
Performance Analysis of a High Energy Colliding Beam Simulation Code on
Four HPC Architectures

Hongzhang Shan1, Ji Qiang2, Erich Strohmaier1, and Kathy Yelick1
Computational Research Division1
Accelerator and Fusion Division

Lawrence Berkeley National Laboratory
One Cyclotron Road, Berkeley, CA 94720

{hshan, jqiang, estrohmaier, kayelick@lbl.gov}

Abstract

The high energy colliders are essential to study the

inner structure of nuclear and elementary particles. A
parallel particle simulation code, BeamBeam3D, has
been developed and actively used to model the beam
dynamics and to optimize the performance of these
colliders. In this paper, we analyzed the performance
characteristics of BeamBeam3D on four leading high
performance computing architectures, including a
massive parallel system, a commodity-based cluster,
an advanced vector platform, and a novel architecture
focused on low power consumption and high density.
We examine how to partition the workload among the
processors to effectively use the computing resources,
whether these platforms exhibit similar performance
bottlenecks and how to address them, whether some
platforms perform substantially better than others, and
finally, the implications of BeamBeam3D for the
design of the next generation supercomputer
architectures.

1. Introduction

Beam-beam interaction from electromagnetic force
of charged particles is a dominant factor limiting
luminosity in modern ring colliders, where two beams
rotate counterwise with each other and collide at
interaction regions. An accurate modeling of the beam-
beam interaction is essential to maximizing the
luminosity in high energy accelerator ring colliders. It
is also critical for building the next generation colliders
such as Large Hadron Collider (LHC); any design
errors will be enormously costly, or even fatal, for this
“big science” project [5]. However, due to the extreme
computational cost required to accurately and self-
consistently model the beam-beam interaction as the

beams circulate for millions of turns, previous studies
are confined to use simplified models. Examples
include the “weak-strong” model, in which only the
“weak” beam is affected by the higher intensify
“strong” beam [2], or soft Gaussian model [3], where
one beam is assumed a priori to have a Gaussian shape.
BeamBeam3D was the first parallel code that can be
used to study this interaction fully self-consistently for
both beams on high-performance computing platforms,
including all the physical processes of long range off-
centroid interactions, finite beam bunch length effects,
and crossing angle collisions. The code has been used
to study the beam-beam interactions at the world’s
highest energy hadron accelerator currently used for
experiments, Fermilab’s Tevatron, at SLAC’s
Positron-Electron Project (PEP-II), at Brookhaven
National Laboratory’s Relativistic Heavy Ion Collider,
and at Japan High Energy Accelerator Research
Organization (KEKB).

Studying the performance of high-end computing
platforms has always been an active topic and a lot of
studies have been conducted. Some of them focus on
overall comparison of different architectures, such as
vector platforms vs. scalar platforms [6,8,9,13]; some
of them focus on the performance of a specific
application [10,11]. This study focuses on
BeamBeam3D, a parallel particle-in-cell code to
simulate beam collision for high energy ring colliders.
Simulating the beam-beam collision for millions of
turns is extremely time-consuming and may take weeks
or even months to finish. Therefore, it is critical to
understand which architectures suit this code well and
how to effectively utilize the available computing
resources since high performance computing users
today can choose between varieties of considerable
different computing platforms to execute their codes.
We select four leading computing architectures for this
study, a custom-built massively parallel system, a

commodity cluster, an advanced parallel vector
platform, and a BlueGene/L (BG/L). We’re interested
in the following questions, for which the results will be
summarized in Section 4: i) How to partition the
workloads among processors to achieve optimal
performance? ii) Are the performance bottlenecks on
these diverse architectures similar or not and how can
they be addressed to improve performance? iii) How
does the performance of these systems compare? and
iv) What are the main architectural requirements of this
challenging application? Sine the particle-in-cell
approach used by BeamBeam3D is a common
approach adopted by many scientific codes, the result
will not only benefit BeamBeam3D, but also other
particle-based codes in molecular dynamics, plasma
physics and cosmology studies. Furthermore, it also
helps computer designers to understand the application
requirements to improve the next generation
architecture design.

