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Abstract

Message passing via MPI is widely used in single-
program, multiple-data (SPMD) parallel programs. Exist-
ing data-flow frameworks do not model the semantics of
message-passing SPMD programs, which can result in less
precise and even incorrect analysis results. We present a
data-flow analysis framework for performing interproce-
dural analysis of message-passing SPMD programs. The
framework is based on the MPI-ICFG representation, which
is an interprocedural control-flow graph (ICFG) augmented
with communication edges between possible send and re-
ceive pairs and partial context sensitivity.

We show how to formulate nonseparable data-flow anal-
yses within our framework using reaching constants as a
canonical example. We also formulate and provide experi-
mental results for the nonseparable analysis, activity anal-
ysis. Activity analysis is a domain-specific analysis used to
reduce the computation and storage requirements for au-
tomatically differentiated MPI programs. Automatic differ-
entiation is important for application domains such as cli-
mate modeling, electronic device simulation, oil reservoir
simulation, medical treatment planning and computational
economics to name a few. Our experimental results show
that using the MPI-ICFG data-flow analysis framework im-
proves the precision of activity analysis and as a result sig-
nificantly reduces memory requirements for the automati-
cally differentiated versions of a set of parallel benchmarks,
including some of the NAS Parallel Benchmarks.

Key Words: MPI, data-flow analysis, activity analysis,
SPMD, MPI-ICFG

1 Introduction

Message passing via MPI is widely used in parallel pro-
grams executing under the single-program, multiple-data
(SPMD) model. MPI is a standard interface for message-
passing parallel programs [30] written in C, C++, or Fortran
that supports point-to-point communications (messages)

and collective operations (broadcast, gather-scatter, reduc-
tions). Programs written in MPI typically employ single-
program, multiple-data (SPMD) parallelism, with branches
based on process rank used to achieve multiple instruction
streams. MPI is ubiquitous, with vendor-supplied and open
source implementations [12, 13, 5, 37] on essentially every
parallel platform.

To support program analysis and understanding of MPI
programs, there is a need for a data-flow analysis frame-
work that models the semantics of message-passing, SPMD
programs. Specifically, the communication operations in-
duce data-flow from “sent” variables to “received” vari-
ables. This flow of data and the semantics associated with
SPMD affects the precision and in some cases the correct-
ness of nonseparable data-flow analyses. We define a non-
separable data-flow analysis as a data-flow analysis where
the data-flow value for an individual construct (e.g., a vari-
able in reaching constants) can not be determined disjointly
from the data-flow values of the other constructs being ana-
lyzed. Analyses such as reaching definitions and liveness
that are typically referred to as “bitvector” analyses are
separable and do not require a special data-flow analysis
framework for message-passing, SPMD programs. For ex-
ample, reaching definitions do not flow between a send a
receive since the send and receive may be in different pro-
cesses, and the variable that receives the sent value is de-
fined at the receive statement. Reaching constants (i.e. the
analysis-only version of constant propagation) is the canon-
ical example of a nonseparable data-flow analysis; the con-
stant values of some variables can directly affect the con-
stant values of other variables. For MPI programs, if all
possible sends for a particular receive send the same con-
stant then the received variable is equivalent to that con-
stant. Handling the semantics of communication within
SPMD programs is also needed in tools for program un-
derstanding, such as static slicing or chopping [2, 33] and
program verification [36]; tools for finding security bugs,
such as those that perform trust analysis [15]; and tools for
program transformation, including performance and power
optimizations such as bitwidth analysis [38] and automatic



begin program (0)
x = 0 (1)
z = 2 (2)
b = 7 (3)
if (rank == 0) then (4)

x = x + 1 (5)
b = x * 3 (6)
send(x) (7)

else (8)
receive(y) (9)
z = b * y (10)

endif (11)
f = reduce(SUM,z) (12)

end program (13)

Entry

x = x + 1

rank .eq. 0

send(x)

receive(y)

f = reduce(SUM,z)

x = 0

z = 2

Exit

z = b * y

b = 7

b = x * 3

Figure 1. A small SPMD program and the cor-
responding MPI-CFG.

differentiation [4], which requires activity analysis.
Reaching constants is an example where modeling the

semantics of message passing can improve precision, but is
not necessary for correctness. Figure 1 presents a situation
where the precision of reaching constants analysis improves
with the use of communication semantics. The variable y
will be assigned the constant value 1 due to the send of x
and the corresponding receive into y. We found that con-
stants typically are shared in SPMD programs without com-
municating them; therefore, performing reaching constants
with communication and SPMD semantics is useful mainly
for illustrative purposes.

