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Abstract 

 
The high energy colliders are essential to study the 

inner structure of nuclear and elementary particles. A 
parallel particle simulation code, BeamBeam3D, has 
been developed and actively used to model the beam 
dynamics and to optimize the performance of these 
colliders. In this paper, we analyzed the performance 
characteristics of BeamBeam3D on four leading high 
performance computing architectures, including a 
massive parallel system, a commodity-based cluster, 
an advanced vector platform, and a novel architecture 
focused on low power consumption and high density. 
We examine how to partition the workload among the 
processors to effectively use the computing resources, 
whether these platforms exhibit similar performance 
bottlenecks and how to address them, whether some 
platforms perform substantially better than others, and 
finally, the implications of BeamBeam3D for the 
design of the next generation supercomputer 
architectures. 
 
1. Introduction 
 

Beam-beam interaction from electromagnetic force 
of charged particles is a dominant factor limiting 
luminosity in modern ring colliders, where two beams 
rotate counterwise with each other and collide at 
interaction regions. An accurate modeling of the beam-
beam interaction is essential to maximizing the 
luminosity in high energy accelerator ring colliders. It 
is also critical for building the next generation colliders 
such as Large Hadron Collider (LHC); any design 
errors will be enormously costly, or even fatal, for this 
“big science” project [5]. However, due to the extreme 
computational cost required to accurately and self-
consistently model the beam-beam interaction as the 

beams circulate for millions of turns, previous studies 
are confined to use simplified models. Examples 
include the “weak-strong” model, in which only the 
“weak” beam is affected by the higher intensify 
“strong” beam [2], or soft Gaussian model [3], where 
one beam is assumed a priori to have a Gaussian shape. 
BeamBeam3D was the first parallel code that can be 
used to study this interaction fully self-consistently for 
both beams on high-performance computing platforms, 
including all the physical processes of long range off-
centroid interactions, finite beam bunch length effects, 
and crossing angle collisions. The code has been used 
to study the beam-beam interactions at the world’s 
highest energy hadron accelerator currently used for 
experiments, Fermilab’s Tevatron, at SLAC’s 
Positron-Electron Project (PEP-II), at Brookhaven 
National Laboratory’s Relativistic Heavy Ion Collider, 
and at Japan High Energy Accelerator Research 
Organization (KEKB). 

Studying the performance of high-end computing 
platforms has always been an active topic and a lot of 
studies have been conducted. Some of them focus on 
overall comparison of different architectures, such as 
vector platforms vs. scalar platforms [6,8,9,13]; some 
of them focus on the performance of a specific 
application [10,11]. This study focuses on 
BeamBeam3D, a parallel particle-in-cell code to 
simulate beam collision for high energy ring colliders. 
Simulating the beam-beam collision for millions of 
turns is extremely time-consuming and may take weeks 
or even months to finish. Therefore, it is critical to 
understand which architectures suit this code well and 
how to effectively utilize the available computing 
resources since high performance computing users 
today can choose between varieties of considerable 
different computing platforms to execute their codes. 
We select four leading computing architectures for this 
study, a custom-built massively parallel system, a 



commodity cluster, an advanced parallel vector 
platform, and a BlueGene/L (BG/L). We’re interested 
in the following questions, for which the results will be 
summarized in Section 4: i) How to partition the 
workloads among processors to achieve optimal 
performance? ii) Are the performance bottlenecks on 
these diverse architectures similar or not and how can 
they be addressed to improve performance? iii) How 
does the performance of these systems compare? and 
iv) What are the main architectural requirements of this 
challenging application? Sine the particle-in-cell 
approach used by BeamBeam3D is a common 
approach adopted by many scientific codes, the result 
will not only benefit BeamBeam3D, but also other 
particle-based codes in molecular dynamics, plasma 
physics and cosmology studies. Furthermore, it also 
helps computer designers to understand the application 
requirements to improve the next generation 
architecture design. 

