in Table 5 for two spatial
grid sizes on three different processor configurations.
Validation runs were performed on a 256-node
HP/Compaq machine consisting of ES-45 nodes (4 Alpha
EV-68 processors running at 1.25 GHz), each with 16 GB
of memory. Nodes are connected using a Quadrics
QsNet-I fat-tree network [6].

Table 5: Validation results for mesh-specific model

Problem
Size

PE
Count

Meas.
(ms)

Pred.
(ms) Error

16 27 43 -59.0%
64 88 41 52.7% Small
128 28 30 -10.0%
16 310 290 5.9%
64 88 89 -0.8% Medium
128 61 59 4.5%

In two cases, the predicted runtime was in error by

more than 50%. This is the case near the knee of the per-
cell cost curve described in Section 3 and shown in Figure
3, phase 2. This large error indicates that the linear
regression itself, or the linear interpolation between
measured values in the cost curves are not accurate.
However, for the local cell counts that would be seen
when running a large problem on a large number of
processors, the model is accurate to within 10%. In
addition, we will see in Section 5.2 that large errors are
not observed when using the general model.

5.2. “General” Model Validation

Table 6 contains validation results using the
“general” Krak model with a homogeneous material
distribution. We include only this case in the table as it
more accurately describes material distribution at large
scale; however validation results for both homogeneous
and heterogeneous material distributions are shown in
Figure 5. As expected, the general model with a
homogeneous material distribution validates well,

particularly at larger processor configurations. At large
scale a heterogeneous material distribution is less
accurate; due to the fixed global problem size, as the
processor count increases subgrids become smaller and
therefore more homogeneous. This fact leads to an over-
prediction of runtime in the heterogeneous case caused by
a misprediction in the communication cost. Separate
messages are required for each material that touches a
processor’s subgrid boundary. Because of the small size
of these messages at large scale, the latency suffered by
each message becomes significant. In the homogeneous
case, only a single material touches any subgrid boundary,
meaning fewer boundary-exchange messages are
required.

Table 6: Krak validation results for general model

Problem
Size

PE
Count

Meas.
(ms)

Pred.
(ms) Error

128 61 66 -8.0%
256 49 51 -4.0% Medium
512 44 43 2.9%
128 170 177 -4.3%
256 95 100 -4.6% Large
512 67 67 -1.0%

6. Conclusions

We have described the development of an analytic
model of a complex hydrodynamics code. This is part of
an ongoing effort to develop models and techniques for
modeling large-scale codes of interest to Los Alamos and
the national laboratory community. The performance of
this particular code is challenging to model because of the
irregular method of domain decomposition and variations
in workload on a per-cell basis caused by differences in
material properties.

We began by developing an “input-specific” model
which uses detailed information describing the spatial
grid’s partitioning and material composition. While this
model can be used for validation purposes, it is unsuitable
for scalability analysis. A piecewise linear equation
derived from a regression analysis is used to predict per-
cell computation costs for various materials and sub-sizes.
However, it can be seen that this model suffers from
inaccuracies for particular subdomain sizes.

The observation that subdomains tend to become
more homogeneous in terms of material composition as
the number of processors increases led to the development
of a second “general” model that can be used for rapid
and accurate modeling at large scale. Because each
processor contains cells of only a single material, only the
most computationally taxing material needs to be
modeled, significantly simplifying the model’s structure
and implementation. We have observed that this is an

accurate representation of reality at large processor
counts. We have validated the general model using two
spatial grids, and have demonstrated that on 512
processors, model accuracy is within 3% (Table 6).

Acknowledgements

We are grateful to Scott Runnels and Hank Alme of
Los Alamos for their assistance in providing the version
of Krak and input decks used here. This work was funded
in part by the Accelerated Strategic Computing (ASC)
program for the Department of Energy. Los Alamos
National Laboratory is operated by the University of
California for the U.S. Department of Energy under
contract number W-7405-ENG-36.

0.01

0.1

1

10

1 10 100 1000
Processor Count

Ite
ra

tio
n

Ti
m

e
(s

)

Measured
Homogeneous
Heterogeneous

0.01

0.1

1

10

1 10 100 1000
Processor Count

Ite
ra

tio
n

Ti
m

e
(s

)

Measured
Homogeneous
Heterogeneous

Figure 5: General model validation for medium (top)

and large (bottom) problems

References
[1] D. Burton, Multidimensional Discretization of Conservation
Laws of Unstructured Polyhedral Grids. 2nd International
Workshop on Analytical Methods and Process Optimization in
Fluid and Gas Mechanics, 1994.

[2] G. Karypis, V. Kumar. METIS 4.0: Unstructured Graph
Partitioning and Sparse Matrix Ordering System. Tech. Report,
Dept. Computer Science, University of Minnesota, 1998.

[3] D.J. Kerbyson, H.J. Alme, A. Hoisie, F. Petrini, H.J.
Wasserman, M.L. Gittings. Predictive Performance and
Scalability Modeling of a Large-scale Application. In
IEEE/ACM Supercomputing (SC'01), Nov. 2001.

[4] M.M. Mathis and D.J. Kerbyson. A General Performance
Modeling of Structured and Unstructured Mesh Particle
Transport Computations. Journal of Supercomputing, 34:181-
199, 2005.

[5] F. Petrini, D.J. Kerbyson, S. Pakin. The Case of the Missing
Supercomputer Performance: Achieving Optimal Performance
on the 8,192 Processors of ASCI Q. IEEE/ACM
Supercomputing (SC'03), 2003.

[6] F. Petrini, W.C. Feng, A.Hoisie, S. Coll, E. Frachtenburg.
The Quadrics Network: High-Performance Clustering
Technology. IEEE Micro, 22(1):46-57, 2002.