Data-flow analysis that fails to model the SPMD nature
of MPI programs may be incorrect. Again consider the sim-
ple program in Figure 1. If one attempts to take a forward
slice to identify all statements influenced by the assignment

x = 0 in statement 1, using an analysis framework that
does not consider the SPMD nature of the program, an erro-
neous result will be obtained. The framework will identify
statements 1, 5, 6, and 7 as the only statements in the slice,
when in fact statements 1, 5, 6, 7, 9, 10, and 12 should be
in the slice. This situation cannot be remedied by chang-
ing only the behavioral model used for the communication
library.

Despite the importance of SPMD data-flow analysis, we
are unaware of any research that specifies how to perform
data-flow analysis of message-passing, SPMD programs.
Shires et al. [35] developed an extension to the control-flow
graph representation called the MPI-CFG. The MPI-CFG
represents the semantics of message passing by including
communication edges between message-passing procedure
calls. Figure 1 contains an example MPI-CFG with con-
trol flow edges represented as arrows with solid lines and a
communication edge represented with dashed lines.

In Shires et al. [35], the authors argue that the MPI-CFG
may be used as the basis for data-flow analysis of MPI pro-
grams, but the specification of such analysis is not provided.
Simply treating communication edges as control-flow edges
does not accurately model SPMD semantics. We also show
that simple extensions to existing data-flow analysis frame-
works are not effective for the analysis of message-passing,
SPMD programs. To solve these problems, we present a
method for performing data-flow analysis on SPMD MPI
programs that propagates modified data-flow information
over the communication edges in the MPI-CFG and our in-
terprocedural extension, the MPI-ICFG. Our main contribu-
tions are as follows:

• the development of a data-flow analysis framework for
the MPI-CFG [35] and our interprocedural extension
the partially context-sensitive MPI-ICFG,

• the formulation of an important data-flow problem
within our data-flow framework, and

• some experimental results that show significant preci-
sion improvements are possible.

This work was initially motivated by the need to perform
activity analysis on MPI programs. Activity Analysis is a
nonseparable data-flow anlaysis used in the context of au-
tomatic differentiation. Automatic Differentiation (AD) is
code transformation that generates code for computing the
sensitivies of inputs with respect to outputs for codes that
simulate physical processes. Specifically, AD generates a
program F ′ based on a program F , where F ′ computes the
derivatives of a subset of F ’s outputs (the dependent vari-
ables) with respect to a subset of F ’s inputs (the indepen-
dent variables). Such derivatives are useful for many ap-
plication domains, such as climate modeling, electronic de-
vice simulation, oil reservoir simulation, medical treatment



planning and computational economics and more gener-
ally in applications that require partial differential equation
solvers, numerical optimization, and numerical integration.
Automatic differentiation works by mechanically applying
the chain rule of differential calculus to the statements in a
program. In the absence of activity analysis, a conservative
strategy is to differentiate all statements and compute (and
store) derivatives for all variables. However, because the in-
dependent variables are a subset of the input variables and
dependent variables are a subset of the output variables, one
can often tell a priori through static analysis that a variable
either does not contribute to the derivatives of the depen-
dent variables (is not useful) or has a zero derivative with
respect to the independent variables (does not vary). Such
variables are termed inactive, or passive, and need not have
their derivatives computed. This approach can lead to sub-
stantial savings in time and memory [3].

The data-flow framework we have developed for activ-
ity analysis can be used more generally for any nonsepara-
ble data-flow analysis. Section 2 provides an overview of
our MPI data-flow analysis framework and shows that sim-
ple extensions to existing data-flow analysis frameworks are
insufficient. Section 3 more formally specifies a method
for converting data-flow analysis problems to operate on
the MPI-CFG. Section 4 extends the MPI-CFG to an MPI-
ICFG for interprocedural analysis. Section 5 provides ex-
perimental results showing that when activity analysis is
performed on the MPI-ICFG, it can reduce the space re-
quirements for automatic differentiated code significantly
in some benchmarks.