The rest of the paper is organized as follows: The 
computational method and parallel implementation are 
described in Section 2. In Section 3, the four platforms 
are introduced, followed by the discussion of workload 
partition among the processors, analysis of execution 
time, performance optimization, and performance 
comparison. Finally, in Section 4, we summarize our 
results. 
 
2. Computational methods and 
implementations for BeamBeam3D 
  

BeamBeam3D models the colliding process of two 
counter-rotating charged particle beams moving at 
speeds close to the speed of light. Under the paraxial 
approximation, for the relativistic charged beam, the 
electric forces and the magnetic forces will cancel each 
other within the beam. However, for the colliding 
beams, moving in the opposite directions, the electric 
forces and the magnetic forces add up. The resulting 
beam-beam force is a strongly nonlinear interaction 
that can significantly affect the motion of the charged 
particles. We use a multiple slice model to calculate 
the electromagnetic forces. In this model, each beam is 
divided into a number of slices along the longitudinal 
(Z direction in Fig. 2) direction in the moving frame. 
Each slice contains nearly the same number of particles 
at different longitudinal locations z. The colliding 
process for two beams that have been divided into 2 
slices is illustrated in Fig. 1. During each step, only the 
red (gray) slices from opposite beams collide with each 
other. 

There are two important domains in BeamBeam3D, 
particle domain and field domain. The particle domain 
is the configuration space containing the charged 

particles, and the field domain is the space where the 
electric field is generated by the charged particles. In 
the field domain decomposition, the whole 
computational domain is divided into a number of 
subdomains, and each subdomain together with the 
particles inside it is assigned to a processor.  Since all 
particles are local to a processor, the Poisson equation, 
which has been used to compute the electric and 
magnetic forces for the field, is solved on the grid and 
the particles are advanced using the electromagnetic 
fields. However, in the next turn, the particles 
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belonging to a subdomain may have moved to other 
subdomains. Therefore, the processors of different 
subdomains have to exchange particles with each 
other. Due to the fact that in the accelerator, the lattice 
map outside the interaction point may cause significant 
particle movement, the effective communication 
pattern can end up as all-to-all communication and the 
data volume could be very large.  

In the case of particle decomposition, only the 
particles are evenly distributed among the processors 
regardless of their physical positions; and the 
computational domain is shared by all processors, i.e., 
every processor owns the whole computational 
domain. To solve the Poisson equation, the particles 
are deposited onto the global computational grid, 
collected and broadcast to all processors. Each 
processor now owns the charge density distribution of 
the whole domain, and the Poisson equation is solved 
locally. This approach ensures perfect load balance but 
it does not take advantage of the parallelism in the 
solution of the Poisson equation. 

BeamBeam3D adopts a novel particle-field 
decomposition approach to combine the advantages of 
both domain decomposition and particle 
decomposition, which has been demonstrated to deliver 

Figure 1. The colliding process for two 2-
slice oppositely moving strong beams. It 
takes three steps to finish. The red (gray) 
slices are colliding slices. The blank 
slices are non-colliding slices. Beam1 is 
on top and Beam2 is at bottom. 



better performance than either particle decomposition 
or domain decomposition alone [1,13]. In this 
approach, each processor possesses the same number 
of particles and the same number of computational grid 
points, i.e., a spatial subdomain of the same size. Fig. 2 
shows a schematic plot of the particle-field 
decomposition among eight processors. The total 
number of processors is divided into two groups, with 
each group responsible for one beam. We furthermore 
divide each beam longitudinally (Z direction) into a 
specified number of slices (Nslice = 4 in Fig. 2). The 
processors in each group are arranged logically into a 
two-dimensional array Pz*Py to partition the 
computational domain, with each column (Py) of the 
array containing a number of slices which are assigned 
to this column of processors cyclically along the 
longitudinal direction. This gives a good load balance 
of slices among different column processors. Within 
each column, the computational grid associated with 
each slice is decomposed uniformly among all the 
column processors. This allows us to parallelize the 
solution of the Poisson equation. 

