
Scalable Time-Parallelization of Molecular Dynamics Simulations in Nano
Mechanics

Yanan Yu
Dept. of Computer Science

Florida State University
Tallahassee FL 32306, USA

yu@cs.fsu.edu

Ashok Srinivasan
Dept. of Computer Science

Florida State University
Tallahassee FL 32306, USA

asriniva@cs.fsu.edu

Namas Chandra
Dept. of Mechanical Engineering

Florida State University
Tallahassee FL 32310, USA

chandra@eng.fsu.edu

Abstract

Molecular Dynamics (MD) is an important atomistic
simulation technique, with widespread use in computational
chemistry, biology, and materials. An important limitation
of MD is that the time step size is small, requiring a large
number of iterations to simulate realistic time spans. Con-
ventional parallelization is not very effective for this. We re-
cently introduced a new approach to parallelization, where
data from related prior simulations are used to parallelize a
new computation along the time domain. In our prior work,
the size of the physical system in the current simulation
needed to be identical to that of the prior simulations. The
significance of this paper lies in demonstrating a strategy
that enables this approach to be used even when the physi-
cal systems differ in size. Furthermore, this method scaled
up to almost ���� processors with close to ideal speedup in
one case, where conventional methods scale to only � � �
processors.

1 Introduction

Nanotechnology impacts a range of fields that includes
materials, electronics, pharmacy, and health care, among
others. Molecular dynamics (MD) is widely used to sim-
ulate the behavior of physical systems in such applications,
with resolution at the atomic scale. However, a serious lim-
itation of MD is its inability to simulate phenomena that
take long time, for reasons given below. MD computations
involve the iterative solution of an initial value problem,
with time steps of the order of a femto (10���) second. So,
even after a few million iterations, which requires the or-
der of a day of computational effort even for a small sys-
tem with ���� atoms, we can only simulate up to the or-
der of nanoseconds. This is not sufficient to get a realistic
picture of the behavior of a physical system. Any method

that addresses this temporal scale limitation is expected to
have tremendous impact, and this has been identified as an
important challenge in nanoscale simulations and compu-
tational materials science, and in simulations of biological
molecules.

In this paper, we consider a single walled Carbon Nan-
otube (CNT) as an example physical system, and seek to
determine its mechanical properties under tension (that is,
when it is pulled). Details regarding this application, on
MD, and on the importance of the time scale, are given in
� 2. Since MD is used in a variety of other applications too,
we can expect the impact of this work to be much broader
than this specific application.

The usual approach to dealing with computational effort
that arises from large physical systems is to parallelize it1.
However, conventional parallelization is through some type
of decomposition of the state space of a system. This is
not effective with small physical systems, since fine gran-
ularity leads to communication costs dominating the com-
putational cost. When the computational effort arises from
the long time required, parallelization of the time domain
appears to be a natural possibility. However, time is not a
quantity that is easily parallelized. We recently proposed a
data-driven time parallelization approach, which we called
guided simulations, where results from related simulations
were used to parallelize along the time domain.

The basic idea is to have each processor simulate a dif-
ferent interval of time. The problem is that each processor
needs the state of the system at the beginning of the time
interval it simulates, since we solve an initial value prob-
lem. We observe that, typically, the current simulation is
not the first one that is being performed; usually, the results
of many related prior simulations are available. We use re-
sults from one such related simulation (which we call the

1Some MD applications, involving computation of physical or thermo-
dynamic properties, are trivially parallelizable, with the results of indepen-
dent simulations being averaged. Such a scheme is not possible in general,
such as in the problem we consider.



base simulation) to predict the state of the current simula-
tion at the beginning of each time interval. The relationship
between the base simulation and the current simulation is
updated dynamically as the simulation proceeds, to come
up with increasingly better prediction. The predicted states
are verified in parallel through exact MD computations, to
ensure accuracy of the results. We explain this approach in
greater detail in � 3.