2 Handling the Semantics of Message-
Passing SPMD Programs

Naive extensions to existing data-flow analysis frame-
works that attempt to model the semantics of message-
passing, SPMD programs are either incorrect, not scalable,
or not as precise as our framework for data-flow analysis
over the MPI-ICFG. The key insight is that data-flow infor-
mation must be propagated over communication edges dif-
ferently than it is propagated over control-flow edges. We
use the forward phase of activity analysis to illustrate the
shortcomings of other approaches.

Activity analysis necessitates a forward data-flow anal-
ysis that determines the set of variables that depend on se-
lected inputs (the independents) Vary, and a backward data-
flow analysis that determines the set of variables needed for
the computation of selected outputs (the dependents) Use-
ful. Variables in the intersection of Vary and Useful at a
particular point in a program are active. A more complete
description of activity analysis can be found in [31, 17].
For example, in Figure 1 assume that we want to create
the derivative program that computes the derivative of f

with respect to x. Considering message passing and SPMD
semantics, the forward analysis should determine that the
variables x, y, z, b, and f depend on the input x. The
backward analysis should determine that variables x, y, b,
and z are needed for the computation of f. A correct anal-
ysis should determine that at least the variables x, y, z, and
f are active.

A naive and unrealistic use of a typical data-flow analysis
framework results in an incomplete set of active variables,
and therefore incorrect results. For the example in Figure 1,
the relationship between the send of x and the receive of
y is not modeled with a control-flow graph; therefore, the
forward analysis determines that only the variables x and
b depend on the variable x. The backward analysis finds
that only f, z, and y are needed to compute f. The final
intersection incorrectly concludes that there are no active
variables within this program.

The Odyssée AD tool extends the typical data-flow anal-
ysis framework by modeling sends and receives as writes
to and reads from global variables [8]. This models the
communication that can occur, but not the fact that in
SPMD execution model multiple processes may be execut-
ing the same program. In Figure 1, we can model the com-
munication semantics by assigning x to a global variable
mpi buff and then copying the value of mpi buff into
y at the receive statement. However, since normal data-flow
analysis assumes that the program could go down either side
of the branch, but not both at the same time, activity analy-
sis will simply conclude that mpi buff is active and still
incorrectly leave out other variables.

In our data-flow analysis framework, the data-flow infor-
mation that is propagated over the communication edges is
different from the information that is propagated over the
control-flow edges. In Figure 1, there is a communication
edge between the send of x and the receive of y. For the
forward analysis, which determines which variables depend
on the input x, the data-flow information propagated over
the control-flow edges is the set of variables that vary at
that particular point in the program. For the communication
edge, a boolean value is propagated. The value is true if
the variable being sent (e.g. x) was in INvary for the send
node, and false otherwise. The boolean value on the com-
munication edge is used to determine whether the received
variable should be included in the OUTvary set for the re-
ceive node. The details of the framework are described in
Section 3.

Other approaches correctly model the semantics, but are
not as scalable or as precise as a data-flow analysis frame-
work with communication edges. One strategy is to copy
the control-flow graph for each process, provide each pro-
cess with its own variable namespace, model communica-
tion with communication edges between separate control-
flow graphs, and propagate data-flow information over com-



munication edges. This approach is similar to approaches
used in data-flow frameworks for programs with explicit
parallelism [32], and it provides accurate results, but is
not scalable. An improvement on this approach is to an-
alyze using only two copies of the control-flow graph (an
idea also used within the context of performing cycle detec-
tion [24]). If the communication edges go between the two
control-flow graphs, then the semantics of disjoint memory
spaces is properly modeled, and overly conservative results
are avoided. Our approach requires only one copy of the
control-flow graph and provides results with equivalent pre-
cision.

In our experimental results, we compare activity anal-
ysis performed over an interprocedural control-flow graph
(ICFG) [25] to activity analysis performed over an MPI-
ICFG. Activity analysis can be solved correctly on an ICFG
by using some global assumptions, specifically that all
sends and receives write to and read from a global variable
and that the global variable is an interesting input and out-
put for the derivative code (i.e., initially put into the vary
and useful sets). The global assumptions force all vari-
ables being sent that are vary to be active and all vari-
ables being received that are useful to be active. Similar
global assumptions can be used to handle communication
and SPMD semantics in other nonseparable analyses. As an
example, trust analysis [15], which is used to detect secu-
rity bugs in programs, can use the conservative assumption
that the global variable modeling communication between
sends and receives is untrusted; therefore, any variable that
is received is assumed untrusted.

