
Generalized Edge Coloring for Channel Assignment in Wireless Networks

Chun-Chen Hsu
Institute of Information Science

Academia Sinica
Taipei, Taiwan

Pangfeng Liu
Department of Computer Science

and Information Engineering
National Taiwan University

Taipei, Taiwan
pangfeng@csie.ntu.edu.tw

Da-wei Wang Jan-Jan Wu
Institute of Information Science

Academia Sinica
Taipei, Taiwan

Abstract

This paper introduces a new graph theory problem called
generalized edge coloring (g.e.c.). A generalized edge col-
oring is similar to traditional edge coloring, with the differ-
ence that a vertex can be adjacent to up to k edges that
share the same color. The concept of generalized edge
coloring can be used to formulate the channel assignment
problem in multi-channel multi-interface wireless networks.
We provide theoretical analysis for this problem. Our theo-
retical findings can be useful for system developers of wire-
less networks.

We show that when k = 3, there are graphs that do not
have generalized edge coloring that could achieve the min-
imum number of colors for every vertex. On the contrary,
when k = 2 we show that if we are given one extra color,
we can find a generalized edge coloring that uses the min-
imum number of colors for each vertex. In addition, we
show that for certain classes of graphs we are able to find a
generalized edge coloring that uses the minimum number of
colors for every vertex without the extra color. These spe-
cial classes of graphs include bipartite graph, graphs with
a power of 2 maximum degree, or graphs with maximum
degree no more than 4.

1. Introduction

Many modern wireless LAN standards, such as IEEE
802.11b/802.11g [1] and IEEE 802.11a [2], provide mul-
tiple non-overlapped frequency channels that can be used
simultaneously within a neighborhood. Ability to utilize

multiple channels substantially increases the effective band-
width available to wireless network nodes [3, 4, 5, 6]. One
way to utilize multiple channels is to equip each node with
multiple network interface cards (NICs) [7]. For direct
communication, two nodes need to be within communica-
tion range of each other, and need to have a common chan-
nel assigned to their interfaces. Node pairs using different
channels can communicate simultaneously without interfer-
ence. Furthermore, since the number of interface cards per
node is limited, each node typically uses one interface to
communicate with multiple of its neighbors. The channel
assignment problem is to bind each neighbor to a network
interface and also bind each network interface to a radio
channel with the goal to minimize interference [7, 6].

Specifically, we consider channel assignment that sat-
isfies the following constraints. First, the total number
of radio channels that can be assigned to an interface is
bounded by the underlining architecture. For example,
IEEE 802.11b/802.11g can use up to 11 channels in total.
Second, the capacity of a radio channel within a commu-
nication range is bounded by a constant number k, so that
an interface on a node can communicate with up to k neigh-
boring nodes, and two nodes that need to communicate with
each other directly should share at least one common chan-
nel. Clearly, the channel assignment for each network inter-
face affects the number of interface cards a node must have
in order to communicate with all of its neighbors. It also
affects the total number of channels that are actually used.
For example, we consider the network in Figure 1. The k
is set to 2 so at most two edges adjacent to the same vertex
can be colored with the same color. The total number of
colors, i.e., the total number of radio channels, used in this
coloring is 3. The number of colors adjacent to node C is 2,

so it requires two interface cards.

2

0

0

1

1

2

11

0

1

0

1 2

0

0

0

C

A

B

Figure 1. An example of wireless network
when k = 2. The number next to an edge is
the assigned channel number.

Graph coloring seems to be a natural formulation for this
problem. However, standard vertex coloring [8, 9] (and
more recently, vertex-multi-coloring) [10] cannot capture
the third constraint that communicating vertices need to be
assigned a common color. Standard edge coloring [8] fails
to capture the second constraint that no more than k colors
can be assigned to the adjacent edges of a vertex.

In this paper, we introduce a new graph theory problem
called generalized edge coloring (g.e.c.). Generalized edge
coloring is similar to traditional edge coloring, with the dif-
ference that a vertex can be adjacent to up to k edges that
share the same color. We show that the channel assignment
problem described above can be formulated as a generalized
edge coloring problem as follows. By picking a color for an
edge, we assign the channel number on the two interfaces
on two neighboring nodes. By restricting the number of ad-
jacent edges that have the same color, we limit the number
of neighbors that can communicate with the same interface.
In this paper, we provide theoretical analysis for the gen-
eralized edge coloring problem. Our theoretical findings
are interesting and can be useful for system developers of
multi-channel multi-interface wireless networks.

