
History-aware Self-Scheduling

Arun Kejariwal† Alexandru Nicolau† Constantine D. Polychronopoulos§

†Center for Embedded Computer Systems §Center of Supercomputing Research and Development
School of Information and Computer Science Computer and Systems Research Laboratory

University of California at Irvine University of Illinois at Urbana-Champaign

arun kejariwal@computer.org
cdp@csrd.uiuc.edu

nicolau@cecs.uci.edu

Abstract

Scheduling parallel loops, i.e., the way iterations are
mapped on to different processors, plays a critical role in
the efficient execution of programs, particularly of super-
computing applications, on multiprocessor systems. In
applications where the problem dimension (and hence
execution time) is dependent on run-time data, loop iter-
ations also tend to be of variable length – this variability
affects both sequential and parallel loops and in particu-
lar nested loops and it is quite prevalent in sparse matrix
solvers. In this paper, we propose a (execution) history-
aware self-scheduling approach of irregular parallel loops
on heterogeneous multiprocessor systems. First, the pro-
posed method computes the chunk size, i.e., the amount
of work allocated to a processor at each scheduling step,
based on the variance in workload distribution across
the iteration space. Second, it fine tunes the chunk
size based on the execution history of the loop, wherein
the workload of an iteration is determined at run-time
based on the statistical deviation of workload estimates
of previously executed iterations from their correspond-
ing actual workloads. We evaluate our techniques using
a set of kernels (extracted from industry-strength SPEC
OMPM 2001 benchmark) with uneven workload distri-
butions. The results show that our technique performs
5% – 18% better than the existing schemes.

1 Introduction

Multiprocessor systems are (ubiquitous) platforms of
choice for the execution of supercomputing applications
used in various scientific and engineering fields (e.g., air-
foil design, car crash simulation or the formation and
interaction of various proteins). In such systems several
parallel modules or tasks of the same application can
be executed concurrently. One of the critical problems
to be addressed in this context is how to efficiently al-
locate the parallel tasks amongst the given processors
so as to distribute the computational load as evenly
as possible, in order to minimize the maximum finish-
ing time [1]. The approaches that have been proposed

so far can be broadly classified into two categories: i)
Processor allocation, where one or more idle processors
are allocated to a task and idle processors are reserved
until enough processors become available to satisfy the
allotment for that task as determined by a scheduling
algorithm. ii) Task allocation, where one or more tasks
are allocated to a processor as soon as it becomes idle.
The latter approach aims at keeping processors as busy
as possible and avoids the deliberate idling of proces-
sors, thereby minimizing the maximum finishing time.
In this paper, we address the problem of minimizing the
maximum finishing time of DOALL [2] loops in which the
execution time (or workload) of an iteration is known
only at run-time. For this class of loops we adopt the
second approach; in our case, a task comprises of one
or more iterations of a DOALL loop. The key considera-
tion in task allocation is the selection of the task size,
i.e., the number of iterations constituting a task. While
a small task size incurs significant scheduling overhead,
a large task size results in load imbalance. Thus, the
task allocation problem naturally reduces to determin-
ing the optimal task size in order to minimize the total
execution time.

Static or deterministic scheduling schemes perform
task allocation at compile-time; thus, in this case, the
task size is “fixed” prior to program execution. Al-
though static scheduling yields optimal schedules when
the iterations have equal workload, it does not perform
well when the workload of each iteration is different
and is not known until run-time.1 In order to alleviate
this problem, dynamic or non-deterministic scheduling
schemes perform task allocation “on-the-fly”, i.e., one
or more iterations are assigned to a processor when-
ever it becomes available; in this case, the task size is
determined dynamically. However, run-time scheduling
overhead (incurred due to system calls to the operat-

1The workload of individual iterations may differ from each
other when there are conditional statements in the loop. The
heterogeneity of the multiprocessor system can further introduce
variation in iteration workloads. Even otherwise, their workloads
may differ due to system variations such as data access latency,
operating system and network interference et cetera.

ing system) becomes a critical factor in the context of
dynamic scheduling as it can potentially account for a
significant portion of the total execution time [3]. Thus,
the idea is to avoid the use of the operating system in
order to minimize the scheduling overhead, by instru-
menting the code corresponding to the parallel loop such
that the processors perform scheduling by themselves at
run-time. Self-scheduling [4] exemplifies this philosophy
where task size is determined by the processors them-
selves rather then by the operating system or a global
control unit.