3 Intraprocedural Data-flow
Analysis on the MPI-CFG

The MPI-CFG [35] represents message-passing between
statements within the same procedure as communication
edges. We present data-flow analysis for the MPI-CFG by
first reviewing the data-flow analysis problem formulation
for reaching constants on a typical control-flow graph and
then extending that formulation for data-flow analysis over
an MPI-CFG.

Intraprocedural data-flow analysis is formulated over a
control-flow graph, which represents a procedure with a
node for each statement1 and edges between statements in-
dicating possible control flow. Formally, a control-flow
graph is specified as CFG = {V,E}, where V is the
set of nodes in the graph, and E is the set of edges with
(n1, n2) ∈ E indicating that control can flow between the
statement in node n1 and the statement in node n2. Each
node n has a set of predecessors pred(n) and a set of
successors succ(n), such that (n1, n2) ∈ E implies that

1This can be generalized to basic blocks.

send(x) commOUT(n)

OUT(p1)

OUT(n)

OUT(p2) OUT(pn)
...

IN(n)

n:

Figure 2. Control-flow edges and communi-
cation edges incident on a send node.

n1 ∈ pred(n2) and n2 ∈ succ(n1).
Data-flow analysis involves assigning IN(n) and

OUT (n) sets to each node n in the control-flow graph
CFG. The IN and OUT sets contain either program en-
tities such as variables and statements or program entities
paired with information from a partially ordered set referred
to as the lattice. Iterative data-flow analysis recalculates the
IN and OUT sets until convergence occurs. When two
or more control paths in the CFG merge, a meet operation
occurs between the lattice values for a particular program
entity. For a forward data-flow analysis, the result of a meet
operation is the IN(n) set for the node n that directly suc-
ceeds the merging control-flow paths. In a forward analysis
the OUT (n) set for the node n is calculated by applying
a transfer function fs(IN(n)) to the IN(n) set, which de-
pends on the semantics of the statement s within n.

Reaching constants is a canonical example of a nonsepa-
rable, forward data-flow analysis. Each variable v is paired
with a lattice value cv . The possible constant lattice val-
ues are top >, which indicates that no information is known
about the variable; bottom ⊥, which indicates the variable
is not constant; or a constant value c, which indicates the
variable holds the value c. Before performing the analysis,
every IN and OUT set is inititialized with a pair 〈v, cv〉 for
each variable v. The IN set at the entry of the program is
initialized with 〈v,⊥〉 and all other sets are initialized with
〈v,>〉. The meet operation u for reaching constants deter-
mines a lattice value for each variable when two OUT sets
are merged. The result of the meet operation 〈v, c1〉u〈v, c2〉
is 〈v, cr〉, where cr is as follows: if c1 equals c2, then cr is
c1; if c1 equals >, then cr is c2; if c2 equals >, then cr is c1;
otherwise, cr is ⊥. At an assignment statement, the transfer
function evaluates the right-hand-side of the statement to a
constant value c or ⊥ and then pairs that resulting lattice
value with the left-hand-side variable in the OUT set for



receive(y) commIN(n)

OUT(p1)

OUT(n)

OUT(p2) OUT(pn)
...

IN(n)

n:

commOUT(q1)

commOUT(q2)

commOUT(qm)

...

Figure 3. Control-flow edges and communi-
cation edges incident on a receive node.

the statement. When performing reaching constants on the
MPI-ICFG in Figure 1, the variable x will be paired with
the constant value 2 in the OUT set for statement x=x+1.