There are two criteria to evaluate the quality of a gener-
alized edge coloring. The first is the total number of colors
used (which is equivalent to the total number of channels
used in the wireless network), and the second is the number
of edge colors adjacent to a vertex (which is equivalent to
the number of network interface cards on each node). The
goals are to minimizing the total number of radio channels
used in the network, and the number of network interface
cards that we must install for each node. By minimizing
the total number of channels used in the assignment, we are
more likely to realize a network topology with the existing
technology, e.g. the 11 channels in IEEE 802.11b/802.11g.

By minimizing the number of network interface cards for
each node, we minimize the total hardware costs to build a
wireless mesh network.

It is easy to derive lower bounds for the total number
of channels used in the wireless network, and the number
of network interface cards on each node. Every generalized
edge coloring will use at least �D

k � radio channels, where D
is the maximum degree of the wireless mesh network. Sim-
ilarly, for each node with d neighbors, every generalized
edge coloring will use at least � d

k� network interfaces. We
will use discrepancy to describe the quality of a generalized
edge coloring. The global discrepancy of a g.e.c describes
the difference between the lower bound �D

k � and the actual
number of radio channels used. The local discrepancy of
a g.e.c describes the maximum among all nodes, the differ-
ence between the lower bound � d

k � and the actual number
of network interface cards used. A g.e.c. is optimal if it can
achieve both zero discrepancy globally and locally.

Let us consider the network in Figure 1 when k is 2. The
maximum degree D is 4 so the lower bound on the total
number of colors is 2. Th coloring in Figure 1 uses three
colors so the global discrepancy is 1. The local discrepancy
of node B is 0 since it uses only two colors. However, the
local discrepancy of node A is 1 since it has only 4 neigh-
bors but uses 3 colors. Similarly node C has local discrep-
ancy 1 since it has 2 neighbors but uses 2 colors. As a result
the local discrepancy is therefore 1. This coloring is not
optimal.

This papers shows that when k is 3, i.e., when a network
interface can communicate with up to 3 neighbors, it is im-
possible to find an optimal generalized edge coloring for
some graphs. However, when k is 2 and we are given one
extra radio channel, we can derive a generalized edge col-
oring that achieves optimal number of interfaces for every
node. In other words, with the price of one global discrep-
ancy, we can achieve zero local discrepancy for every node.
This result is very similar to the case of traditional edge
coloring where k is 1, and finding an edge coloring with D
colors is NP-complete, but it is always possible to color any
graph with D +1 colors. In practice this is a very useful re-
sult since the new radio channels can be introduced by the
advance of technology, but the number of network interface
cards directly affects construction costs. Finally, when k is
2 we can also find optimal g.e.c. for several cases of special
graphs: (1) the graph is bipartite, (2) when D is a power
of 2, (3) or when D is no more than 4. The bipartite graph
result is important since the topology matches the level-by-
level relaying of wireless network.

The rest of the paper is organized as follows. Section 2
formally defines the generalized edge coloring and the qual-
ity measurement criteria. Section 3 describes our results on
the generalized edge coloring problem. Finally Section 4
concludes with some interesting open problems in this re-

2

search topic.

2. Problem

This section defines our terminology about generalized
edge coloring. Given a graph G = (V, E) we color every
edge with mapping function f from E to a color set C. In
particular, we require that every node in V is adjacent to at
most k edges of the same color. As a result the traditional
edge coloring is a special case when k is 1.