In this paper, we propose a novel approach, referred
to as History-aware Self-Scheduling (HSS), for dynamic
scheduling of irregular parallel loops on heterogeneous
multiprocessor systems. In such loops the workload of
different iterations vary significantly. Such loops are
commonly found in applications such as climate model-
ing [5], N-body simulations [6], Monte-Carlo method [7],
adaptive mesh refinement [8], elastic wave propagation
[9], ray tracing, circuit simulation [10], x-ray tomogra-
phy et cetera. At every scheduling step, HSS computes
the amount of workload to be allotted to an idle pro-
cessor based on the amount of remaining workload and
processor speed. Then, for each idle processor, it deter-
mines a set of iterations with the above workload. The
number of iterations per set is dependent on the work-
load distribution of the remaining iterations. The key
characteristic of our scheme is the dynamic adaptation
of the chunk size based on the statistical deviation of
the workload estimates of the previously executed iter-
ations from their corresponding actual workloads. In
addition, our approach minimizes the synchronization
overhead (incurred during self-scheduling as processors
use hardware synchronization primitives, such as fetch
& add [11], to access the shared loop indices) by mini-
mizing the number of synchronization points.

The rest of the paper is organized as follows. In the
next section, we introduce the terminology used in the
rest of the paper. A motivating example is presented
in Section 3. Section 4 discusses our history-aware ap-
proach for dynamic scheduling of parallel loops on par-
allel processor systems. Experimental setup and results
are presented in Section 5. Related work is discussed in
Section 6. Finally we conclude with directions for future
work.

2 Terminology

Our loop model consists of a non-perfectly nested
DOALL loop [2] with constant loop bounds. Further, our
model also supports nested conditionals at each level of
the nested loop. The index variables of the individ-
ual loops are i1, i2, . . . , in and they constitute an index
vector i = 〈i1, i2, . . . , in〉. An iteration is an instance
of the index vector i. The set of iterations of a loop nest

L is an iteration space Γ = {i}. Let N denote the
total number of iterations in Γ. Assuming normalized
indices, N is given by:

N =
n

Π
k=1

Nk

where, Nk is the upper bound of index variable ik. An it-
eration space is said to have uniform workload distribu-
tion if all the iterations in Γ have equal execution times
(or workloads). However, in the presence of condition-
als the iterations tend to have different workloads. Such
an iteration space is said to have non-uniform workload
distribution.

Let W(i) denote the expected workload of an iteration
i and W denote the total workload. Next we introduce
some definitions of some other terms used in the rest of
the paper.

Definition 1. The mean µ of a workload distribution
of an iteration space is defined as:

µ =
∑

i∈Γ W(i)
N

(1)

Definition 2. The variance σ2 of a workload distribu-
tion of an iteration space is defined as:

σ2 =
∑

i∈Γ(W(i)− µ)2

N
(2)

Given a set of m processors P = {p1, . . . , pm}, let si

denote the speed of a processor pi ∈ P .

3 A Motivating Example
In this section we illustrate the intuitive idea behind

our approach (HSS) with the help of an example. For
comparison purposes, we consider two well known self-
scheduling techniques, viz., guided self-scheduling (GSS)
[12] and factoring [13]. At a given scheduling step, as-
suming identical processors, GSS assigns 1

m of the re-
maining iterations to an idle processor; factoring as-
signs iterations to the processors in batches of m chunks,
where the batch size is half the number of remaining it-
erations (a detailed description of the two techniques is
presented in Section 6). Consider the workload distri-
bution shown in Figure 1(a). Note that the first ten
iterations constitute around 75% of the total workload.
Given 2 processors, the chunk sizes for GSS(1), Factor-
ing and HSS are shown in Table 1. The corresponding
schedules are shown in Figure 1(b), assuming that pro-
cessor p2 is available for time t ≥ 200.