The rest of the paper is organized as follows: The
computational method and parallel implementation are
described in Section 2. In Section 3, the four platforms
are introduced, followed by the discussion of workload
partition among the processors, analysis of execution
time, performance optimization, and performance
comparison. Finally, in Section 4, we summarize our
results.

2. Computational methods and
implementations for BeamBeam3D

BeamBeam3D models the colliding process of two
counter-rotating charged particle beams moving at
speeds close to the speed of light. Under the paraxial
approximation, for the relativistic charged beam, the
electric forces and the magnetic forces will cancel each
other within the beam. However, for the colliding
beams, moving in the opposite directions, the electric
forces and the magnetic forces add up. The resulting
beam-beam force is a strongly nonlinear interaction
that can significantly affect the motion of the charged
particles. We use a multiple slice model to calculate
the electromagnetic forces. In this model, each beam is
divided into a number of slices along the longitudinal
(Z direction in Fig. 2) direction in the moving frame.
Each slice contains nearly the same number of particles
at different longitudinal locations z. The colliding
process for two beams that have been divided into 2
slices is illustrated in Fig. 1. During each step, only the
red (gray) slices from opposite beams collide with each
other.

There are two important domains in BeamBeam3D,
particle domain and field domain. The particle domain
is the configuration space containing the charged

particles, and the field domain is the space where the
electric field is generated by the charged particles. In
the field domain decomposition, the whole
computational domain is divided into a number of
subdomains, and each subdomain together with the
particles inside it is assigned to a processor. Since all
particles are local to a processor, the Poisson equation,
which has been used to compute the electric and
magnetic forces for the field, is solved on the grid and
the particles are advanced using the electromagnetic
fields. However, in the next turn, the particles

2 1

1 2

2 1

1 2 1 2

2 1

Step: (1) (2) (3)

belonging to a subdomain may have moved to other
subdomains. Therefore, the processors of different
subdomains have to exchange particles with each
other. Due to the fact that in the accelerator, the lattice
map outside the interaction point may cause significant
particle movement, the effective communication
pattern can end up as all-to-all communication and the
data volume could be very large.

In the case of particle decomposition, only the
particles are evenly distributed among the processors
regardless of their physical positions; and the
computational domain is shared by all processors, i.e.,
every processor owns the whole computational
domain. To solve the Poisson equation, the particles
are deposited onto the global computational grid,
collected and broadcast to all processors. Each
processor now owns the charge density distribution of
the whole domain, and the Poisson equation is solved
locally. This approach ensures perfect load balance but
it does not take advantage of the parallelism in the
solution of the Poisson equation.

BeamBeam3D adopts a novel particle-field
decomposition approach to combine the advantages of
both domain decomposition and particle
decomposition, which has been demonstrated to deliver

Figure 1. The colliding process for two 2-
slice oppositely moving strong beams. It
takes three steps to finish. The red (gray)
slices are colliding slices. The blank
slices are non-colliding slices. Beam1 is
on top and Beam2 is at bottom.

better performance than either particle decomposition
or domain decomposition alone [1,13]. In this
approach, each processor possesses the same number
of particles and the same number of computational grid
points, i.e., a spatial subdomain of the same size. Fig. 2
shows a schematic plot of the particle-field
decomposition among eight processors. The total
number of processors is divided into two groups, with
each group responsible for one beam. We furthermore
divide each beam longitudinally (Z direction) into a
specified number of slices (Nslice = 4 in Fig. 2). The
processors in each group are arranged logically into a
two-dimensional array Pz*Py to partition the
computational domain, with each column (Py) of the
array containing a number of slices which are assigned
to this column of processors cyclically along the
longitudinal direction. This gives a good load balance
of slices among different column processors. Within
each column, the computational grid associated with
each slice is decomposed uniformly among all the
column processors. This allows us to parallelize the
solution of the Poisson equation.

The spatial coordinates of the particles for each
processor may not fall within the spatial mesh domain
of that processor. During the solution of the Poisson
equation, the particles are first deposited onto the
computational grid to obtain the charge density
distribution. For the particles with spatial positions
outside the local subdomain, an auxiliary
computational grid is used to store the charge density.
After the deposition, the charge density stored on the
auxiliary grid will be sent to the processor owing that
subdomain. With the charge density local to each
processor, the Poisson equation is solved in parallel on
a local subdomain using the shifted Green function

method [1]. Since each processor contains the same
number of computational grid points, the workload is
well balanced among all processors. However, as in all
domain decomposition approaches, load imbalance
could occur across row processors when the number of
colliding slices during the colliding process is not a
multiple of the number of processor rows.