We summarize our prior work, as well as related work by
others, in � 4. In contrast to our prior work [6], the predic-
tion strategy in this paper does not require that the sizes of
the physical systems in the base simulation and the current
one be identical, but it uses knowledge of the physics of the
problem, to a certain extent. The ability to simulate a differ-
ent sized system is useful, because it permits a single run,
with a smaller tube size (and smaller span of time), to en-
able a number of more realistic simulations that use larger
physical systems (for longer spans of time 2).

The effectiveness of our strategy is demonstrated in ten-
sile tests of CNTs, where the length of the CNTs are �, ���,
���, and � times that in the base simulation, and using differ-
ent simulation parameters (pulling speed) than in the base.
� 5 gives the details of these numerical experiments, along
with other tests that validate their accuracy. We also sug-
gest the use of flops per atom as a measure of the ability
to reach long time scales, since the larger it is, the longer
is the time span that can be simulated in a fixed period of
time. We achieve ��� MFlops per atom, for a total flop rate
of ��� GFlops. We believe that our flops per atom rate is
the largest attained in classical molecular dynamics com-
putations of real applications so far.

We finally summarize our conclusions, and present di-
rections for future work, in � 6.

2 Carbon Nanotube Application

��� ������� ���	 
� ���

The physical system we consider is a CNT. One im-
portant application of CNTs is in nano-composites, where
CNTs are embedded in a polymer matrix. In such ap-
plications, it becomes important to determine the me-
chanical properties of the CNT. One important simula-
tion/experiment is the tensile test, in which one end of the
CNT is pulled at a constant velocity, while the other end is
fixed. The response of the material is characterized by the
stress (force required to pull the tube, divided by it cross-

2The time � required to simulate a CNT with � atoms when pulled at
velocity � until it starts breaking is roughly proportional to ����. The
reason for this is that the CNT’s length is proportional to � , and so the
number of time steps required to reach a fixed value of strain (which is
defined later) is proportional to ���. Furthermore, the time required for
each iteration is proportional to � .

sectional area) for a given strain (the elongation of the nan-
otube, relative to its original length). A stress-strain curve,
as shown in Fig. 4 later, describes the behavior of the ma-
terial when it is pulled at the specified velocity (more for-
mally, strain-rate). Such a curve, for example, could be
used by a multi-scale finite element code to determine the
effect of the polymer matrix on the CNT, and vice-versa.
Another important property is the strain at which the CNT
starts to break.

��� 
������� ��������

We describe MD in the context of the CNT application,
though it is, of course, a more general technique, which can
be used for simulating the behavior of a set of atoms or
molecules. The state �� of the system at any time � is de-
fined by the position and velocity vectors, at time �, of the
Carbon atoms that form the CNT. If there are � atoms in
the systems, then there are �� quantities (three position co-
ordinates and the three velocity coordinates per atom) that
define the state. The properties of the CNT at time � can be
determined from these. Given��, we can compute�����, at
the next time step ����, as follows, thus tracking the time
evolution of the state, and consequently, the CNT proper-
ties. The forces on each atom are computed based on the
positions of the atoms. Once the forces on the atoms are
computed, the new positions of the atoms can be calculated
using Newton’s laws of motion. A numerical time integra-
tion scheme is used for this. Accuracy and stability consid-
erations limit �� to the order of a femto second (�����s),
in MD.

��� ���� ������

The small step size mentioned above proves to be an im-
pediment to effective MD computation. To illustrate this,
let us consider a CNT with ���� atoms, having initial length
�� nm (nano meters), and let �� be ��� femto seconds. Let
us pull the CNT fast enough so that it elongates by around
��	 in a �s (micro second). This is a large strain rate, and
the velocity at which one end is pulled is then ����� m/s.
The CNT breaks at around ��	 strain, and so to simulate
up to that point, we would require four billion time steps
– that is, over a year of sequential computational effort.
For lower strain rates, the time required is correspondingly
higher. Furthermore, this computation will not parallelize
efficiently on more than 2-3 processors using conventional
parallelization, and so the time required, even in a parallel
computation, is the order of a year. As an alternative, re-
searchers typically simulate at a faster rate, typically �� m/s
for a CNT this size, in which case the same strain is reached
in the order of an hour. It is assumed that the stress-strain
relationship determined at this higher strain rate is the same