The spatial coordinates of the particles for each 
processor may not fall within the spatial mesh domain 
of that processor. During the solution of the Poisson 
equation, the particles are first deposited onto the 
computational grid to obtain the charge density 
distribution. For the particles with spatial positions 
outside the local subdomain, an auxiliary 
computational grid is used to store the charge density. 
After the deposition, the charge density stored on the 
auxiliary grid will be sent to the processor owing that 
subdomain. With the charge density local to each 
processor, the Poisson equation is solved in parallel on 
a local subdomain using the shifted Green function 

method [1]. Since each processor contains the same 
number of computational grid points, the workload is 
well balanced among all processors. However, as in all 
domain decomposition approaches, load imbalance 
could occur across row processors when the number of 
colliding slices during the colliding process is not a 
multiple of the number of processor rows. 

The solution of the electric potential on the local 
subdomain is sent to all processors and the electric 
field is calculated on the grid and interpolated onto 
individual particles of the opposite beam. The particles 
are advanced using the electromagnetic field and the 
external maps. Since each processor contains the same 
number of particles, the work of this process is also 
well balanced across processors. The volume of 
communication in the particle-field decomposition 
approach is proportional to the number of 
computational grid points instead of the number of 
moving particles in the domain decomposition 
approach. Since, in the study of beam-beam 
interactions, the number of particles is potentially 
much larger than the number of computational grid 
points, the particle-field decomposition approach can 
significantly reduce the communication cost in the 
simulation. The code is developed in F90 and MPI. 

 

3. Performance analysis and discussion 
 

In our tests, we only simulated 100 turns for the 
performance study since the time taken by each turn 
does not change much. The number of particles for 
each beam is five million and each beam is divided 
into eight slices longitudinally. Using more particles 
and longitudinal slices will reduce the random 

Figure 2. Schematics of the particle-field decomposition for 8 processors 



sampling effects and improve the resolution in the 
simulation, but may also significantly increases the 
computing time. For most applications, a few million 
particles with five to ten slices will be sufficient for the 
convergence of the luminosity calculation. The 
computational grid size is 256*256*32 in X, Y, and Z 
direction. 
 
3.1. Test platforms 
 

We select four high-performance computing 
platforms, representing four different types of leading 
architectures.  
• Seaborg is a massively parallel system located at 
Lawrence Berkeley National Laboratory (LBNL). It 
contains 380 SMP nodes which are interconnected 
with the IBM Colony-II switch using an omega-type 
topology. Each Nighthawk II node consists of 
sixteen 375MHz Power3-II processors. The peak 
performance of a processor is 1.5GFlops/s.  
• Jacquard is a typical commodity-component 
based cluster platform also located at LBNL. Each 
node contains two 2.2 GHz Opteron processors 
connected via InfiniBand fabric in a fat-tree 
configuration.  The peak performance of a processor 
is 4.4GFlops/s. 
• SX8 is an advanced vector platform located at 
High Performance Computer Center (HLRC) in 
Stuttgart, Germany. It contains 72 SMP nodes (8 
processors) connected via a custom single-stage 
crossbar. The SX-8 processor operates at 2 GHz with 
peak performance of 16Gflops/s.  
• BlueGene/L is novel computer architecture, 

located at Argonne National Laboratory. It uses the 
computationally less powerful but much more power 
efficient processor PowerPC440 running at 700 MHz 
with peak performance of 2.8GFlops/s. There are a 
total of 1024 dual PowerPC440 nodes connected by 
five special interconnect networks for I/O, debug, 
and interprocessor communication. A three 
dimensional torus is the major data communication 
network for applications. A collective network 
allows data to be sent from any node to all other 
nodes or a subset of nodes.  