The solution of the electric potential on the local
subdomain is sent to all processors and the electric
field is calculated on the grid and interpolated onto
individual particles of the opposite beam. The particles
are advanced using the electromagnetic field and the
external maps. Since each processor contains the same
number of particles, the work of this process is also
well balanced across processors. The volume of
communication in the particle-field decomposition
approach is proportional to the number of
computational grid points instead of the number of
moving particles in the domain decomposition
approach. Since, in the study of beam-beam
interactions, the number of particles is potentially
much larger than the number of computational grid
points, the particle-field decomposition approach can
significantly reduce the communication cost in the
simulation. The code is developed in F90 and MPI.

3. Performance analysis and discussion

In our tests, we only simulated 100 turns for the
performance study since the time taken by each turn
does not change much. The number of particles for
each beam is five million and each beam is divided
into eight slices longitudinally. Using more particles
and longitudinal slices will reduce the random

Figure 2. Schematics of the particle-field decomposition for 8 processors

sampling effects and improve the resolution in the
simulation, but may also significantly increases the
computing time. For most applications, a few million
particles with five to ten slices will be sufficient for the
convergence of the luminosity calculation. The
computational grid size is 256*256*32 in X, Y, and Z
direction.

3.1. Test platforms

We select four high-performance computing
platforms, representing four different types of leading
architectures.
• Seaborg is a massively parallel system located at
Lawrence Berkeley National Laboratory (LBNL). It
contains 380 SMP nodes which are interconnected
with the IBM Colony-II switch using an omega-type
topology. Each Nighthawk II node consists of
sixteen 375MHz Power3-II processors. The peak
performance of a processor is 1.5GFlops/s.
• Jacquard is a typical commodity-component
based cluster platform also located at LBNL. Each
node contains two 2.2 GHz Opteron processors
connected via InfiniBand fabric in a fat-tree
configuration. The peak performance of a processor
is 4.4GFlops/s.
• SX8 is an advanced vector platform located at
High Performance Computer Center (HLRC) in
Stuttgart, Germany. It contains 72 SMP nodes (8
processors) connected via a custom single-stage
crossbar. The SX-8 processor operates at 2 GHz with
peak performance of 16Gflops/s.
• BlueGene/L is novel computer architecture,

located at Argonne National Laboratory. It uses the
computationally less powerful but much more power
efficient processor PowerPC440 running at 700 MHz
with peak performance of 2.8GFlops/s. There are a
total of 1024 dual PowerPC440 nodes connected by
five special interconnect networks for I/O, debug,
and interprocessor communication. A three
dimensional torus is the major data communication
network for applications. A collective network
allows data to be sent from any node to all other
nodes or a subset of nodes.

3.2. Partitioning the workloads among
processors

One critical step to enable the applications to run
well on parallel platforms is to be able to efficiently
partition the workloads among the processors. In
BeamBeam3D, the particles are evenly partitioned
among the processors. However, in order to obtain
optimal performance, we find that the partition of the

field domain, i.e., the selected values of Pz and Py,
should be dynamically adjusted based on the number
of processors actually used and consider both the
computation and communication cost. This is different
from purely pursuing workload balance. Fig. 3 shows
the total running time on Jacquard for different
combinations of Pz *Py (Pz =1,2,4,8, Pz <= Nslice). We
can clearly find that the performance is highly affected
by the selection of Pz and Py.

Figure 3. The performance on Jacquard for
different partitions under different number of

processors

As we know, the spatial coordinates of the particles

belonging to a processor are not confined within its
assigned computational domain and are scattered all
over the computational space. Therefore, during the
process of depositing the particles to the computational
domain to obtain the charge density distribution, a
processor responsible for a specified subdomain has to
collect this information from all other processors
(deposit). This process is organized into two phases,
collecting in column direction first and then in row
direction. After solving the Poisson equation locally
with the collected charge density, the solution of the
electric potential on the local subdomain is broadcast
to the opposite group to compute the electric field and
advance the particles (scatter). The number of
messages and the message sizes in the deposit and
scatter phases are closely related with the values of Pz
and Py.