as that which would be obtained under a lower strain rate.
However, it is known that such an assumption is not accu-
rate when the strain rates vary by several orders of magni-
tude [8]. On the other hand, if we were able to parallelize
the computation efficiently on a large number of processors,
then we could reach the desired time span with more re-
alistic strain-rates too. We wish to use the existing high-
velocity simulation results to perform relatively more real-
istic lower-velocity simulations on a large number of pro-
cessors. MD simulations in nano-mechanics are often per-
formed with simulation parameters that are more extreme
than is realistic, due to the time-scale problem mentioned
above. Consequently, similar prior results are often avail-
able, and so our approach can be extended to a larger class
of applications.

3 Time Parallelization through Guided Sim-
ulations

We recently introduced the general idea of guided sim-
ulations to parallelize along the time domain [5, 6]. We
describe it below, for completeness, but specialized to the
CNT application. A more general description is provided
in [5]. We then describe the specific prediction strategy used
in this work.

��� ���� �����������	�
�

Let us divide the time period for which the computation
has to be performed into a number of time intervals, such
that the number of time intervals is much greater than the
number of processors. In this section, we will let � � denote
the beginning of the � th time interval. Each time interval
may require several steps of the time integration algorithm.
In fact, we use ��� or ���� time steps per time interval in
our experiments.

Fig. 1 shows a schematic of the time parallelization idea,
while algorithm 3.1 describes it formally. In the algorithm,
the function ���	�
�
 ���� �� �� predicts the state at time � � �,
given a state ��� at time �, using certain prediction parame-
ters, which are explained later for the CNT application. The
function �	������	�
�������������� learns to predict
better, from the difference between the prediction and the
verification states.

In Fig. 1, processor �, for each � � �� � � ���, predicts (as
described later) the states at time ���� and �� (with the state
at time �� being a known initial state ��), using the results
of the base simulation, and its relationship to the current
simulation. Then each processor � performs accurate MD
simulations starting from the predicted state for time � ���
up to time ��, and verifies if the prediction for �� was ac-
curate. Both prediction and verification are performed in
parallel. Note that processor �’s initial state is known to

be accurate. So its computed results for time �� are accu-
rate. In Fig. 1, since these results are close to the predicted
state for time ��, the predicted state for time �� too is ac-
curate, which implies that the computed state on processor
� for time �� too is accurate, because it started from an ac-
curate initial state. The computed results in processor �, in
turn, are close to the predicted results at time ��, implying
that the computed results on processor � for time �� are ac-
curate. The predicted state for �� was inaccurate, and we
say that processor � erred. Computations for subsequent
points in time too have to be discarded, since they may have
started from incorrect initial states. The next phase starts
from time �� (since the verification step actually computed
the correct state for ��), and computes states for times ��,
��, ��, and �	. The errors observed in the previous verifi-
cation step can be used to improve the predictor by better
determining the relationship between the current simulation
and prior ones. Note that the outputs of the simulation are
always states computed using MD, and not predicted states.

Time

St
at

e

Predicted

Computed
Restart from here

Error

Discard

t2 t3 t4t1

Figure 1. Schematic of parallelization of time.

Note the following: (i) Processor �’s accurate MD result
is correct, since it always starts from a state known to be ac-
curate. So the computation always progresses. (ii) All the
processors must use the same predictor; otherwise verifica-
tion of prediction at time �� on processor � does not imply
that the prediction for initial state at time �� on processor
���was correct. (iii) The answers given will be accurate, if
our definition of the predicted and verified states being “suf-
ficiently close” is correct. A good predictor enables greater
speedup, while a poor one leads to it becoming a sequential
computation.