An MPI-CFG is specified as CFGMPI = {V,E,C},
where V is the set of nodes in the graph, E is the set
of control-flow edges, and C is the set of communication
edges in the graph. Extending any forward, nonsepara-
ble data-flow analysis for operation over the MPI-CFG in-
volves defining the communication transfer function fcomm

that calculates the lattice value to propagate over outgo-
ing communication edges based on the IN(n) set for a
send node and the variable being sent (see Figure 2). For
reaching constants, the communication transfer function
is commOUT (n) = fcomm(IN(n)) = {cx|〈x, cx〉 ∈
IN(n)}, where n is the node containing the statement
send(x) and cx is the lattice value assigned to the vari-
able x in the IN(n) data-flow set for the send node. When
performing reaching constants on the MPI-ICFG in Fig-
ure 1, when performing reaching constants the lattice value
2 will be propagated over the communication edge between
send(x) and receive(y).

The transfer function for the receive statement must
be defined so that it uses the lattice value propagated
over all incoming communication edges as input. As-
sume that an MPI-CFG has been constructed such that
there are communication edges between send and receive
statements that conservatively estimate possible communi-
cations (see Figure 3). For each receive statement, we de-
note the set of possible sends nodes identified by the in-
coming communication edges as commpred(n). In Fig-
ure 1, the receive(y) node only has the send(x)
node in its commpreds(n) set. For reaching con-
stants, the transfer function for the receive node can
be defined as OUT (n) = (IN(n) − {〈y, cy〉}) ∪

{〈y,uq∈commpred(n)fcomm(IN(q))〉}. When performing
reaching constants on the MPI-ICFG in Figure 1, the OUT
set for the node containing the receive(y) statement
will include the following set of variables paired with lat-
tice values: {〈x, 0〉, 〈z, 2〉, 〈b, 7〉, 〈f,⊥〉, 〈y, 2〉}.

The approach used to define the transfer functions and
communication transfer function for reaching constants can
be used for other nonseparable data-flow analyses as well.
Activity analysis is the analysis we implement for our ex-
perimental results. One phase of activity analysis is useful
analysis, which is a backward data-flow analysis to deter-
mine the set of variables that are useful when computing a
subset of output variables. If the variable is useful at the exit
of a statement, then that variable is in the OUT (n) set. The
meet operator is set union. To initialize the analysis, all out-
put variables of interest are inserted into the IN(EXIT )
set. The OUT (n) set for node n is calculated by perform-
ing the meet operation between all the IN(m) sets where
m is in succs(n). The transfer function for useful analy-
sis calculates the IN(n) set by making any variables that
are being defined in a nodes statement be useful, if there are
variables being used in the statement in a differentiable way.
Note that the used variables might be arrays and that in the
context of activity analysis, the variable(s) being defined in
a statement do not depend on any of the variables used to
index such arrays.

Extending useful analysis for the MPI-CFG necessitates
passing a boolean value over the communication edge from
the receive node to the send node to indicate whether the
received variable is useful and therefore the sent variable is
also useful. The communication transfer function applied
to receive(y) is commIN(n) = fcomm(OUT (n)) =
{true | y ∈ OUT (n)}. When performing useful analy-
sis on the MPI-CFG in Figure 1, if the variable f is put in
OUT (Exit), then a true value will be propagated from the
node containing the receive(y) statement to the node
containing the send(x) statement. Also, the variable x
will be in the IN set for the node containing the send(x)
statement.

4 Interprocedural Data-Flow Analysis of
SPMD MPI Programs

Most MPI programs do not have all of their MPI calls in
one procedure; therefore, interprocedural data-flow analysis
is necessary. We generate an interprocedural control-flow
graph (ICFG) [25], augment the ICFG with communication
edges that can cross procedure boundaries to generate the
MPI-ICFG, and provide context-sensitivity for certain MPI
calls and their callers. We chose an ICFG versus the typical
call graph with a CFG per procedure, because the communi-
cation edges would result in the separate CFGs interacting
with each other within the data-flow analysis in ways not



captured by the call graph relationships.

4.1 Construction of the MPI-ICFG

The construction of the MPI-ICFG applies to programs
that use MPI. The MPI standard specifies interfaces for C,
C++, and Fortran. In our experiments we perform analysis
of Fortran programs. We build the MPI-ICFG by first con-
structing an ICFG and then adding communication edges
between possible send/ isend and receive/ireceive pairs,
among all calls to broadcast, and among all calls to reduce.
We perform an interprocedural reaching constants analysis
and perform a matching using the MPI semantics to reduce
the number of communication edges that are conservatively
necessary. For broadcast and reduce, the root parameters
must match if they statically evaluate to constants. For send
and receive pairs, the tag and communicator must match if
they statically evaluate to constants. Additional heuristics
for reducing the number of communication edges are de-
scribed in [35], but were not used in our experiments.