Scheme Chunk Sizes # of Sync. Points
GSS(1) 10 5 3 1 1 5

Factoring 5 5 3 3 2 2 6
HSS 4 6 4 4 2 5

Table 1. Total workload W = 1200 units, m = 2

0 2 4 6 8 10 12 14 16 18 20 22
0

20

40

60

80

100

120

140

160

180

200

220

Iteration

W
or

kl
oa

d

(a)

p2

p1
Wmin = 100

0

HSS

Factoring

GSS (1)

time

(b)

Figure 1. a) A non-uniform workload distribution; b) Schedules corresponding to different schemes,
assuming two processors. (Wmin is the the minimum workload of any chunk)

GSS(1) allocates 10 iterations or 900 units of work
to processor p1 at t = 0 and the remaining iterations
to processor p2; from Figure 1(b) we observe that it
results in heavy load imbalance between the two pro-
cessors. Factoring achieves better load balance than
GSS(1) by limiting the size of the early chunks; how-
ever, it incurs additional synchronization overhead due
to higher number of synchronization points. Both GSS
and Factoring, as well as other existing self-scheduling
techniques, compute the chunk sizes independent of the
variance in workload distribution across the iteration
space. As a result, while some of processors are as-
signed large amount of workload, the others starve. In
addition, chunks with a small amount of workload ne-
cessitate frequent scheduling of the remaining iterations
which in turn increases the synchronization overhead.

In contrast, HSS computes chunk sizes based on the
variance in workload distribution. At each scheduling
step, the chunk size is calculated as a function of an
estimate of remaining workload, not the number of re-
maining iterations. The relationship between the chunk
size and workload distribution helps minimize load im-
balance. For example, the first chunk under HSS con-
sists of only 4 iterations (refer to Table 1) due to heavy
workload in the region corresponding to these iterations.
In contrast, the second chunk consists of 6 iterations as
these iterations have relatively less workload. From Fig-
ure 1(b) we observe that restricting the chunk sizes to
be progressively decreasing, as proposed by the existing
techniques, can potentially result in sub-optimal sched-
ules.

4 The Approach

In this section we present the algorithm for our ap-
proach - History-aware Self-Scheduling. Although sev-

eral models have been proposed, viz., global, local and
hybrid, for work queues in context of self-scheduling,
we adopt the model proposed by Polychronopoulos and
Kuck in [12] owing to its simplicity. Note that model
selection per se is orthogonal to the concerns we ad-
dress in this paper. The algorithm is designed for non-
preemptive scheduling, whereby a task, once assigned
to a processor may not be removed until it has finished
execution. The design of our approach is guided by
the following factors: a) Non-uniform workload distri-
bution; b) Synchronization overhead between the pro-
cessors; and c) Selection of Wmin, i.e., the minimum
workload per task. The rest of the section describes the
different phases of our scheduling algorithm.

4.1 Determining the workload distribution
First, we determine the expected workload of each

iteration on a processor pi with si = 1 via loop pro-
filing (done offline) [14]. Note that an iteration may
have different execution times for different data sets as it
may take a different path in the control flow graph with
change in the input data. We employ an estimation-
based approach wherein we profile the loop with mul-
tiple training sets. Then, we determine the execution
probability of each basic block in each iteration. The
expected execution time or workload of an iteration is
the sum of the execution times of all the basic blocks
weighted with their respective execution probabilities
for that iteration.

4.2 Chunk Size

Markatos et al. showed that the different availability
times of the processors does not affect the performance
significantly [15]. Instead, load imbalance is the prime
factor governing the efficiency of a schedule. The extent

Procedure 1 Determining the workload distribution

Input : A N-dimensional iteration space Γ and a
processor with si = 1
Output : Workload distribution of Γ

Let B = {b1, b2, . . .} be the set of basic blocks

Determine length `(b) of each basic block b ∈ B

Profile the loop corresponding to Γ with the given
training sets

/* Compute the execution probability of basic blocks */

for all i ∈ Γ do
for all b ∈ B do

p(b) =
Number of times b is executed

Number of training sets

end for
end for
for all i ∈ Γ do

/* Compute the expected workload W(i) of i */

W(i) =
∑
b∈B

p(b)× `(b)

end for

of load imbalance introduced depends on the amount of
workload allocated relative to the amount of remaining
workload. At any point in time, the amount of workload
assigned to each processor 2 should be chosen such that
the remaining workload is “sufficient” to balance the
workload evenly, i.e., the difference in finishing times of
the processors (at the end of the schedule) is minimal.
With the above goal, we now derive the expression for
the chunk size, denoted by Λ. Let s =