Algorithm 3.1: TIMEPARALLELIZE(������ ����� ���
������ �� ���������� �������� �� ���� ����� ��� �)

�� �
��� � ��
while � � �

do

�������������������������������
������������������������������

for ���! ��������� � � "�����
���� �� ��#

do

�������������������
������������������

������ � ���$��� 
 ���� �� �� � � ��

���� � ���$��� 
 ���� �� �� ��
����� � %�������&����������


���������� '�������
�����(��� '�� � � ��
)�$(��� '�� ��

*�$������$����������������


&����������������� ����� � �����

if �+�,������(��-��.�
 ����� � �����
then ��/�� � �
else ��/�� � �

� � %��0�$���
���������
if � ' �

then 1���$���� ����� � ���$������ ����������
for ���! ��������� � � "�� � #

do �� �� �

��� ������	�
�

The most important feature of our strategy is our ability
to predict the state, which serves as the starting point for
each processor, from its relationship with a base simulation.
The predictor should be both, accurate much of the time,
and much faster than the verifier.

Prediction over a long period of time is difficult. So we
will not try to predict the state at some arbitrary point in
time directly. Instead, if ��� is the most recently computed
state that is accurate, then we will predict the changes be-
tween ��� and the states at the times required, as shown in
the calls to ���	�
� in algorithm 3.1. We accomplish this
by predicting the change in each coordinate (of the posi-
tions of the atoms) independently. In the description here,
we normalize all the coordinates so that they are in "�� �#, by
letting the origin be � and then dividing by the length of the
CNT along that coordinate direction. It is easy to change
between the actual and normalized coordinates. Using the
normalized coordinates is advantageous, because it enables
us to use base and current simulations that use CNTs of dif-
ferent sizes. Similarly, for prediction purposes alone, the
relative times in the base and in the current simulations are
normalized by multiplying by the velocity with which one
end of the tube is pulled, and dividing by the original length
of the tube. For example, if the current simulation is pulled

at one tenth the velocity as the base, then time � in the cur-
rent simulation is related to time ���� in the base.

Let �� represent a (normalized) coordinate at (normal-
ized) time �. Using two terms of the Taylor’s series, we
have

����� ' �� � ẋ������� (1)

where ẋ���� is the actual slope 	��	� at some point in "�� ��
��#. We do not know the value of ẋ����, but will try to
predict it.

We will consider a finite set of basis functions,
��� ��� ���� ��, which are functions of the coordinates of the
atom positions, and express ẋ in terms of it. For exam-
ple, we can take a polynomial basis �� �� ��. These basis
functions should ideally be chosen so that they represent the
types of changes that can occur under physical phenomena
that the CNT might experience. For example, for the tensile
test, we use only the � term for the coordinates orthogonal
to the direction in which the CNT is pulled, and � and � for
the direction in which it is pulled. This makes it suitable for
the tensile test problem.

Let ẋ���� �
�

� ���������
���. Once we have per-
formed an accurate simulation for time �, we know the ac-
tual ẋ� for each atom, and can perform a least squares fit
to determine the coefficients ����. We can express changes
in the base similarly, and determine its coefficients, say
����. If the base simulation and the current simulation
are almost identical, then we can approximate � ������ by
�������. However, the simulations will typically differ,
and so we wish to correct by adding the difference be-
tween the two simulations ����� ' ������� � �������,
which is unknown. As a first approximation, we can as-
sume that ����� ' ���� � ���� to yield the approxima-
tion ������� � ������� � ������� ' ������� � ���� � ����.
On one hand, using the latest ���� available might give the
best estimate. On the other hand, random fluctuations in
the MD simulation lead to somewhat poor results if we de-
pend on only evaluation at one point in time. So we set
����� ' 
�� ���� � �
���� � �����, where � is the weight
assigned to the latest value. The term �� represents the re-
lationship between the base and current simulations, and
updating it at each time step represents a simple form of
learning. Note that if values of ���� are not available, only
the values of ���� are used.

Since ���� and ���� are unknown, we need to chose a suit-
able method of starting this process. We assume a linear in-
crease with time, in the values of the coordinates of atoms,
in the direction in which the CNT is pulled, with the con-
stant of proportionality being a function of its normalized
coordinates. This is not a very good initial choice when the
interval of time is very large. But after the first phase of
computations in the while loop in algorithm 3.1, the error
due to this choice is reduced rapidly.