The precision of data-flow analysis over the ICFG is af-
fected by the precision of the alias analysis, the lack of
context-sensitivity in the ICFG, and the global assumptions
made at MPI calls. The precision of data-flow analysis over
the MPI-ICFG is affected by the same things, but it has bet-
ter precision in terms of the MPI calls as long as there is less
than full connectivity in the communication edges between
sends, receives, reduce, and broadcast operations.

The precision benefits of propagating data over the com-
munication edges can be lost when there is not enough
context-sensitivity in the call path involving the MPI sends
and receives. We provide partial context-sensitivity within
the ICFG and the MPI-ICFG by cloning the ICFG nodes for
the MPI send and receive stub routines for each call site. In
Table 1 this is referred to as clone level zero. For some of
the benchmarks, the send and receive calls are occur within
layers of wrapper routines, which are in turn called in mul-
tiple locations. Clone levels greater than zero indicate the
number of levels in the call graph away from MPI send and
receive that routines are marked for cloning in the ICFG. In
our experimental results, we used the lowest level of cloning
that experienced the best possible precision on the ICFG. In
a practical implementation, the necessary level of cloning
could be determined by inspecting the call graph to deter-
mine the wrapper depth around MPI sends and receives.

4.2 Complexity of Data-Flow Analysis

The depth of the MPI-ICFG multiplied by the number of
variables provides an upper bound on the number of passes
required for convergence. The depth is difficult to calcu-
late because the MPI-ICFG is generally irreducible due to
the communication edges. It can be shown that comput-

ing the depth of an irreducible graph is NP-complete [29].
Nonetheless, our experimental results show that the conver-
gence is comparable to the more conservative analysis over
the ICFG (see Table 1).

4.3 Implementation of Data-Flow Analy-
sis

Data-flow analysis frameworks for CFG’s are typically
implemented so that only the transfer and meet operations
must be specified [9, 16, 40]. Data-flow analysis over
ICFGs also requires a specification of how information is
mapped from the caller to the callee, and vice versa. These
same operations must be specified for data flow over an
MPI-ICFG. The only new methods needed for analysis over
an MPI-ICFG are the communication transfer function, the
transfer functions for send and receive statements, and a
meet operation for the values propagated over the commu-
nication edges.

5 Experimental Results

5.1 Methodology

We implemented the construction of the MPI-ICFG, the
data-flow framework for an MPI-ICFG, and activity anal-
ysis using the OpenAnalysis toolkit [39] coupled with the
Open64/SL compiler infrastructure [34] and used the data-
flow analysis framework to apply activity analysis to var-
ious benchmarks. The NAS parallel benchmarks [1], la-
beled NASPB, were obtained from http://www.nas.nasa.-
gov/Software/NPB/; the benchmark labeled SOR is an im-
plementation of successive overrelaxation developed by one
of the authors [18]; and the benchmark labeled Biostat is a
parallelized version of a biostatistical analysis function pro-
vided by D. Spiegelman [19]. Sweep3d [26] is a benchmark
code derived from a real application, 3D Discrete Ordinates
Neutron Transport, which solves a geometry neutron trans-
port problem. Table 1 summarizes our benchmarks.

Each benchmark is a unique combination of source, con-
text routine (shown in parentheses), and independent and
dependent variables. For example, LU-1 refers to the source
NASPB LUwith context routine rhs, independent variable
frct and dependent variable rsd. As described in Sec-
tion 2, activity analysis requires selecting a subset of the
input variables to a procedure within the program as the in-
dependent variables and a subset of the output variables as
the dependent variables. For each benchmark, we selected
at least one reasonable set of independent and dependent
variables and a context routine. The context routine is a
subroutine within the program that it makes sense to auto-
matically differentiate. The ICFG and MPI-ICFG contain
the routines that are called either directly or indirectly by
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Figure 4. Activity Analysis Results: Num-
ber of megabytes saved per benchmark from
MPI-ICFG over ICFG activity analysis for both
the Active set and within the Derivative code.

the context subroutine. The Biostat and SOR problems had
previously been differentiated using the ADIFOR automatic
differentiation tool and appropriate independent and depen-
dent variables were known. The NAS Parallel Benchmarks
considered primarily solve a linear system. Therefore, we
selected as independent variables one or more of the scalar
quantities used to compute the righthand-side (rhs) vector
or the rhs vector itself. We selected as the dependent vari-
able either the rhs vector, the solution vector, or the residual
of the solution vector. For the context routine, we selected
either the subroutine used to form the rhs vector or the sub-
routine used to set up and solve the linear system.