∑
1≤i≤m

si. The

chunk size corresponding to a processor pi is given by
the following expression:

Λ(pi) = max (Wmin, f (WR, si, s,)) (3)

where WR represents the remaining workload at a given
scheduling step. Akin to guided self-scheduling, the
function f in Equation (3) is given by:

f =
⌈

si WR

s

⌉
However, as discussed in [13], the above may result in
allocation of too much work to early chunks; specifically,
two-thirds of the work is assigned to first m chunks in
case of identical processors. It has been shown that 50%

2Multiple processors may be available at the same time.

of the total workload is sufficient to even out the finish-
ing times of the processors [13]. Therefore, we introduce
a correction factor to “relax” the exponential decay of
chunk size. Assuming identical processors, the amount
of workload remaining after m allocations can be ap-
proximated as (1 − 1

ηm)mW, where η is the correction
factor and m is the number of processors. From the
above, η must satisfy the following:

lim
m→∞

(
1− 1

ηm

)m

= 0.5

Therefore, η = 1.5. The modified formula for the func-
tion f is as follows:

f =
⌈

si WR

1.5 s

⌉
(4)

The parameter Wmin is application and input data
dependent. The selection of an appropriate value for
Wmin is critical for the existing self-scheduling schemes.
While a small value of Wmin may result in scheduling
of individual iterations (irrespective of their workload)
at the end which may incur significant synchronization
overhead, whereas a large value of Wmin may lead to
load imbalance. HSS minimizes the sensitivity of the
schedule to Wmin as it avoids scheduling of individual
iterations with small workloads.

So far, we computed the workload of the different it-
erations based on loop profiling. However, estimation-
based techniques may not perform well in case of highly
irregular workload distributions, i.e., when the workload
of an iteration is very sensitive to the input data. In
such cases, an estimate of workload of an iteration can
potentially have large deviation from its actual value
(known only after execution of the iteration). In order
to minimize the error, we propose dynamic update of
the estimates to better capture the irregular nature of
the application. Let Wa(i) denote the actual workload
of an iteration i on a processor pi with si = 1. The ac-
tual workload of an iteration i executed on a processor
pi with si > 1 is weighted with si to obtain Wa(i). The
error, denoted by e(i), in the workload estimate is given
by:

e(i) = Wa(i)−W(i)

The mean value of the error for all j < i [16] is defined
as:

µe =
∑

λj e(j)∑
λj

Similarly, for j < i, the variance in error is defined as:

σ2
e =

∑
λj(e(j)− µe)2∑

λj

The workload of an iteration i is updated as follows [17]:

i

w
or

kl
oa

d

y zx

Figure 2. Best-fit index range selection for a
given Λ

W(i) + µe + σe

√
n
2

where, n is the number of iterations corresponding to
j < i and is referred to as the history window. The coef-
ficients (λs) are monotonically increasing in their lexico-
graphic order [18]. Intuitively, we update the workload
of an iteration i based on the deviation of the work-
load estimates of the previously executed iterations from
their actual workloads. The λs are constrained to be in
increasing order so as to better capture the sensitivity
of the recently executed iterations to input data. The
width of the history window is parameterized. A large
window width increases the accuracy of the update pro-
cess, however, it incurs more run-time scheduling over-
head. Naturally, the dynamic update of the workload
estimates has a trade-off between load balancing and
scheduling overhead. However, it has been shown that
run-time performance measurement via use of hardware
performance counters incurs minimal scheduling over-
head [19]. In Section 5.1 we show that better load bal-
ance (achieved via dynamic update of iteration work-
loads) outweighs the associated scheduling overhead.