For 32 processors, Pz = 1 delivers the best
performance. This is because computation dominates
the performance at this scale and most of the time is
spent on solving the Poisson equation using the shifted
Green function. In this case, reducing the computation
time is most important. Pz = 1 means a slice will be
partitioned among sixteen processors (in Y direction)
and each one is responsible to solve the Poisson
equation for 1/16 of the slice; while Pz = 8 indicates
only two processors are available for a slice. Therefore,
the time to solve the equation will be substantially
increased.

However, with an increasing number of processors, a
value of Pz >1 starts to improve the performance. For
64, 128, and 256 processors, selecting value of 2, 4,
and 8 respectively will deliver the best performance.
This is because communication gradually becomes the
dominant performance factor. Assigning more
processors in Z direction will lead to fewer messages
and larger message sizes, which will reduce the
communication cost. Table 1 shows the approximate
numbers of messages per processor in different stages
and corresponding message sizes. The transpose
happens during the solution of the Greens function and
Poisson equation. We can clearly find that the message
sizes when Pz = 8 is at least eight times larger than the
message sizes when Pz = 1. This is also true on other
platforms. With the increase of the number of
processors, assigning more processors in Z direction
will help to improve the performance. For the
remainder of this study we will use the performances
obtained by the best combination of Pz and Py.

Table 1. The No. of messages and message
sizes (KB)

 P = 32 P = 256
 Pz = 1 Pz = 8 Pz = 1 Pz = 8
 Size No. Size No. Size No. Size No.
Deposit 32 960 256 169 4 8192 32 1065
Scatter 32 1024 256 233 4 8192 32 1129
Trans-
pose 8 450 512 30 1/8 3810 8 3600
Trans-
pose 4 3840 256 256 1/16 32512 4 3840

3.3. Performance Bottleneck Analysis

In order to analyze the performance bottleneck,
each turn of the beam collision is logically divided into
the following major phases:
• Preprocessing: compute shift and sigma, transfer
coordinates for particles, and update the physical
domain size
• Slicing: divide the particles into Nslice slices
• Greenf: compute the Green function for the solver
• DepositLocal: deposit local particles into the field
to obtain the charge density
• DepositGlobal: collect charge density from other
processors for local subdomain
• FieldSolver: solve the Poisson equation
• ScatterGlobal: scatter the local electric potential to
processors in opposite group
• ScatterLocal: apply the electric field to local
particles

• Postprocessing: transfer the coordinates back,
apply linear and non-linear map, apply radiation
damping and quantum excitation
• I/O: output information to files

Figure 4. The pre-optimized time breakdowns

for a 256-processor run

Fig. 4 shows the time distribution for a 256-
processor run for these phases on four platforms. The
time spent for each phase is the average time across all
256 processors. The breakdown for the SX8 differs
substantially from the other platforms. The I/O phase,
which takes little time on other platforms, consumes
approximately 18% of the total cycles. The slicing
phase and the FieldSolver phase on the SX8 also
consumes higher percentage of the total cycles. In
contrast to this, the ScatterGlobal and DepositGlobal
communication phases perform much better on the
SX8. The time breakdowns for Seaborg, BG/L, and
Jacquard are much more similar. They are all
dominated by communication phases. However, the
percentages of time needed by the different phases still
show differences. For example, BG/L spent much high
percentage of time on FieldSolver phase while
Jacquard consumes higher percentage on Greenf. Note
that the higher percentage does not necessarily mean
that their actual running time is higher.

The different time breakdowns in Fig. 4 indicate
that each architecture may exhibit its own unique
bottlenecks and need to be solved individually though
all platforms suffer from the high communication cost.
Now let’s examine how to improve the performance on
the SX8. Different steps in the optimization process on
the SX8 are shown in Fig. 5. The first version labeled
as Vectorized.which runs three times faster than the
original version, is obtained by rewriting many of the
loop bodies using coding techniques such as dividing
large loop bodies into several smaller loops, extracting
complex math operations out of loop bodies, and
adding compiler directives. Its breakdown shows that

the slicing phase, which cannot be easily vectorized,
takes almost 17% of the total running time. In order to
vectorize this phase, the virtual processor concept is
used [4]. Each element of the vector register is viewed
as a virtual processor. Each virtual processor is then
assigned a portion of the particles and a set of
independent auxiliary data structures so that it can
work exactly as a processor. This optimization reduces
the time of the slicing phase from over 17% to less
than 1% of the total running time. The next step is to
optimize the I/O phase. At the end of each turn, the
processor of rank zero collects information from all
other processors and writes them to multiple files. An
easy optimization is to aggregate the messages to
reduce output frequency. This approach turns out to be
very effective.