 
3.2. Partitioning the workloads among 
processors 
 

One critical step to enable the applications to run 
well on parallel platforms is to be able to efficiently 
partition the workloads among the processors. In 
BeamBeam3D, the particles are evenly partitioned 
among the processors. However, in order to obtain 
optimal performance, we find that the partition of the 

field domain, i.e., the selected values of Pz and Py, 
should be dynamically adjusted based on the number 
of processors actually used and consider both the 
computation and communication cost. This is different 
from purely pursuing workload balance. Fig. 3 shows 
the total running time on Jacquard for different 
combinations of Pz *Py (Pz =1,2,4,8, Pz <= Nslice). We 
can clearly find that the performance is highly affected 
by the selection of Pz and Py. 

Figure 3. The performance on Jacquard for 
different partitions under different number of 

processors 
  
As we know, the spatial coordinates of the particles 

belonging to a processor are not confined within its 
assigned computational domain and are scattered all 
over the computational space. Therefore, during the 
process of depositing the particles to the computational 
domain to obtain the charge density distribution, a 
processor responsible for a specified subdomain has to 
collect this information from all other processors 
(deposit). This process is organized into two phases, 
collecting in column direction first and then in row 
direction. After solving the Poisson equation locally 
with the collected charge density, the solution of the 
electric potential on the local subdomain is broadcast 
to the opposite group to compute the electric field and 
advance the particles (scatter). The number of 
messages and the message sizes in the deposit and 
scatter phases are closely related with the values of Pz 
and Py.  

For 32 processors, Pz = 1 delivers the best 
performance. This is because computation dominates 
the performance at this scale and most of the time is 
spent on solving the Poisson equation using the shifted 
Green function. In this case, reducing the computation 
time is most important. Pz = 1 means a slice will be 
partitioned among sixteen processors (in Y direction) 
and each one is responsible to solve the Poisson 
equation for 1/16 of the slice; while Pz = 8 indicates 
only two processors are available for a slice. Therefore, 
the time to solve the equation will be substantially 
increased. 



However, with an increasing number of processors, a 
value of Pz >1 starts to improve the performance. For 
64, 128, and 256 processors, selecting value of 2, 4, 
and 8 respectively will deliver the best performance. 
This is because communication gradually becomes the 
dominant performance factor. Assigning more 
processors in Z direction will lead to fewer messages 
and larger message sizes, which will reduce the 
communication cost. Table 1 shows the approximate 
numbers of messages per processor in different stages 
and corresponding message sizes. The transpose 
happens during the solution of the Greens function and 
Poisson equation. We can clearly find that the message 
sizes when Pz = 8 is at least eight times larger than the 
message sizes when Pz = 1. This is also true on other 
platforms. With the increase of the number of 
processors, assigning more processors in Z direction 
will help to improve the performance. For the 
remainder of this study we will use the performances 
obtained by the best combination of Pz and Py.  

Table 1. The No. of messages and message 
sizes (KB) 

 P = 32 P = 256 
 Pz = 1 Pz = 8 Pz = 1 Pz = 8 
 Size No. Size No. Size No. Size No. 
Deposit 32 960 256 169 4 8192 32 1065 
Scatter 32 1024 256 233 4 8192 32 1129 
Trans-
pose 8 450 512 30 1/8 3810 8 3600 
Trans-
pose 4 3840 256 256 1/16 32512 4 3840 

 

3.3. Performance Bottleneck Analysis 
 

In order to analyze the performance bottleneck, 
each turn of the beam collision is logically divided into 
the following major phases: 
• Preprocessing: compute shift and sigma, transfer 
coordinates for particles, and update the physical 
domain size 
• Slicing: divide the particles into Nslice slices 
• Greenf: compute the Green function for the solver 
• DepositLocal: deposit local particles into the field 
to obtain the charge density 
• DepositGlobal: collect charge density from other 
processors for local subdomain 
• FieldSolver: solve the Poisson equation  
• ScatterGlobal: scatter the local electric potential to 
processors in opposite group  
• ScatterLocal: apply the electric field to local 
particles 