4.3 Best-fit Approximation
Note that there may not exist any index range con-

stituting Λ amount of work.3 In such cases, we select
the “best-fitting” range to aid load balancing. For ex-
ample, consider the example shown in Figure 2 (only
a part of the workload distribution is shown). Let
the current index be i = x. The dashed box signi-
fies that W[x, y] < Λ < W[x, z], where W[a, b] de-
notes the total workload in the range a ≤ i ≤ b.
In such a case, Algorithm 1 selects the range [x, y] if
|Λ −W[x, y]| < |W[x, z] − Λ|, else it selects the range
[x, z]. In contrast, the existing techniques select [x, z]
irrespective of the deviation which results in significant
load imbalance in case of irregular programs.

4.4 The Algorithm
In this section we present a formal description of the

algorithm for HSS. First, Algorithm 1 determines the
workload distribution across the iteration space using
Procedure 1. Next, it computes the total workload.

3Recall that an iteration space is partitioned into tasks at it-
eration boundaries.

Algorithm 1 History-aware Self-Scheduling

Input : An N-dimensional rectangular iteration
space Γ and m processors.
Output : A near-optimal dynamic schedule of Γ
w.r.t. load balance amongst the different processors
and schedule length

Determine the workload distribution using Procedure 1

/* Compute the total workload */
W =

∑
i∈Γ

W(i)

/* Generate the schedule (assuming implicit loop *
* coalescing [20]) */

Let Pidle ⊆ P be a set of idle processors at any given
time instant
repeat

if |Pidle| ! = 0 then

for all pi ∈ Pidle do

/* Compute the chunk size */

Λ(pi) = max
(

Wmin,

⌈
si W
1.5 s

⌉)
(5)

Compute index range for each processor using
best-fit approximation
Allocate the iterations corresponding to index
range to pi

end for
end if

W←W −
∑

pi∈Pidle

Λ(pi)

Update the workload of the remaining iterations
until W > 0

where, Wmin is the minimum workload size (pre-
specified by the user).

Subsequently, at each scheduling step, it allocates Λ(pi)
(given by Equation (5)) amount of work to an idle pro-
cessor pi. Next, it determines the range of the itera-
tions to be mapped to each processor based on best-fit
approximation (refer to Section 4.3) and maps the cor-
responding iterations onto processor pi. It then updates
the workload of the remaining iterations based on the
loop execution history (refer to Section 4.2).

To summarize, our approach provides a simple and
practical solution of dynamic scheduling of parallel
nested loops on heterogeneous multiprocessor systems.
It has dual benefits: achieving near-optimal load bal-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

L10L9L8L7L6L5L4L3L2L1

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

Loops

HLS
AF

Est-only HSS

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

L10L9L8L7L6L5L4L3L2L1

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

Loops

HLS
AF

Est-only HSS

(b)

Figure 3. a) Case I; b) Case II. Performance comparison of Est-only HSS with HLS and AF

 0

 0.5

 1

 1.5

 2

L10L9L8L7L6L5L4L3L2L1

No
rm

al
ize

d
Sy

nc
hr

on
iza

tio
n

O
ve

rh
ea

d

Loops

HLS
AF

Est-only HSS

(a)

 0

 0.5

 1

 1.5

 2

L10L9L8L7L6L5L4L3L2L1

No
rm

al
ize

d
Sy

nc
hr

on
iza

tio
n

O
ve

rh
ea

d

Loops

HLS
AF

Est-only HSS

(b)

Figure 4. a) Case I; b) Case II. Comparison of synchronization overhead of Est-only HSS, HLS, AF

ance and minimizing the number of synchronization
points. Like guided self-scheduling, HSS is also insen-
sitive to uneven start times of the processors. Further-
more, HSS is also applicable in context of multi-way
loops.4 However, a detailed discussion of this is beyond
the scope of this paper.

5 Experiments

We implemented a simulator [21] to compare the per-
formance of HSS with adaptive self-tuning scheduling
[22] (referred to as HLS in the rest of the paper) and
adaptive factoring (AF) [23]. For consistency purposes
(w.r.t. the task granularity), we only consider the “up-
per algorithm” of HLS which does scheduling is done
at the iteration-level. HLS samples the performance of
a number of self-scheduling techniques, such as guided
self-scheduling, factoring, trapezoidal self-scheduling et
cetera, at runtime to determine the best scheme for each
loop in a given application program. AF employs a
probabilistic model to compute the chunk size. First, we
evaluate our approach in absence of (execution) history,
referred to as Est-only HSS. Subsequently, we evaluate
our approach in presence of (execution) history.