We performed activity analyses over ICFGs and MPI-
ICFGs on all the benchmarks. When using the ICFG,
the benchmarks were augmented with a global variable to
model possible communication between all send and re-
ceive pairs, and the global variable was declared both in-
dependent and dependent within the context routine. We
recorded the number of iterations for convergance as well as
the number of active bytes found by each analysis. The de-
crease in number of active bytes is given as a percentage and
is calculated by subtracting the MPI-ICFG-Active-Bytes
from the ICFG-Active-Bytes and dividing by the ICFG-
Active-Bytes. Using the number of active bytes and the
number of independent variables, it is possible to determine
the storage that will be needed within the derivative code us-
ing the formula DerivBytes = (number of independents) ∗
(ActiveBytes). This is because in the derivative code, it will
be necessary to maintain the derivative of each active vari-
able or array element (typically a double) with respect to
each independent variable.

5.2 Effect on Activity Analysis

Each analysis determines an active symbol list and the
size in bytes of active symbols. Figure 4 shows the possible

storage savings when activity analysis is performed over the
MPI-ICFG versus the ICFG. Storage savings only occur for
eight of the benchmarks, but the amount of storage saved for
those benchmarks is significant. Table 1 details the differ-
ences between activity analysis over the ICFG and analysis
over the MPI-ICFG on all of the benchmarks.

The most dramatic difference is seen in Biostat and
Sweep3D. In the Biostat problem, using the MPI-ICFG al-
lows us to determine that a large data array (in this small test
problem, an array of approximately 300,000 floating-point
values) is not active and therefore does not need deriva-
tives [18]. For this small example, the resulting mem-
ory savings would be approximately 1.5 gigabytes; for
the real problem, the savings would be hundreds of giga-
bytes [19, 3]. In addition to the space savings, there would
be significant time savings, since otherwise all of this use-
less data would need to be broadcast from the root proces-
sor to all other processors. The savings seen in the LU set
of benchmarks is also due to a large array being categorized
as inactive.

These results are specific to activity analysis and do not
easily generalize to other nonseparable data-flow analyses.
For example, the trust analysis described in [15] will ex-
perience precision improvements on the MPI-ICFG when-
ever trusted information is sent and received. Trust analy-
sis is not relevant to the benchmarks used in these experi-
ments, because the programs do not receive any input from
untrusted sockets. The important conclusion to draw from
the activity analysis experiments is that there are situations
where a data-flow analysis that explicitly handles commu-
nication edges can derive more precise results.

5.3 Convergence

The column labeled Iter in Table 1 shows that the number
of iterations over the MPI-ICFG is slightly larger than the
number of iterations over the ICFG. The worst-case num-
ber of iterations is the depth of the graph multiplied by the
number of variables. Since the MPI-ICFG includes com-
munication edges, it will always have a depth that is greater
than or equal to the depth of the ICFG. The actual number
of iterations for both the ICFG and the MPI-ICFG do not
show worst-case behavior.

6 Related Work

The work most closely related to the data-flow frame-
work presented in this paper is that of Reif and Smolka [32].
They formalize a data-flow framework for a collection of
communicating processes. The flow of data over what they
refer to as communication channels is similar to the flow of
data over the communication edges in our framework. The
main difference is that they do not handle single-program,



Table 1. Number of iterations, number of active bytes and number of DerivBytes for ICFG and MPI-
ICFG Activity analyses.