• Postprocessing: transfer the coordinates back, 
apply linear and non-linear map, apply radiation 
damping and quantum excitation 
• I/O: output information to files 

 
Figure 4. The pre-optimized time breakdowns 

for a 256-processor run 
 

Fig. 4 shows the time distribution for a 256-
processor run for these phases on four platforms. The 
time spent for each phase is the average time across all 
256 processors.  The breakdown for the SX8 differs 
substantially from the other platforms. The I/O phase, 
which takes little time on other platforms, consumes 
approximately 18% of the total cycles. The slicing 
phase and the FieldSolver phase on the SX8 also 
consumes higher percentage of the total cycles. In 
contrast to this, the ScatterGlobal and DepositGlobal 
communication phases perform much better on the 
SX8. The time breakdowns for Seaborg, BG/L, and 
Jacquard are much more similar. They are all 
dominated by communication phases. However, the 
percentages of time needed by the different phases still 
show differences. For example, BG/L spent much high 
percentage of time on FieldSolver phase while 
Jacquard consumes higher percentage on Greenf. Note 
that the higher percentage does not necessarily mean 
that their actual running time is higher.  

The different time breakdowns in Fig. 4 indicate 
that each architecture may exhibit its own unique 
bottlenecks and need to be solved individually though 
all platforms suffer from the high communication cost.  
Now let’s examine how to improve the performance on 
the SX8. Different steps in the optimization process on 
the SX8 are shown in Fig. 5. The first version labeled 
as Vectorized.which runs three times faster than the 
original version, is obtained by rewriting many of the 
loop bodies using coding techniques such as dividing 
large loop bodies into several smaller loops, extracting 
complex math operations out of loop bodies, and 
adding compiler directives. Its breakdown shows that 



the slicing phase, which cannot be easily vectorized, 
takes almost 17% of the total running time. In order to 
vectorize this phase, the virtual processor concept is 
used [4]. Each element of the vector register is viewed 
as a virtual processor. Each virtual processor is then 
assigned a portion of the particles and a set of 
independent auxiliary data structures so that it can 
work exactly as a processor. This optimization reduces 
the time of the slicing phase from over 17% to less 
than 1% of the total running time. The next step is to 
optimize the I/O phase. At the end of each turn, the 
processor of rank zero collects information from all 
other processors and writes them to multiple files. An 
easy optimization is to aggregate the messages to 
reduce output frequency. This approach turns out to be 
very effective.  

 
Figure 5. The process of optimizing 

performance on the SX8 

Table 2. The 1D FFT time and total running 
time for 256 processors 

 
 1D FFT Time (s) 

 SX8 Seaborg BlueGene/L Jacquard 

Original 13.2 15.4 22.6 3.9 
Optimized 0.9 3.3 3.9 1.5 

Speedup 14.6 4.7 5.8 2.6 

 BeamBeam3D Running Time (s) 
Original 60.0 573.0 389.0 116.6 

Optimized 40.0 495.0 362.0 116.1 
Speedup 1.50 1.16 1.07 1.00 

 
Finally, we optimize the 1D FFTs which are heavily 

used in the FieldSolver and Greenf phases. The 
original implementation could not be vectorized and 
becomes a performance bottleneck. We replace them 
with vendor supplied 1D FFT routines. From the 1D 
FFT time breakdown in Fig. 5, we see that the time for 
FieldSolver and Greenf phases has been significantly 
reduced. In addition, the time for ScatterGlobal phase 
is also reduced. This is related to the load imbalance in 

the FieldSolver phase. Since only processors that own 
colliding slices will participate in solving the Poisson 
equations while other processors simply wait to receive 
the results, some load imbalance will occur and this is 
difficult to be avoided in multi-slice beam models. 
Therefore, the times needed for the FieldSolver phase 
are different across processors, but the sum of 
FieldSolver and ScatterGlobal phases is almost equal. 
If the process of solving the Poisson equation can be 
accelerated, the waiting time in the ScatterGlobal 
phase will also be correspondingly reduced. 