4A loop is multi-way nested if there are two or more loops at
the same level [20].

5.1 Results

We conducted experiments to evaluate and compare
our approach with the existing techniques for different
number of processors. Due to space considerations, we
present results for the following two processor configu-
rations: I) m = 1000 and II) m = 2000. However, we
obtain similar speedups for other processor configura-
tions, i.e., for fewer and larger number of processors. In
other words, the applicability of our approach is not re-
stricted to any particular processor configuration. We
conducted experiments for the two cases for a set of
10 computation-intensive loops (L1, L2, . . . , L10) (with
non-uniform workload distribution) extracted from the
industry-strength SPEC OMPM 2001 benchmark [24].
The kernels differ in both, the workload distribution and
the total number of iterations N. The actual workload
(Wa) of the iterations of these kernels correspond to
run using the reference data set. The start times of
the processors were chosen arbitrarily; however, it does
not affect the results significantly as shown by Markatos
and LeBlanc in [15]. The dynamic processor availability
was simulated via the aforementioned random number
generator. The reduction in synchronization overhead
achieved (presented later in this section) using our ap-
proach corresponds to the reduction in the number of
synchronization points.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

L10L9L8L7L6L5L4L3L2L1

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

Loops

Est-only HSS
HSS

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

L10L9L8L7L6L5L4L3L2L1

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

Loops

Est-only HSS
HSS

(b)

Figure 5. a) Case I; b) Case II. Performance comparison of Est-only HSS and HSS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

L10L9L8L7L6L5L4L3L2L1

No
rm

al
ize

d
Sy

nc
hr

on
iza

tio
n

O
ve

rh
ea

d

Loops

Est-only HSS
HSS

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

L10L9L8L7L6L5L4L3L2L1

No
rm

al
ize

d
Sy

nc
hr

on
iza

tio
n

O
ve

rh
ea

d

Loops

Est-only HSS
HSS

(b)

Figure 6. a) Case I; b) Case II. Comparison of synchronization overhead in Est-only HSS and HSS

Figures 3(a) and 3(b) present a performance compari-
son of Est-only HSS with HLS and AF for case I and case
II respectively (the execution times have been normal-
ized w.r.t. Est-only HSS). Given a loop, the workload
of the each iteration was determined using the training
data set. Note that the workload distribution across the
iteration space of the same loop may vary from one in-
stance to another. This is due to the fact that different
instances of the same loop have different input data sets.
In order to minimize the effect of uneven start times of
the processors, the execution times were computed as
an average of execution times of 10 simulation runs. We
observe that Est-only HSS performs 15% better (on an
average) than HLS in case I and 18% in case II. Note
that the performance gain increases with increase in m.
This can be attributed to the cumulative effect of better
load balance across a larger number of processors. Est-
only HSS performs 5% better (on an average) than AF
in both cases. The performance gain, in general, can be
attributed to the dynamic adaptation of chunk size by
HSS in accordance with the workload distribution. Fig-
ures 4(a) and 4(b) show the synchronization overhead
(normalized w.r.t. Est-only HSS) incurred by the three
scheduling schemes for case I and II respectively. We
observe that both HLS and AF incur a high synchro-
nization overhead as compared to Est-only HSS. Note

that for the purposes of worst-case analysis, we assumed
a very conservative estimate of the synchronization over-
head (per task assignment). However, in practice it can
be potentially much larger. In such cases, HSS will out-
perform the existing techniques by much larger margins
as HSS incurs far less synchronization overhead than
other techniques, as evidenced by Figure 4.