The velocity distribution of the atoms is predicted to be
the distribution at the previous point in time for the current
simulation. Since the numerical simulations were carried
out at constant temperature, this was sufficient3.

��� �������	�
�

The verification step consists of an accurate MD simu-
lation, starting from a possibly inaccurate initial state. The
computed state is then compared with the predicted state
for the same point in time. We need to determine if the two
states are sufficiently close.

MD simulations bring an interesting issue – that of de-
termining the equivalence of two dynamic states. In nature,
atoms vibrate around their mean position, even when noth-
ing interesting is happening to the physical system. MD
simulations track these vibrations, and so if we look at the
states of a physical system in equilibrium, at two different
points in time, it is unlikely that the atoms will be in the
same positions, even though they represent the same sys-
tem. So we cannot expect the predicted state to have atoms
in the same positions as in the accurate simulations either.
Details on the physical justification for our verification pro-
cedure are given in [7]. Here, we give a high-level overview
of our criteria. We determine the difference in positions of
corresponding atoms in the predicted and computed states.
If the average difference is below a threshold, defined by
the difference expected for equivalent systems, then the dif-
ference is considered acceptable. Similar thresholds are set
for the maximum difference between any two correspond-
ing atoms, and for the potential and kinetic energies of the
system.

��� ���� ��������

The overheads of parallelization, such as prediction, and
communication, are small compared with that of the “use-
ful” computations (as performed by the sequential algo-
rithm). Each processor performs MD computations for its
time interval. For example, consider a time interval of ����
time steps and a ����-atom CNT. Sequential computations
for ���� time steps require around �� seconds on an Intel
Xeon processor running at around ��� GHz and around ��
second on a �2� MHz IBM POWER 3 processor.

The parallel overheads are due to time loss in predic-
tion, communication, and file I/O from disk. Each processor
performs two predictions. This requires two file reads, and
nine least squares computations (three coordinates each, for
the base simulation at two time points, and for the current

3MD does not automatically preserve temperature. So a process called
“thermostating” is performed, which modifies velocities, using random
numbers, to keep temperature constant. This occurs both in the sequen-
tial and in the parallel algorithms.

simulation after the verification step). The least squares
computation takes time linear in the size of the system, but
quadratic in the number of coefficients (the latter is a small
constant). An AllReduce on one integer (a process rank)
is performed to determine the smallest indexed processor
that erred. A broadcast of the entire state of this proces-
sor, and the coefficients of its predictor basis functions, is
performed, so that all processors will have the same coeffi-
cients.

The overhead for all these operations is much smaller
than the computation time and so the efficiency is very high,
even on a large number of processors. For example, on
an Intel Xeon cluster at NCSA, the least square and other
prediction related computations takes � ����s, file read
� ���� � ���s seconds, the AllReduce � ���� � ����s,
and Broadcast � ���� � ����s between 50-1000 proces-
sors. Load imbalance is not an issue, since each processor
performs, essentially, the same amount of computation. All
the overheads are insignificant (total 	 ���s), relative to the
computation time (� ��s) for simulating a single time in-
terval.

4 Related Work

��� ���
� �
� 

We introduced the idea of guided simulations for time
parallelization of scientific applications in [4, 5]. We also
demonstrated the effectiveness of the technique in practice,
using a CNT computation with tensile test as an example
in [5]. The prediction strategy in the current work improves
on that in [5]. This enables the computation to scale effi-
ciently on up to 990 processors, in contrast to 50 processors
in the prior work. Furthermore, in the current work, a 10m/s
base simulation predicts a 1m/s simulation, whereas the two
velocities were much closer in the previous work.

In [6], we showed how basis functions can be selected
in a more mathematical manner. The basis functions there
needed data from a CNT (or any other physical system
being studied) of the same size as the current simulation.
In contrast, the predictor in the current work does not as-
sume that. The amount of data broadcast in this predictor
is greater than that in [6]. However, the actual efficiency is
slightly higher, even though the current experiments are run
on a larger number of processors, perhaps because there is
one extra send/receive in [6].