The optimizations for the I/O and Slicing phases on 
SX8 have almost no effect on Seaborg, BG/L, and 
Jacquard since both phases are insignificant there. 
However, the use of vendor supplied FFT benefits all 
platforms. Table 2 displays the 1D FFT running time 
and the total application running time before and after 
using vendor supplied FFT (original vs. optimized). 
The effect of this optimization varies widely across 
different platforms. In the best case, the 1D FFT time 
has been improved 14.6 times, leading to 33% 
reduction in total running time on SX8. In the worst 
case, the 1D FFT time has been reduced 2.6 times but 
only has negligible effect on total running time on 
Jacquard. The 1D FFT is not a problem there, the 
communication is.  We have tried to use fewer larger 
messages to reduce communication cost through 
optimal processor partitions. Another way is to take 
advantage of the communication hierarchy to allow as 
many as possible communications occur inside SMP 
nodes instead of between SMP nodes. This work is still 
under progress. 
 
3.4. Performance comparison and architecture 
implication 
 

Fig. 6 displays the best performance obtained on 
each platform for different number of processors in 
log-log scale. Seaborg performs worst among all four 
platforms. BG/L is 30%-40% better than Seaborg and 
Jacquard is around 65% better than BG/L. The SX8 
delivers the best performance and is about two times 
faster than Jacquard and more than ten times better 
than Seaborg does. The crossbar interconnect on the 
SX8 provides the highest bisection bandwidth among 
these four platforms, 4096GB/s for 256 processors; 
while Seaborg provides the worst bisection bandwidth 
32GB/s for 256 processors. Correspondingly, the 
communication times needed for a 256 processor run 
are 30.1, 60.9, 199.7, 378.3 seconds on SX8, Jacquard, 
BG/L, and Seaborg, respectively. The results indicate 
that higher bisection bandwidth is essential for this 
kind of application to work well.   



The parallel efficiency degrades very fast for all 
systems. If we use the performance of 32 processors as 
the reference point, the parallel efficiency drops to 
around 22% for 256 processors.  The poor scaling 
behavior is mainly attributed to the non-decreasing 
communication time, which consumes only around 
20% of the total cycles for 32 processors but increased 
to over 60% for 256 processors. 

Figure 6. The achieved best performance on 
different platforms 

 
The communication is dominated by global 

gather/scatter operations. Once the field domain size 
has been defined, the total communication volume is 
almost fixed regardless of the concurrency. Table 3 
shows the total communication volume sent by the 
processor on the critical path in the DepositGlobal, 
ScatterGlobal, FieldSolver, and Greenf phases on 
Jacquard.  

 
  Table 3. The measured and predicted 

communication performance on Jacquard 
 

 32 64 128 256 
Pz 1 2 4 8 
Vol. (MB) 75.33 74.03 74.17 75.81 
Time(s) Measured 54.01 49.86 52.52 53.73 
Time(s) Modeled 47.21 45.51 45.16 45.97 
Time(s) Modeled 
Bandwidth * 2 

26.08 24.75 24.35 24.71 

Time(s) Modeled 
Latency * 0.5 

44.73 43.52 43.38 44.24 
 

 
The total amount of data sent by a processor is 

around 75MB. The time needed to send the messages 
is almost flat. Remember that we use the optimal 
partition for each case. If not, the communication time 
could go much higher. We develop a simple model to 
test how the change of the bandwidth and latency will 
affect the communication time. The model is based on 
the measured latency and peak bandwidth obtained 

through a MPI performance probe, in which every 
processor in a SMP node will pingpong messages with 
its pair in another SMP node so that contention effect 
will be included. This simple model was able to 
correctly predict the flat timing increase trend with 
error bound of 17% on Jacquard. This model also 
works well on other platforms. Based on this model, if 
we double the available bandwidth, the communication 
time will reduce over 50%. This indicates that this 
demanding code should benefit substantially from the 
higher bandwidth, at least at the scale we tested.  