We can derive trivial lower bounds on the number of col-
ors required for generalized edge coloring. Let D be the
maximum degree of G, then we need at least �D

k � colors
to color G. Also if the number of neighbors of a node v
is dv, the number of colors required to color the edges ad-
jacent to v is �dv

k �. We define the global discrepancy of a
coloring function f to be the difference between the total
number of colors f actually uses and the lower bound �D

k �,
i.e. |C|−�D

k �. Similarly we define the local discrepancy of
a node v to be the difference between the actual number of
colors adjacent to a node v and the lower bound �dv

k �, i.e.
n(v) − �dv

k �, where n(v) is the number of colors adjacent
to v under f . The local discrepancy for a mapping function
f is the maximum local discrepancy among all nodes, i.e.
maxv(n(v) − �dv

k �).
We use the global and the local discrepancy to evalu-

ate the quality of a coloring function. The global discrep-
ancy describes the “unnecessary” number of radio channels
we used to construct a network, and the local discrepancy
describes the “unnecessary“ number of network interface
cards we used for a node. Of course we would like to have
a generalized edge coloring that minimizes both global and
local discrepancy. As a result we define the quality of a col-
oring function as follows. A coloring function is a (k, g, l)
generalized edge coloring if every node in V is adjacent to
at most k edges of the same color, the global discrepancy
is bounded by g, and the local discrepancy is bounded by
l. For example, we know that the problem of determining
whether a graph has a (1, 0, 0) g.e.c. is NP-complete, and
the Vizing’s theorem says that it is always possible to find a
(1, 1, 0) g.e.c. for any graph. A generalized edge coloring
is optimal if and only if it is a (k, 0, 0) coloring.

3. Results

We first show that there are graphs that do not have opti-
mal generalized edge coloring when k ≥ 3; i.e., we cannot
find (k, 0, 0) g.e.c. for them. The construction is as follows.
First we construct a ring of 2k nodes, and each node is con-
nected to its two neighbors with two edges. This leaves
k − 2 edges for each nodes along the ring. Now we place
k − 2 nodes in the middle of the ring, and connect each one

of them to every node along the ring. Now each node in
the middle has degree 2k. Suppose we can find a (k, 0, 0)
g.e.c. for this graph, the edges along the ring must be col-
ored with the same color, since each node along the ring is
of degree k, and from the 0 local discrepancy requirement,
it can have at most one color. This forces all the edges going
to the nodes in the middle to be colored with the same color,
which violates the requirement that a node can be adjacent
to at most k edges of the same color. Figure 2 illustrates the
constructed graph when k is 3.

Figure 2. A graph that does not have any op-
timal (3, 0, 0) generalized edge coloring.

This result suggests that we need to relax the local dis-
crepancy while dealing with the cases when k is 3 or larger.
On the other hand, we show that when k is 2. we can always
find optimal (2, 0, 0) generalized edge coloring for certain
classes of graphs.

3.1. Euler Cycle

We now find optimal (2, 0, 0) generalized edge coloring
for certain special graphs, and start with graphs that have
maximum degree bounded by 4. If the maximum degree of
a graph is at most 2, it is trivial to find (2, 0, 0) generalized
edge coloring for it – we simply color all edges with the
same color. If the maximum degree of a graph is 3, we
introduce a new edge to connect a vertex with degree 3 to
another odd-degree vertex. The graph is now of maximum
degree 4, and we find an optimal (2, 0, 0) generalized edge
coloring for it. It is easy to see that this coloring is still a
(2, 0, 0) coloring for the original graph. Thus from now on
we will focus on graphs with maximum degree 4.

It is well known that a graph has a Euler cycle if and only
if every node is of even degree. We will construct a (2, 0, 0)
g.e.c. based on the Euler cycle when the max degree of the
graph is bounded by 4. The first step of our algorithm is to
pair up all the nodes with degree 1 or 3, so that every node
is now of degree 2 or 4. Since the number of odd-degreed
nodes in a graph is always an even number, the step will
not leave any odd-degreed nodes. We use G′ to denote the

3

graph after the transformation.
The second step is to remove some degree 2 nodes to

simplify the later coloring process. Consider the nodes with
degree 2 – these nodes are all on paths that connect degree
4 nodes. If the path connect two different degree 4 nodes,
as in Figure 3 (a), we remove all of them and place a single
edge. If the path goes back to the same degree 4 node and
forms a self loop, as in Figure 3 (b), we remove all but two
nodes from the path. We denote the transformed graph as
G∗.

(b)

(a)

Figure 3. Two cases to remove some degree
2 nodes.