Figure 5. The process of optimizing

performance on the SX8

Table 2. The 1D FFT time and total running
time for 256 processors

 1D FFT Time (s)

 SX8 Seaborg BlueGene/L Jacquard

Original 13.2 15.4 22.6 3.9
Optimized 0.9 3.3 3.9 1.5

Speedup 14.6 4.7 5.8 2.6

 BeamBeam3D Running Time (s)
Original 60.0 573.0 389.0 116.6

Optimized 40.0 495.0 362.0 116.1
Speedup 1.50 1.16 1.07 1.00

Finally, we optimize the 1D FFTs which are heavily

used in the FieldSolver and Greenf phases. The
original implementation could not be vectorized and
becomes a performance bottleneck. We replace them
with vendor supplied 1D FFT routines. From the 1D
FFT time breakdown in Fig. 5, we see that the time for
FieldSolver and Greenf phases has been significantly
reduced. In addition, the time for ScatterGlobal phase
is also reduced. This is related to the load imbalance in

the FieldSolver phase. Since only processors that own
colliding slices will participate in solving the Poisson
equations while other processors simply wait to receive
the results, some load imbalance will occur and this is
difficult to be avoided in multi-slice beam models.
Therefore, the times needed for the FieldSolver phase
are different across processors, but the sum of
FieldSolver and ScatterGlobal phases is almost equal.
If the process of solving the Poisson equation can be
accelerated, the waiting time in the ScatterGlobal
phase will also be correspondingly reduced.

The optimizations for the I/O and Slicing phases on
SX8 have almost no effect on Seaborg, BG/L, and
Jacquard since both phases are insignificant there.
However, the use of vendor supplied FFT benefits all
platforms. Table 2 displays the 1D FFT running time
and the total application running time before and after
using vendor supplied FFT (original vs. optimized).
The effect of this optimization varies widely across
different platforms. In the best case, the 1D FFT time
has been improved 14.6 times, leading to 33%
reduction in total running time on SX8. In the worst
case, the 1D FFT time has been reduced 2.6 times but
only has negligible effect on total running time on
Jacquard. The 1D FFT is not a problem there, the
communication is. We have tried to use fewer larger
messages to reduce communication cost through
optimal processor partitions. Another way is to take
advantage of the communication hierarchy to allow as
many as possible communications occur inside SMP
nodes instead of between SMP nodes. This work is still
under progress.

3.4. Performance comparison and architecture
implication

Fig. 6 displays the best performance obtained on
each platform for different number of processors in
log-log scale. Seaborg performs worst among all four
platforms. BG/L is 30%-40% better than Seaborg and
Jacquard is around 65% better than BG/L. The SX8
delivers the best performance and is about two times
faster than Jacquard and more than ten times better
than Seaborg does. The crossbar interconnect on the
SX8 provides the highest bisection bandwidth among
these four platforms, 4096GB/s for 256 processors;
while Seaborg provides the worst bisection bandwidth
32GB/s for 256 processors. Correspondingly, the
communication times needed for a 256 processor run
are 30.1, 60.9, 199.7, 378.3 seconds on SX8, Jacquard,
BG/L, and Seaborg, respectively. The results indicate
that higher bisection bandwidth is essential for this
kind of application to work well.

The parallel efficiency degrades very fast for all
systems. If we use the performance of 32 processors as
the reference point, the parallel efficiency drops to
around 22% for 256 processors. The poor scaling
behavior is mainly attributed to the non-decreasing
communication time, which consumes only around
20% of the total cycles for 32 processors but increased
to over 60% for 256 processors.