��� !	"�� #$$�
��"��

Works on parallelization of MD calculations on CNTs,
as well as several publications on parallelizing MD com-
putations on other physical systems in general, are summa-
rized in [7]. Good efficiency is typically obtained when the



granularity is of the order of at last �� ms per time step in
a parallel run. This does not give much scope for conven-
tional parallelization for the application we consider, which
requires the order of �� ms per time step even on a single
processor.

Time parallelization using the Parareal approach [1]
(which does not use prior data) has been proposed as an
alternative to conventional parallelization. However, the
speedup and efficiency obtained have been limited, even in
the model problems considered. We described its limita-
tions in detail in [5].

In the 1980s and 90s, time parallelization using wave-
form relaxation [2], and various variants of this, were well
studied. However, these techniques, which are based on
ODE theory and can be considered generalizations of Pi-
card iterations, had limited impact due to their slow conver-
gence. (The slow convergence is a feature of the sequential
algorithm.)

5 Experimental results

The tensile tests in this paper are performed by keeping
one end of the tube fixed by forcing around 100 atoms at that
end to remain stationary. The tube is pulled at a fixed rate
in the � direction by forcing around 100 atoms at the other
end to increase their � coordinate values at a rate of � m/s.
We used � ' �� m/s for the base simulation, and � m/s for
the current simulation. The time step in the MD simulations
was ��� femto seconds. The Tersoff-Brenner potential was
used in the MD simulations, and a fourth order Nordsiek
scheme for time integration.

We used results from an MD simulation of a CNT con-
taining ���� atoms, conducted at a temperature of ��� ,
whose output had been recorded every ��� time steps, up
to a total of ���� ��� time steps, as the base case. The pre-
dictor used � ' ���. The results are not very sensitive to
the value of �, as long as � is not close to � or �. The new
simulations were performed until the CNT started to break.
Results after the CNT starts to break are not of use in our
application, though it is still interesting to observe them.

%�� �$����$ �����	�

The timing results are based on wall clock time. In the
report of the speedup results, we ignore the initialization
time for our code, which is small (� �	 of the time of
one time interval). We also ignore the time required by the
system to start the processes on the machines and to call
MPI Init. The latter two operations consume a significant
portion of the time, but are independent of the algorithm,
and are also one time costs.

Speedup results4 for a ����-atom CNT5, using a time in-
terval of ���� time-steps, on the Tungsten Xeon cluster at
NCSA are shown in Fig. 2. This cluster consists of Dell
PowerEdge 1750 servers, with each node containing two
Intel Xeon 3.2 GHz processors, 3 GB ECC DDR SDRAM
memory, 512 KB L2 cache, 1 MB L3 cache, running Red
Hat Linux. The file system used is Lustre. Myrinet 2000
and Gigabit Ethernet interconnects are available. We used
the Myrinet interconnect. The ChaMPIon/Pro MPI imple-
mentation was used with gcc/g77 compilers for our mixed
C/Fortran code, compiled with ’-O3’ optimization flags set.
The MPI calls were purely in the C code. The computing
nodes ran in dedicated mode for the timing results. We can
see that speedup is almost the ideal linear curve up to 33�
processors on the Xeon cluster. The processors never erred
in the course of the simulation (up to the point where the
CNT started to break), and so loss in speed was only due
to the overheads of prediction, communication, and reading
the base simulation results from disk, as discussed in � 3.4.

The flop rate on the 33� processor run on the Xeon clus-
ter was computed to be around ��� GFlops, as follows.
First, the number of floating point operations per time step
was determined using tpmcount on the ORNL SP3 machine,
over 10,000 time steps of the sequential code (consequently,
counting only the “useful” floating point operations, and not
those for prediction). Then, from the time per time step on
the 33� processor run, the flop rate was determined. The
flop rate per atom gives an indication of how long we can
simulate in time for a given physical system and potential
function. The flop rate per atom for our simulation on 33�
processors of the NCSA Xeon cluster is ��� MFlops/atom.
The flop rate per atom in [3] is ��� MFlops/atom, where we
use the data for the run on the largest number of proces-
sors reported. We are not aware of any classical molecular
dynamics simulation attaining a greater flop rate per atom
than ours in a real application, and have reason to believe
that ours is the largest.