Now we construct a Euler cycle for the transformed
graph G∗. Since every node is of degree 2 or 4, the construc-
tion is possible. We then index each edge with a sequence
number according to the order it appears in the cycle. For
all edges that have even indices we color them with 0, and
the other edges are colored with 1.

Lemma 1 The Euler cycle constructed from G∗ has even
length, and every node has the same number of adjacent
edges that are colored with 0 and 1.

Proof. The length of the Euler cycle is equal to the number
of edges in G∗, which is equal to the sum of all degrees
of nodes in G∗ divided by 2. Since there are only degree 4
nodes and pairs of degree 2 nodes in G∗, the Euler cycle has
even length. In addition, the color are given in alternative
manner, each degree 4 node has two edges of 0 and two
edges of 1, and each degree 2 node has one 0 edge and one
1 edge.

Now we need to derive the actual coloring function for
G′. If a set of nodes is replaced by a single edge since the
path they form connects two different degree 4 nodes, the
entire path is colored with the same color from the G∗ col-
oring. This is feasible since k is 2. On the other hand, if
a path form a self loop and is replaced by a path of length
3 (with two degree 2 nodes), the first and the third edge is

colored the same color due to the alternating coloring. As a
result we can color all the nodes in that path with the same
color. Note that this special treatment is necessary, other-
wise the alternating coloring process will be complicated.

Finally we need to remove the added edges from G′. We
only added edges to those nodes in G that have degree 1 or
3. These nodes in G′ now has the same number of edges
colored by 0 or 1, so no matter which edge we remove, the
local discrepancy will not increase. Formally we have the
following theorem.

Theorem 2 There exists a (2, 0, 0) generalized edge color-
ing for every graph with maximum degree bounded by 4.

The pseudo code of the alternating coloring process is as
follows.

procedure AlternatingColoring

1. Pair up odd-degree nodes and add edges.

2. Remove some degree 2-nodes according to Figure 3.

3. Find a Euler cycle.

4. Color the edges alternatively with 0 or 1.

5. Color the edges along the path in Figure 3. with the
same color.

6. Remove edges added in step 1.

Figure 4. The pseudo code of finding a (2, 0, 0)
g.e.c. for graph with maximum degree 4.

3.2. One Extra Color

We now describe an algorithm that finds (2, 1, 0) gener-
alized edge coloring for every graph. Notice that this result
indicates that by having an extra color, i.e., an extra radio
channel, we are able to achieve zero local discrepancy, i.e.,
zero unnecessary hardware cost for network interface cards.
This tradeoff is practical since new radio channels can be
easily introduced by the fast advance of technology, but the
number of interface cards has a direct impact on the overall
network infrastructure budget.

The result we will describe is very similar to the tradi-
tional edge coloring. It is well known that to determine if
a graph has a (1, 0, 0) g.e.c. is NP-complete, but it is al-
ways possible to find a (1, 1, 0) g.e.c. in polynomial time
by Vizing’s theorem [11].

Our algorithm first finds a (1, 1, 0) generalized edge col-
oring from Vizing’s theorem, then it reduces the number of
colors by half. Let D be the maximum degree of the graph

4

G. From Vizing’s theorem we know that we need at most
D + 1 colors to come up with a (1.1.0) g.e.c. By grouping
two colors into a new color, we will have at most �D+1

2 �
new colors. Since the original coloring is a (1, 1, 0) g.e.c,
the new coloring is a (2, 1, ∗) – the ∗ means “don’t care”. In
other words, we reduce the global discrepancy to 1, and do
not care about local discrepancy, which will be taken care of
later. To be more specific, the local discrepancy is bounded
by D

4 . The reason is that we might use one more color than
the �D

2 � lower bound, and a node with D
2 edges may still

have D
2 new colors adjacent to it after we combine colors,

which is about D
4 higher than the �D

4 � lower bound, hence
the local discrepancy can go up to about D

4 .
Now the important part is to reduce the local discrepancy

to 0. The idea is to find a node v and two colors c and d so
that v is adjacent to exactly one edge (denoted by (v, w))
colored by c, and one edge (denoted by (v, u)) colored by
d. If we can change the color of (v, w) from c to d without
increasing the local discrepancy of w, we can reduce the
local discrepancy of v. For ease of notation we use N(v, c)
to denote the number of edges adjacent to v that are colored
c. If we can do this for every node v that has N(v, c) =
N(v, d) = 1 for two colors c and d, we can reduce the local
discrepancy to 0 by repeatedly changing the c to d for every
node v that has N(v, c) = N(v, d) = 1.