As discussed in Section 4, scheduling iteration spaces
with highly unpredictable and uneven workload distri-
butions using an estimation-based approach may not
yield high performance. In order to alleviate the above
problem, we employ a (execution) history-aware scheme.
Figures 5(a) and 5(b) present a performance comparison
of HSS with Est-only HSS for case I and II respectively
(the execution times have been normalized w.r.t. Est-
only HSS). We note that HSS performs 5% better on
an average than Est-only HSS in case I and 9% better
in case II. As explained earlier, the higher performance
gain in case II can be attributed to better load balance
across a larger number of processors. Figures 6(a) and
6(b) compare the synchronization overhead (normalized
w.r.t. Est-only HSS) incurred by the two Est-only HSS
and HSS. We observe that the latter incurs 7% (on an
average) additional overhead. This can be attributed
to the overhead incurred in dynamic update of the ex-
pected workload of the remaining iterations.

Thus, HSS provides a simple yet powerful approach
for dynamic scheduling of parallel loops on multipro-
grammed parallel systems.

6 Related Work
There is a large body of work in the area of self-

scheduling. Due to space limitations, we shall only dis-
cuss the early work. The reader is referred to [25] for an
extensive overview of the related work. Self-scheduling
of parallel processors, where successive iterations are al-
located and executed on to different processors one by
one, was first used on Denelcor HEP multiprocessors
[26]. Kruskal and Weiss proposed static chunking of iter-
ations during the scheduling process [3]. They model the
execution times of the iterations as independent iden-
tically distributed (i.i.d.) random variables and pos-
sessing a moment generating function. However, their
model is restricted to IFR distributions [27] such as uni-
form, normal and exponential. For the class of distribu-
tions mentioned above, they showed that the expected
completion time is given by Nµ/p + σ

√
2N ln p/p, for

N � p log p. Although static chunking reduces the
synchronization overhead, it has a greater potential for
load imbalance than self-scheduling as processors fin-
ish within K iterations of each other in the worst case,
where K is the chunk size. Arguably, one can randomly
assign chunks of iterations to the processors; however,
Lucco showed that the random assignment is more ef-
ficient than dynamic methods only when σ � µ, i.e.,
for a uniform workload distribution or if the schedul-
ing overhead is much greater than µ. In [28], Tang and
Yew proposed a scheme for self-scheduling of multiple
nested parallel loops. Fang et al. proposed an approach
for self-scheduling general parallel nested loops in [29].

7 Conclusion
In this paper we presented an algorithm for dynamic

scheduling of nested parallel loops on heterogeneous
multiprocessor systems. The key characteristic of our
approach is the dynamic adaptation of the chunk size
based on the statistical deviation of the workload esti-
mates of the previously executed iterations from their
corresponding actual workloads. As future work, we
would like to extend our approach to dynamic schedul-
ing of affine loops.

References

[1] R. W. Conway, W. L. Maxwell, and L. W. Miller. Theory of
scheduling. Addison-Wesley, Reading, MA, 1967.

[2] S. Lundstrom and G. Barnes. A controllable MIMD architec-
tures. In Proceedings of the 1980 International Conference on
Parallel Processing, St. Charles, IL, August 1980.

[3] C. P. Kruskal and A. Weiss. Allocating independent subtasks on
parallel processors. IEEE Transactions on Software Engineer-
ing, 11(10):1001–1016, 1985.

[4] B. J. Smith. Architecture and applications of the HEP multipro-
cessor computer system. In Proceedings of SPIE - Real-Time
Signal Processing IV, pages 241–248, 1981.

[5] Climate modeling groups. http://stommel.tamu.edu/∼baum/
climate modeling.html.

[6] J. Barnes and P. Hut. A hierarchical o(n log n) force calculation
algorithm. Nature, 324:446–449, 1986.

[7] S. Ulam and N. Metropolis. The Monte Carlo method. Journal
of the American Statistical Association, 44:335–341, 1949.

[8] O. Hanson and A. Mayer. Heuristic search as evidential reason-
ing. In Proceedings of the Fifth Workshop on Uncertainty in
AI, August 1989.

[9] V. Pereyra, E. Richardson, and S. E. Zarantonello. Large scale
calculations of 3d elastic wave propagation in a complex geology.
In Proceedings of the 1992 ACM/IEEE Conference on Super-
computing, pages 301–309, Minneapolis, Minnesota, 1992.