Similar simulations on up to ��� processors on the Ea-
gle IBM SP3 machine at Oak Ridge National Lab yielded
efficiencies over 3�	, but still a little lower than that on the
Xeon cluster. The probable cause was that we performed the
computations in non-dedicated mode. The sequential speed
was also lower on the IBM machine, as was the largest num-
ber of processors that we used, and so the highest flop rate
reached was ��� GFlops.

The simulations of CNTs of ����, ����, and ���� atoms
were performed on the Seaborg IBM SP at NERSC, using

4The speedup results compare the parallel time with that for an inher-
ently sequential code, which does not have any of the overheads of the
parallel code. Comparing with the parallel code run on a single processor
would yield marginally higher speedups.

5Even though the number of atoms are identical to that in the base
simulation, the simulation parameters differ, and the prediction scheme
does not use knowledge of fact that the lengths are equal.



a time interval of ��� time-steps6. This system consists of
compute nodes with 16 �2�MHz IBM Power 3+ proces-
sors each. Fig. 3 shows the speedup results. In the ����
and ����-atom simulations, the prediction is always suffi-
ciently accurate, but minor errors during initialization on
��� processors caused a slight drop in efficiency to around
3�	. With the ����-atom simulation, there was one set
of prediction errors toward the middle of the simulation,
which caused the efficiency to drop to around 23	 on ���
processors. The efficiencies for the other cases were well
over 3�	. The scalability is less than that observed when
the base and current simulations are on CNTs of identical
length. However, the speedup is still substantial. Note that
the sequential computation needs the order of a week of
computing time on the ����-atom simulation, and so the
benefit obtained from time-parallelization is considerable.

0 200 400 600 800 1000
0

200

400

600

800

1000

Number of processors

S
pe

ed
up

Figure 2. Speedup curve. The dashed line
shows the ideal speedup, and the solid line
shows the observed speedup. The flop rate
is ��� GFlops on 33� processors.

%�� ������	�
�

To verify that the errors in our scheme did not propagate,
we compared the stress-strain results from the parallel run
with the exact sequential run. Fig. 4 shows the plot of stress
versus strain, which is a material behavior of practical inter-
est, for a ��� processor run on a ����-atom CNT. The time-
parallel results agree very well with the exact sequential re-
sults, even in the non-linear region, up to the point where
the CNT starts to break. The time at which the CNT starts
to break is also determined as with the sequential run, at a

6A smaller time interval size was required for initialization to be accu-
rate on large numbers of processors.

0 50 100 150 200
0

50

100

150

200

Number of Processors

S
pe

ed
up

Figure 3. Speedup curve. The dotted line
shows the ideal speedup. The dashed, dash-
dotted, and solid lines show the speedups on
����, ����, and ���� atom simulations respec-
tively, on the IBM SP at NERSC.

strain of around ���3 (���43� for sequential versus ���3��
for parallel.)

After the point of breakage of the CNT, the parallel and
sequential run don’t agree very closely. The reason for this
is that our error criterion used the behavior of an intact CNT
to decide if two states are equivalent. This is not a good
enough criterion for a CNT that has started breaking. Re-
sults beyond the point where the CNT starts to break are not
of any practical use in our application.

The above results give empirical evidence for the stabil-
ity of our method. Details on both numerical and physical
reasons for this are given in [7].