Figure 6. The achieved best performance on
different platforms

The communication is dominated by global

gather/scatter operations. Once the field domain size
has been defined, the total communication volume is
almost fixed regardless of the concurrency. Table 3
shows the total communication volume sent by the
processor on the critical path in the DepositGlobal,
ScatterGlobal, FieldSolver, and Greenf phases on
Jacquard.

 Table 3. The measured and predicted

communication performance on Jacquard

 32 64 128 256
Pz 1 2 4 8
Vol. (MB) 75.33 74.03 74.17 75.81
Time(s) Measured 54.01 49.86 52.52 53.73
Time(s) Modeled 47.21 45.51 45.16 45.97
Time(s) Modeled
Bandwidth * 2

26.08 24.75 24.35 24.71

Time(s) Modeled
Latency * 0.5

44.73 43.52 43.38 44.24

The total amount of data sent by a processor is

around 75MB. The time needed to send the messages
is almost flat. Remember that we use the optimal
partition for each case. If not, the communication time
could go much higher. We develop a simple model to
test how the change of the bandwidth and latency will
affect the communication time. The model is based on
the measured latency and peak bandwidth obtained

through a MPI performance probe, in which every
processor in a SMP node will pingpong messages with
its pair in another SMP node so that contention effect
will be included. This simple model was able to
correctly predict the flat timing increase trend with
error bound of 17% on Jacquard. This model also
works well on other platforms. Based on this model, if
we double the available bandwidth, the communication
time will reduce over 50%. This indicates that this
demanding code should benefit substantially from the
higher bandwidth, at least at the scale we tested.

Since the communication volume does not change
much with the number of processors, using more
processors will decrease the message size and increase
the number of messages. Therefore, the performance
will become more latency sensitive. In table 3, we
show the predicted communication time by halving the
network latency on Jacquard. We find that at this scale
the latency only has a slight effect to the total
communication time, which is reduced less than 5%.
However, the latency effect will become explicit when
we use large number of processors. Table 4 shows the
latency effect for the 2048-processor case. If we reduce
the latency to its half, the communication time could
become 25 - 81% lower, depending on the partition
used. Here, the latency refers not only the network
latency but also the software overhead to send /receive
the messages. One possible approach to reduce latency
is to move the global scatter/gather operation into the
network and exploit the concurrency provided by some
advanced interconnects [14,15].

Table 4. The predicted latency effect on 2048

processors on Jacquard

Pz 1 2 4 8
Time (s),
Latency * 1.0

371 170 95 65

Time (s),
Latency * 0.5

204 104 67 52

Ratio 1.82 1.63 1.42 1.25

Regarding local operations, the times needed for a

256-processor run is 14.9, 46, 108, and 116 seconds on
SX8, Jacquard, BG/L, and Seaborg, respectively. The
vector architecture of SX8 really excels itself for this
code after spending significant effort on optimizing the
code. Providing the virtual vector units [16] inside the
superscalar architecture may be one promising
approach for future processor designs. The achieved
percentage of peak on this four platforms ranges from
6.71% to 11.61%. This relatively low percentage of
peak performance is partly due to the large amount of

data movement in some phases, which consumes a lot
of cycles but do not contribute to Mflops at all.

4. Summaries

In this paper, we analyzed the performance
characteristics of BeamBeam3D on four leading
computing platforms. First, the strategy to partition the
workload among the processors has been examined.
We find that, in order to achieve optimal performance,
purely pursuing workload balance is not enough.
Instead, we should focus on alleviate the performance
dominant factor, enabling the partition to minimize the
communication time or computation time whichever
becomes dominant. Therefore, the optimal partition is
dynamically changed with the number of processors
used and the platforms to work on.

We also find that the code may exhibit different
performance bottlenecks across architectures. Some
negligible phases on one platform may cause serious
performance problems on another one and have to be
addressed individually. The optimizations applied on
one platform may or may not be effective on other
platforms. For example, using the vendor-supplied FFT
improves the total running time 33% on SX8, but has
almost no effect on Jacquard.