[10] B. Ackland, S. Lucco, T. London, and E. DeBenedictis. CEMU -
A parallel circuit simulator. In Proceedings of the International
Conference on Computer Design, October 1986.

[11] A. Gottlieb, B. D. Lubachevsky, and L. Rudolph. Basic tech-
niques for the efficient coordination of very large number of coop-
erating sequential processors. ACM Transactions on Program-
ming Languages and Systems, 5(2):164–189, 1983.

[12] C. D. Polychronopoulos and D. J. Kuck. Guided self-scheduling:
A practical scheduling scheme for parallel supercomputers. IEEE
Transactions on Computers, 36(12):1425–1439, 1987.

[13] S. F. Hummel, E. Schonberg, and L. E. Flynn. Factoring: a
method for scheduling parallel loops. Communications of the
ACM, 35(8):90–101, 1992.

[14] V. Sarkar. Determining average program execution times and
their variance. In Proceedings of the SIGPLAN ’89 Conference
on Programming Language Design and Implementation, pages
298–312, July 1989.

[15] E. Markatos and T. LeBlanc. Using processor affinity in loop
scheduling on shared-memory multiprocessors. IEEE Transac-
tions on Parallel and Distributed Systems, 5(4):379–400, April
1994.

[16] U. Banerjee. Loop Transformation for Restructuring Compil-
ers. Kluwer Academic Publishers, Boston, MA, 1993.

[17] E. J. Gumbel. The maxima of the mean of the largest value of
the range. The Annals of Mathematical Statistics, 25(1):76–84,
March 1954.

[18] D. Knuth. The Art of Computer Programming: Fundamental
Algorithms (Vol 1). Addison-Wesley, 1973.

[19] A. B. Downey and D. G. Feitelson. The elusive goal of work-
load characterization. SIGMETRICS Performance Evaluation
Review, 26(4):14–29, 1999.

[20] C. Polychronopoulos. Loop coalescing: A compiler transforma-
tion for parallel machines. In Proceedings of the 1987 Interna-
tional Conference on Parallel Processing, pages 235–242, Au-
gust 1987.

[21] A. Kejariwal, A. Nicolau, and C. D. Polychronopoulos. An ef-
ficient approach for self-scheduling parallel loops on multipro-
grammed parallel computers. In Proceedings of the 18th Inter-
national Workshop on Languages and Compilers for Parallel
Computing, Hawthorne, NY, October 2005.

[22] Y. Zhang, M. Burcea, V. Cheng, R. Ho, and M. Voss. An adap-
tive OpenMP loop scheduler for hyperthreaded SMPs. In Pro-
ceedings of the 17th International Conference for Parallel and
Distributed Computing Systems, San Francisco, CA, 2004.

[23] I. Banicescu and V. Velusamy. Balancing highly irregular com-
putations with the adaptive factoring. In Proceedings of the
International Parallel and Distributed Processing Symposium,
pages 87–98, 2002.

[24] SPEC OMP. http://www.spec.org/omp.
[25] A. Kejariwal, A. Nicolau, and C. D. Polychronopoulos. Account-

ing for “Gaps” in processor availability during self-scheduling of
parallel loops on multiprogrammed parallel computers. Technical
Report TR-05-14, School of Information and Computer Science,
University of California at Irvine, October 2005.

[26] E. L. Lusk and R. A. Overbeek. Implementation of monitors
with macros: A programming aid for the HEP and other par-
allel processors. TR ANL-83-97, Argonne National Laboratory,
December 1983.

[27] R. E. Barlow and F. Proschan. Statistical Theory of Reliability
and Life Testing. Holt Rinehart & Winston Inc., 1975.

[28] P. Tang and P. C. Yew. Processor self-scheduling for multiple
nested parallel loops. In Proceedings of the 1986 International
Conference on Parallel Processing, pages 528–535, August 1986.

[29] Z. Fang, P. Tang, P.-C. Yew, and C.-Q. Zhu. Dynamic processor
self-scheduling for general parallel nested loops. IEEE Transac-
tions on Computers, 39(7):919–929, 1990.

http://stommel.tamu.edu/~baum/climate_modeling.html
http://stommel.tamu.edu/~baum/climate_modeling.html
http://www.spec.org/omp