The key operation for changing color is to find a c − d
path. The idea about c− d path is inspired by [12]. Without
lose of generality we assume that we want to change color
c to d. A c − d path is defined as follows:

• A c − d path starts from v, goes through the unique
edge (v, w) that is colored c, travels along only edges
colored with c or d, and ends at a node other than v.

• If we exchange the colors of the edges between c and
d along the c − d path , we will not increase the local
discrepancy of any node along the path.

Suppose we can always find a c− d path from v, we can
reduce the maximum local discrepancy to 0.

The c − d path construction is as follows: We always
check for whether the current path under consideration is
already a c − d path. If so, we stop and declare that a path
is found. If not we extend the current path and hope that we
can stop at the next edge. Initially the path under consider-
ation is from v to w, i.e. the unique edge colored c.

There are several case to consider while determining
whether we should stop or extend. Without lose of gen-
erality we assume the we just extend to a node x through
an edge colored c. Similar argument can be made for an
edged colored d, since we are extending a path that could
have both color c and d. If N(x, c) = 1 and N(x, d) = 0,
we stop at x since x is adjacent to one c, and changing that
only c to d will not increase the local discrepancy of w.

In the second case we have N(x, c) = 2 and N(x, d) =
0. We cannot stop at x in this case since that will increase
the number of colors adjacent to x by one. As a result we
extend the c − d path through the other edge colored by c.
Note that changing both c will not increase the local dis-
crepancy of x, and we only extend the path by one more
node.

In the third case we have N(x, d) = 1. In this case
we can stop at w since both (x, c) and N(x, d) are greater
than 0. Changing the incoming c edge will not increase the
number of colors adjacent to x, and since there is only one d
edge before the change, adding another one will not violate
the k = 2 constraint either.

In the final case we have N(x, d) = 2. In this case we
cannot stop at x, otherwise the number of d edges adjacent
to x will be 3, violating the k = 2 constraint. As a result we
pick an edge colored by d and extent the path.

Since each edge can only be used once in the process,
eventually the process must stop and we find a c − d path.
The only complication is that the end node might be v,
therefore we will not be able to reduce the local discrep-
ancy of v. The following lemma says that we can always
find a c − d path that stops at a node other than v.

d

c

h

i

j

d

d

c

d c

n

d

d
m

w

v

Figure 5. There exists a c − d path that starts
from v but does not end at v.

Lemma 3 There exists a c − d path that stops at a node
other than v.

Proof. Assume that we construct a c−d path and eventually
go back to v by a cycle C. Since the path starts with a
c edge and ends with a d edge, let h denote the last node
that extends a c edge, and this edge leads to node i. Since
during the construction we extend through node i, therefore
N(i, d) = 2 and there exists another edge (i, m) that is
colored d. See Figure 5 for an illustration.

If we pick (i, m) to extend (instead of (i, j)) the c − d
path, it will be impossible to get back to v. The reason is

5

that both N(v, c) and N(v, d) are 1, so the only way back
to v is through the d edge. Please refer to Figure 5 for an
illustration. If the c − d path does reach v, we trace back
from v to the node where it branches off the cycle C at
node n. By definition we know that we will see only d
edges before n, and we branch off C via a c edge, due to
the k = 2 constraint. Recall that during the construction of
C, when we enter n we will leave through another d edge
only if there is no c edge adjacent to n (from the second
case above). However, we do have N(n, c) > 0 and this
contradicts to the formation of C. As a result we can be
assured that there exists a c−d path that will not go back to
v.

Theorem 4 There exists a (2, 1, 0) generalized edge color-
ing for every graph.

3.3. Power of 2

We now return to the quest of finding optimal (2, 0, 0)
generalized edge coloring for special classes of graphs. We
first describe an algorithm that constructs a (2, 0, 0) for ev-
ery graph with maximum degree which is a power of 2, i.e.,
the graph G = (V, E) has the maximum degree D = 2d for
an positive integer d.