The best performance is delivered on SX8. For a
256-processor run, each turn takes about 0.45 seconds,
which is about 2.6 times better than Jacquard, 6.8 times
better than BG/L, and 11 times better than Seaborg.
But the parallel efficiency degrades fast with the
increase of the number of processors. The
communication becomes a scaling bottleneck. Results
indicate that providing higher bisection bandwidth
should significantly improve the application
performance, such as SX8 does. However, with large
number of processors, the code’s performance will
become more sensitive to network latency. Therefore,
in order to run this demanding code well on large
number of processors, the platform should provide
much lower latency than the current machines provide.
Moving the global scatter/gather operation into the
network and fully take advantage of the network
concurrency may be able to help to lower the latency.
SX8 also excels on the local computations. Its vector
processing units perform significantly better for this
application than the superscalar processors. Providing
the virtual vector units inside the superscalar
architecture may be one approach for future processor
designs.

ACKNOWLEDGMENT
We would like to thank NERSC, Argonne National

Laboratory, and HLRS to provide us access to their

platforms. We would also like to thank anonymous
reviewers for their insightful comments and
suggestions.

REFERENCES

 [1] J. Qiang, M.A. Furman, R.D.Ryne, “A parallel particle-

in-cell model for beam-beam interaction in high energy ring
colliders”, J. Comput. Phys. 198 (2004) 278-294.

[2] K. Hirata, H. Moshammer, F. Ruggiero, “A symplectic
beam-beam interaction with energy change”, Particle Accel.
40 (1993) 205-228.

[3] M.A. Furman, “Beam-beam simulations with the
gaussian code TRS”, LBNL-42669, CBP Note272, 1999.

[4] H. Shan, E. Strohmaier “Performance Characterization of
Cray X1 and Their Implications for Application
Performance Tuning”, International Conference of
Supercomputing, Malo, France, June 2004.

[5] J. Berkowitz, “Model Colliders”, DEIXIS 2004-2005
THE DOE Computational Science Graduate Fellowship
ANNUAL.

[6] L. Oliker, J. Carter, M. Wehner, A. Canning, et. al.,
“Leading Computational Methods on Scalar and Vector
HEC Platforms”, SC 2005, Seattle, Washington, Nov. 2005.

[7] E. Strohmaier, J. J. Dongarra, H. W. Meuer, and H. D.
Simon, “Recent Trends in the Marketplace of High
Performance Computing”, Parallel Computing, vol. 31,
Mar. 2005.

[8] T. H. Dunigan, M. R. Fahey, J. B. White III, P. H.
Worley, “Early Evaluation of the Cray X1”, SC2003,
Phoenix, AZ, Nov. 2003.

[9] K. Davis, A. Hoise, G. Johnson, D. J. Kerbyson, M.
Lang, S. Pakin, F. Petrini, “A performance and scalability
analysis of the BlueGene/L architecture”, SC2004,
Pittsburgh, PA.

[10] T. Pohl, F. Deserno, N. Thürey, U. Rüde, P. Lammers,
G. Wellein, and T. Zeiser, “Performance evaluation of
parallel large-scale lattice boltzmann applications on three
supercomputing architectures”, SC2003, Phoenix, AZ, Nov.
2003.

[11] M. R. Fahey, J. Candy, “GYRO: A 5-D gyrokinetic-
maxwell solver”, SC2003, Phoenix, AZ, Nov. 2003.

[12] A Science-Based Case for Large-Scale Simulation
(SCALES). http://www.pnl.gov/scales.

[13] L. Oliker, A. Canning, J. Carter, J. Shalf, and S. Either,
“Scientific computations on modern parallel vector
systems”, SC 2004, Pittsburgh, PA.

 [14] V. Tipparaju, J. Nieplocha, “Optimizing All-to-All
Collective Communication by Exploiting Concurrency in
Modern Networks”, SC05, Seattle, Washington, Nov. 2005

[15] A. Manidala, J. Liu, and D. K. Panda, “Efficient Barrier
and Allreduce on IBA clusters using hardware multicast and
adaptive algorithms”, IEEE Cluster Computing, San Diego,
CA, 2004.

[16] C. W. McCurdy, R. Stevens, H. Simon, W. Kramer, D.
Bailey, W. Johnston, C. Catlett, R. Lusk, T. Morgan, J.
Meza, M. Banda, J. Leighton, and J. Hules, “Creating
Science-Driven Computer Architecture: a New Path to
Scientific Leadership”, http://www.nersc.gov/news/reports.