6 Conclusions

We have demonstrated the effectiveness of a new ap-
proach to time parallelization, namely, using guided sim-
ulations, on a large number of processors in a practical ap-
plication. Compared to our earlier work, this strategy can
be used on physical systems of different sizes than the prior
simulations. Furthermore, we scaled it to a larger number of
processors, which is two orders of magnitude larger number
of processors than with conventional parallelization. The
flops per atom rate is also higher than that for any other MD
simulation that we are aware of. Since MD is used in a
wide variety of applications, these results suggest a promis-
ing approach to dealing with the difficulty of performing
MD simulations to long time scales. Large computational
systems can provide ��� � ��� processors. If this approach



0 0.05 0.1 0.15 0.2 0.25
0

50

100

150

200

250

Strain

S
tr

es
s 

(G
P

a)

Figure 4. Stress-strain plot. The solid line de-
notes the exact curve from sequential simula-
tions on a ����-atom CNT, with circles indi-
cating the data points. The squares show the
data from the parallel simulation on 200 pro-
cessors, up to the point where the CNT starts
to break (the stress decreases with increase
in strain).

can be scaled to such large systems, then it will be possible
to perform MD simulations to several orders of magnitude
longer time than currently feasible. We expect this approach
to be useful in other applications involving hard matter, as
is typically the case in nano-mechanics. However, with the
soft-matter encountered, for example, in biological systems,
more challenges have to be overcome. The reasons for this
depends on physics issues that are outside the scope of this
paper.

Some of the future work is as follows. We wish to per-
form MD simulations that reach even longer time scales,
so that they can provide results for realistic experimental
conditions. We also wish to scale the computations to an
order of magnitude larger number of processors. These will
require better initialization, and also some method of val-
idating the results, without using the sequential algorithm
directly. Yet another future work is to perform predic-
tions for more complex problems. Basis functions should
be developed so that they correspond to different types of
physical phenomena that may be experienced by the sys-
tem. Time parallelization can also be combined with spa-
tial parallelization; instead of one processor computing for
one time interval, a group of processors, that distribute the
atoms across the group, can be used to simulate each time
interval. This will yield a code that improves on the best
available conventional code.

Acknowledgments

This work was funded by NSF grant # CMS-0403746.
We thank ORNL, NERSC and NCSA for providing com-
puter time, and Dave McWilliams of NCSA, in particular,
for help in getting the large jobs to work. Computer time
at ORNL was provided by CNMS/NTI grant #CNMS2004-
028. Computer time at NCSA was provided under proposal
#ASC050004. We also thank Xin Yuan at Florida State
University for permitting use of his Linux cluster, where
our codes were first tested. A.S. gratefully acknowledges
his debt to Sri S. S. Baba, but for whose help and inspira-
tion, this work would neither have started nor been accom-
plished.

References

[1] L. Baffico, S. Bernard, Y. Maday, G. Turinici, and
G. Zerah. Parallel-in-time molecular-dynamics simu-
lations. Physical Review E (Statistical, Nonlinear, and
Soft Matter Physics), 66:57701–57704, 2002.

[2] C. W. Gear. Waveform methods for space and time
parallelism. Journal of Computational and Applied
Mathematics, 38:137–147, 1991.

[3] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kale.
NAMD: Biomolecular simulations on thousands of
processors. In Proceedings of SC2002. IEEE, 2002.

[4] A. Srinivasan and N. Chandra. Latency tolerance
through parallelization of time in scientific applica-
tions. In Proceedings of the 18 th International Paral-
lel and Distributed Processing Symposium, Heteroge-
neous Computing Workshop. IEEE, 2004.

[5] A. Srinivasan and N. Chandra. Latency tolerance
through parallelization of time in scientific applica-
tions. Parallel Computing, 31:777–796, 2005.

[6] A. Srinivasan, Y. Yu, and N. Chandra. Application of
reduced order modeling to time parallelization. Pro-
ceedings of HiPC 2005. Lecture Notes in Computer
Science, 3769:106–117, 2005.

[7] A. Srinivasan, Y. Yu, and N. Chandra. Scalable paral-
lelization of molecular dynamics simulations in nano
mechanics, through time parallelization. Technical
Report TR-050426, Department of Computer Science,
Florida State University, 2005.

[8] B. I. Yakobson, M. P. C. MP, and C. J. Brabec. High
strain rate fracture and C-chain unraveling in Carbon
nanotubes. Computational Materials Science, 8:341–
348, 1997.