Bench- Clone- Active # of Deriv %
mark Source level IND DEP Analysis Iter Bytes Indeps Bytes Decrease

Spiegelman: Biostat ICFG 12 1441632 1569937248
Biostat (lglik3) 0 xmle xlogl MPI-ICFG 12 9016 1089 9818424 99.37%

Hovland: SOR ICFG 13 3038136 3038136
SOR (mainsor) 0 omega resid MPI-ICFG 17 3030104 1 3030104 0.26%

NASPB: CG ICFG 14 240048 240048
CG (conj grad) 0 x z MPI-ICFG 18 240048 1 240048 0.00%

NASPB: LU ICFG 18 187194472 7487778880
LU-1 (rhs) 1 frct rsd MPI-ICFG 19 93636000 40 3745440000 49.98%

NASPB: LU ICFG 23 145901208 145901208
LU-2 (ssor) 2 omega rsd MPI-ICFG 30 145901168 1 145901168 0.00%

NASPB: LU ICFG 18 140376488 280752976
LU-3 (rhs) 1 tx1,tx2 rsd MPI-ICFG 18 46818016 2 93636032 66.65%

NASPB: MG ICFG 16 647487912 647487912
MG-1 (mg3P) 3 r u MPI-ICFG 18 647487896 1 647487896 0.00%

NASPB: MG ICFG 16 16908656 67634624
MG-2 (psinv) 1 c u MPI-ICFG 17 16908640 4 67634560 0.00%

ASCI: Sweep3d ICFG 24 18120784 869797632
Sw-1 (sweep) 2 w flux MPI-ICFG 23 18000048 48 864002304 0.67%

ASCI: Sweep3d ICFG 23 120984 5807232
Sw-3 (sweep) 2 w leakage MPI-ICFG 25 248 48 11904 99.80%

ASCI: Sweep3d ICFG 23 120840 5800320
Sw-4 (sweep) 2 weta leakage MPI-ICFG 25 104 48 4992 99.91%

ASCI: Sweep3d flux, ICFG 22 121032 5809536
Sw-5 (sweep) 2 w leakage MPI-ICFG 22 296 48 14208 99.76%

ASCI: Sweep3d flux, ICFG 22 18120840 869800320
Sw-6 (sweep) 2 weta leakage MPI-ICFG 22 104 48 4992 99.99%

multiple data (SPMD) semantics. In their framework, each
process is modeled with a separate control-flow graph.

Data-flow frameworks have been developed for various
types of shared-memory parallelism [7, 14, 20, 22, 23, 21,
27]. Other research [28, 10] provides a model for data-flow
analysis of concurrent programs with Ada-style rendezvous.
We are aware of only Krishnamurthy and Yelick [24] look-
ing at analysis for single-program, multiple-data programs.
They present methods for performing interference depen-
dence analysis of SPMD programs with a global shared ad-
dress space by making two copies of the control-flow graph.

Several automatic differentiation tools support MPI, but
activity analysis is typically limited. ADIFOR 3.0 forces all
floating-point variables passed as an argument to an MPI
call to be active [6]. TAMC and TAF allow the user to
specify activity information for library calls [11], includ-
ing calls to MPI. The programmer must have a deep under-
standing of the context of MPI calls or make the conser-
vative assumption that all variables communicated via MPI
are active. Odyssée and Tapenade employ a model that in-

duces a dependence from all sent variables to all received
variables through assignment to/from a single global vari-
able [8]. This model ignores the SPMD nature of MPI pro-
grams and thus may fail if a branch on rank occurs prior to
communication and outside of any loops.

7 Conclusions

MPI programs are a significant portion of all parallel pro-
grams. We describe a data-flow analysis framework for the
MPI-CFG [35] and the MPI-ICFG. The key feature of these
intermediate representations is that they model the com-
munication between MPI calls and therefore the associated
data-flow analysis is capable of modeling communication
and SPMD semantics. Data-flow analysis that propagates
information over communication edges is relevant to non-
separable analyses such as reaching constants, activity anal-
ysis, slicing, bitwidth analysis [38], and trust analysis [15].
Our experimental results show that activity analysis per-



formed over the MPI-ICFG has a convergence rate compa-
rable to a conservative analysis over the ICFG and that using
the MPI-ICFG data-flow analysis framework improves the
precision of activity analysis. Although we focus on MPI
programs, the MPI-ICFG and the associated data-flow anal-
ysis framework are applicable to any SPMD parallel pro-
gram that uses messages for communication.
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