The basic idea of the construction is to divide the origi-
nal graph G into two subgraphs, so that the maximum de-
grees of both subgraphs are equal. Recall that during the
construction of (2, 0, 0) g.e.d. for D ≤ 4, we use a Euler
cycle to color every edge so that that the number of 0-edges
and 1-edges adjacent to a node differ by at most 1. Now we
apply the alternating coloring process (Figure 4) to G, then
divide the edges according to their colors. We have two in-
duced subgraphs G0 = (V, E0) and G1 = (V, E1), where
E0 are those edges in G that are colored 0, and E1 are those
colored by 1. Both the maximum degree of G0 and G1 are
2d−1. We can recursive apply this coloring process until
the maximum degree is down to 4, and derive a (2, 0, 0) for
each subgraph. Now when we put all these g.e.c. together
and view those colors in different g.e.c.’s as different colors,
we have a (2, 0, ∗) g.e.c. C. Note that the key point of this
construction is that we use only D colors to color the entire
graph, so the global discrepancy is 0.

Next we need to reduce the local discrepancy of C for ev-
ery node. Recall that during the construction for the (2, 1, 0)
in Section 3.2, we are able to convert a color c edge into a
d edge, as long as they are adjacent to the same node v and
there is no other edges colored by c or d adjacent to v. We
now apply the same technique to the coloring C obtained in
the previous step. As long as there exists a node v and two
colors c and d so that N(v, c) = N(v, d) = 1, we convert
the c edge into an d edge, without increasing the local dis-
crepancy of other nodes. We repeat this step, just as we did

in the construction of (2, 1, 0), and eventually will convert
C, a (2, 0, ∗) g.e.c, into a (2, 0, 0) g.e.c.

Theorem 5 There exists a (2, 0, 0) generalized edge color-
ing for every graph with maximum degree which is a power
of 2.

3.4. Bipartite graph

Now we study generalized edge coloring for bipartite
graph. The reason we study bipartite graphs is as follows.
In a wireless network usually there are certain nodes that are
directly connected to the backbone. Depending on the dis-
tance to the backbone, the nodes can be arranged in level-
by-level fashion so that those that are far away from the
backbone can send information to the backbone by the re-
laying nodes between it and the backbone. As a result the
nodes only need to communicate with those nodes in the
adjacent levels, as indicated by Figure 6. The entire level-
by-level graph is a bipartite graph.

backbone

Figure 6. A level-by-level connection graph in
a wireless network.

Another reason to study bipartite graph is that it char-
acterizes a hierarchical data grid model, due to its resem-
blance to hierarchical grid management, usually found in
current grid systems [13, 14, 15, 16]. For example, in LCG
(World-Wide Large Hadron Collider Computing Grid) [13]
project 70 institutes from 27 countries form a grid system.
The system is organized as a hierarchy, with CERN (the
European Organization for Nuclear Research) as the root,
or tier-0 site. There are 11 tier-1 sites directly under CERN
that help distribute data obtained from Large Hadron Col-
lider (LHC) at CERN. Other tier-2 sites in LCG hierarchy
receive data from its corresponding tier-1 site. The entire
LCG grid can be represented as in Figure 7.

It is well known that given a bipartite graph with maxi-
mum degree D, we can find an edge coloring with D colors
in polynomial time [17]. In our terminology, it is easy to

6

CERN

tier1tier2

tier0

Figure 7. A data grid connection graph in LGS
grid system.

compute a (1, 0, 0) g.e.c. for bipartite graphs. By combin-
ing this (1, 0, 0) g.e.c. with the concept of c − d path, we
are able to find (2, 0, 0) g.e.c. for every bipartite graph.

Given a bipartite graph, the algorithm first finds an edge
coloring with D colors. We then group the colors into �D

2 �
new colors. This results in a (2, 0, ∗) g.e.c. We then exam-
ine every node v. If there are two colors c and d, so that
N(v, c) = N(v, d) = 1, we find a c − d path for them.
Eventually we have a (2, 0, 0) g.e.c.

Theorem 6 There exists a (2, 0, 0) generalized edge color-
ing for every bipartite graph.