Since the communication volume does not change 
much with the number of processors, using more 
processors will decrease the message size and increase 
the number of messages. Therefore, the performance 
will become more latency sensitive. In table 3, we 
show the predicted communication time by halving the 
network latency on Jacquard. We find that at this scale 
the latency only has a slight effect to the total 
communication time, which is reduced less than 5%. 
However, the latency effect will become explicit when 
we use large number of processors. Table 4 shows the 
latency effect for the 2048-processor case. If we reduce 
the latency to its half, the communication time could 
become 25 - 81% lower, depending on the partition 
used. Here, the latency refers not only the network 
latency but also the software overhead to send /receive 
the messages. One possible approach to reduce latency 
is to move the global scatter/gather operation into the 
network and exploit the concurrency provided by some 
advanced interconnects [14,15]. 

 
Table 4. The predicted latency effect on 2048 

processors on Jacquard 
 

Pz 1 2 4 8 
Time (s),  
Latency * 1.0 

371 170 95 65 

Time (s),  
Latency * 0.5 

204 104 67 52 

Ratio 1.82 1.63 1.42 1.25 
  
Regarding local operations, the times needed for a 

256-processor run is 14.9, 46, 108, and 116 seconds on 
SX8, Jacquard, BG/L, and Seaborg, respectively. The 
vector architecture of SX8 really excels itself for this 
code after spending significant effort on optimizing the 
code. Providing the virtual vector units [16] inside the 
superscalar architecture may be one promising 
approach for future processor designs. The achieved 
percentage of peak on this four platforms ranges from 
6.71% to 11.61%. This relatively low percentage of 
peak performance is partly due to the large amount of 



data movement in some phases, which consumes a lot 
of cycles but do not contribute to Mflops at all.  

 
4. Summaries 
 

In this paper, we analyzed the performance 
characteristics of BeamBeam3D on four leading 
computing platforms. First, the strategy to partition the 
workload among the processors has been examined. 
We find that, in order to achieve optimal performance, 
purely pursuing workload balance is not enough. 
Instead, we should focus on alleviate the performance 
dominant factor, enabling the partition to minimize the 
communication time or computation time whichever 
becomes dominant. Therefore, the optimal partition is 
dynamically changed with the number of processors 
used and the platforms to work on.  

We also find that the code may exhibit different 
performance bottlenecks across architectures. Some 
negligible phases on one platform may cause serious 
performance problems on another one and have to be 
addressed individually. The optimizations applied on 
one platform may or may not be effective on other 
platforms. For example, using the vendor-supplied FFT 
improves the total running time 33% on SX8, but has 
almost no effect on Jacquard.  

The best performance is delivered on SX8. For a 
256-processor run, each turn takes about 0.45 seconds, 
which is about 2.6 times better than Jacquard, 6.8 times 
better than BG/L, and 11 times better than Seaborg.  
But the parallel efficiency degrades fast with the 
increase of the number of processors. The 
communication becomes a scaling bottleneck. Results 
indicate that providing higher bisection bandwidth 
should significantly improve the application 
performance, such as SX8 does. However, with large 
number of processors, the code’s performance will 
become more sensitive to network latency. Therefore, 
in order to run this demanding code well on large 
number of processors, the platform should provide 
much lower latency than the current machines provide. 
Moving the global scatter/gather operation into the 
network and fully take advantage of the network 
concurrency may be able to help to lower the latency. 
SX8 also excels on the local computations. Its vector 
processing units perform significantly better for this 
application than the superscalar processors. Providing 
the virtual vector units inside the superscalar 
architecture may be one approach for future processor 
designs.  
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