4. Conclusion

This paper introduces a new graph theory problem called
generalized edge coloring. We show that when k = 3, there
are graphs that do not have generalized edge coloring that
could achieve the minimum number of colors for every ver-
tex. On the contrary, when k = 2 we show that if we are
given one extra color, we can find a generalized edge color-
ing that uses the minimum number of colors for each ver-
tex. In addition, we show that for certain classes of graphs
we are able to find a generalized edge coloring that uses the
minimum number of colors for every vertex without the ex-
tra color. These special classes of graphs include bipartite
graph, graphs with a power of 2 maximum degree, or graphs
with maximum degree no more than 4.

There are several interesting open problems along this
line of research. For example, although it is impossible
to find (k, 0, 0) generalized edge coloring for every graph
when k ≥ 3, is it possible to find a (k, 1, 1) solution by re-
laxing the local discrepancy requirement? Also when k = 2
we can derive optimal generalized edge coloring for bipar-
tite graphs and some special values of maximum degree D.

Is it true that we can always find optimal generalized edge
coloring for any graphs? The authors will continue the in-
vestigation on these interesting problems.

This paper is the result of a summer visit program, hosted
by Institute of Information Science, Academia Sinica. The
authors thank the institute for the support.

References

[1] “Ieee 802.11b standard,”
http://standards.ieee.org/getieee802/download/802.11b-
1999.pdf.

[2] “Ieee 802.11a standard,”
http://standards.ieee.org/getieee802/download/802.11a-
1999.pdf.

[3] V. Bahl, A. Adya, J. Padhye, and A. Wolman, “Re-
considering the wireless lan platform with multiple ra-
dios,” in Workshop on Future Directions in Network
Architecture (FDNA), 2003.

[4] A. Nasipuri and S. R. Das, “A multichannel csma mac
protocol for mobile multihop networks,” in in Pro-
ceedings of IEEE WCNC, 1999.

[5] A. Raniwala and T. Chiueh, “Architecture and algo-
rithms for an ieee 802.11-based multi-channel wire-
less mesh network,” in in Proceedings of IEEE INFO-
COM, 2005.

[6] A. Raniwala, K. Gopalan, and T. Chiueh, “Centralized
channel assignment and routing algorithms for multi-
channel wireless mesh networks,” ACM Mobile Com-
puting and Communications Review (MC2R), vol. 8,
pp. 50–65, 2004.

[7] P. Kyasanur and N. H. Vaidya, “Routing and interface
assignment in multi-channel multi-interface wireless
networks,” in in Proceedings of IEEE WCNC, 2005.

[8] D. W. Matula, G. Marble, and J. F. Issacson, Graph
Theory and Computing. Academic Press, New York,
1972, ch. Graph Coloring Algorithms.

[9] J. A. Bonday and U. Murty, Graph Theory with Appli-
cations. American Elsevier, New York, 1976.

[10] T. R. Jensen and B. Toft, Graph Coloring Problems.
Wiley Interscience, New York, 1995.

[11] V. G. Vizing., “On an estimate of the chromatic class
of a p-graph (in Russian),” Diskret. Analiz, vol. 3, pp.
23–30, 1964.

[12] J. Misra and D. Gries, “A constructive proof of
Vizing’s theorem,” Information Processing Letters,
vol. 41, no. 3, pp. 131–133, Mar. 1992.

7

[13] W. L. C. Grid, “http://lcg.web.cern.ch/lcg/.”

[14] W. B. David, “Evaluation of an economy-based file
replication strategy for a data grid,” in International
Workshop on Agent based Cluster and Grid Comput-
ing, 2003, pp. 120–126.

[15] W. Hoschek, F. J. Janez, A. Samar, H. Stockinger, and
K. Stockinger, “Data management in an international
data grid project,” in In Proceedings of GRID Work-
shop, 2000, pp. 77–90.

[16] K. Ranganathana and I. Foster, “Identifying dynamic
replication strategies for a high performance data
grid,” in In Proceedings of the International Grid
Computing Workshop, 2001, pp. 75–86.

[17] D. König, “Über Graphen und ihre Anwendung auf
Determinantentheorie und Mengenlehre,” Mathema-
tische Annalen, vol. 77, pp. 453–465, 1916.

8

