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Abstract

Constructing phylogenetic trees in the study of the evo-
lutionary history of a group organisms is an extremely chal-
lenging problem in computational biology. The problem be-
comes intractable with growing number of organisms. In
this paper, we design and implement an efficient parallel
solver (ExactMP) using a parsimony based approach for
solving this problem. We create a testbed consisting of eigh-
teen datasets of varying size (up to 27 taxa) and difficulty
level (easy to hard), containing real (Eukaryotes, Metazoan,
and rbcL) and randomly-generated synthetic genome se-
quences. We demonstrate our ExactMP Solver against this
testbed and achieve a parallel speedup of up to 7.26 with 8
processors using an 8-way symmetric multiprocessor. The
main contributions of this work are: (1) an efficient par-
allel solver ExactMP for the problem of phylogenetic tree
reconstruction using maximum parsimony, (2) a new up-
per bounding methodology for this problem using heuristic
and randomization techniques, and (3) a highly optimized
branch and bound algorithm for this problem.

1 Introduction

Knowledge of accurate evolutionary information among
organisms is essential for classification, taxonomy, and
molecular epidemiological study of viruses. Evolutionary
history is represented by a labeled acyclic graph known as a
phylogenetic tree whose leaf nodes represent the known or-
ganisms and internal nodes represent hypothetical ancestral
organisms. Construction of such a tree requires a dataset
containing a group of organisms (also known as taxa), as-
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sociated states representing the characteristic features of
each organism in the group (also known as characters or
sites), and an optimality criterion to establish the relation-
ship among those organisms.

Methods to construct a phylogenetic tree can be classi-
fied as heuristic (an approximate solution) [28, 30, 11, 20,
29, 23], and exact (where all possible tree topologies are
evaluated according to some optimality criterion) methods.
For both methods, Maximum Parsimony (MP) and Max-
imum Likelihood (ML) are the two most popularly known
optimality criteria. For a given dataset, ML criteria assumes
a stochastic model and selects a phylogenetic tree that gives
rise to the data with highest probability. MP criteria, on the
other hand, selects the phylogenetic tree with fewest num-
ber of evolutionary changes. In this paper, we will focus on
MP criteria.

1.1 Maximum Parsimony Criterion

In the Maximum parsimony (MP) criterion, an accurate
phylogenetic tree is selected in three steps: (a) all possible
tree topologies are enumerated, (b) each tree topology is
assigned a score based on some parsimony strategy, and (c)
from a set of all such scored trees, the tree with lowest score
is selected as the optimal solution.

Many parsimony strategies, such as Fitch [8], Farris [7],
Swofford et al. [31], are proposed in the literature for use
with the MP method. In this paper, for simplicity we fo-
cus on Fitch’s strategy. However the techniques we use are
applicable to all of these strategies.

Fitch’s strategy is a two-pass method for scoring a par-
ticular topology of a phylogenetic tree and is based on
the assumption that each character (characteristic feature)
evolves independently. It takes as an input, a phylogenetic
tree topology with m organisms and a set of all possible
characters. If a state set S of an organism be defined as
the set containing all its characteristic features, then Fitch’s
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Figure 1. MP analysis on dataset shown in Table 1.

first pass can be described as follows: starting from the leaf
nodes and working its way up to an arbitrary root node in
a given tree topology, (a) assign a state set to each internal
node in the tree, and (b) simultaneously compute the score
of the tree. Fitch’s second pass optimizes the state sets com-
puted in part (a). The algorithm can be stated as follows:

1. To each leaf node, assign a state set containing all the
characters of the corresponding organism and set the score
of the tree to 0.

2. For each internal node Sparent and its children
Sleft child and Sright child, at each site

a. Sparent = Sleft child ∩ Sright child.
b. If Sparent = 0 , then

Sparent = Sleft child ∪ Sright child and
increment the score of the tree by 1.

For each union operation the score of the phylogenetic
tree increments by one; thereby making it less parsimo-
nious. Once the state sets of all internal nodes are com-
puted, if an optimal state assignment is desired, a second
pass may be applied as described in [8]. In phylogenetic
tree reconstruction, we are primarily interested in the tree
score and not in an optimal state assignment of the internal
nodes. Hence, we safely ignore running the second pass on
each candidate topology and apply it only once for the final
optimal tree. Fig. 1.1 illustrates the MP analysis on a dataset
containing four suborders of beetles [1] shown in Table 1.
The three possible tree topologies are shown in (a), (b), and
(c). (i), (ii), and (iii) show the Fitch’s score of (a), (b), and
(c), respectively. Node 0 represents the arbitrary root node.
Nodes G, R, X, and H represent Polyphaga, Archostemata,

Myxophaga, and Adephaga respectively. Nodes with neg-
ative numbers are the inferred ancestors. Alphabetic char-
acters represent the states in that site and numeral values
represent the score at the site. In this case, the tree score
for all topologies is 4. Hence, this dataset has 3 optimal
solutions, each of score 4.

2 Exact Methods

Methods to generate exact phylogenetic trees consist of
Exhaustive and Branch & Bound approaches. For Dn,m (n
taxa and m characters or sites, which we refer to as Dn,m),
the exhaustive method searches for a tree with lowest score
from all Π3

i=n(2i − 5) trees. Since Π3
i=n(2i − 5) grows

rapidly (doubly-factorial) with n, exhaustive search is in-
tractable for even datasets of modest size. For problems
of this nature, a generalized approach is to use Branch &
Bound (B&B) [12]. B&B search is a general technique for
solving combinatorial optimization problems of high com-
plexity where exhaustive search is intractable. A general
B&B algorithm can be viewed as an enumeration method
for an optimization problem p : Z(p) = minxεX F (x)
where X represents the domain of the problem p, and x is a
solution. x is feasible iff x ∈ X , F (x) is the cost of the so-
lution, also called the objective cost. The underlying idea of
the B&B algorithm is successive decomposition of the orig-
inal problem into smaller disjoint subproblems until one or
all optimal solutions are found.

A B&B search tree can be modeled as a rooted tree T
with a cost function over its leaves. The goal is to find



Cervical sclerites Propleuron Hind Coxae First Visible Abdominal Sternum
Polyphaga (G) Present (P) Internal (I) Usually movable (U) Undivided (D)

Archostemata (R) Absent (A) External (E) Movable (M) Undivided (D)
Myxophaga (X) Absent (A) External (E) Movable (M) Undivided (D)
Adephaga (H) Absent (A) External (E) Fused (F) Undivided (D)

Table 1. A dataset containing 4 suborders of beetle, each with four characteristic features. Rows
represent the organisms and columns represent their features.

the leaves with minimum cost in T . Nodes of T represent
subproblems and edges from nodes to their successors rep-
resent the decomposition of a problem into subproblems.
Input to the algorithm is the root of tree T . B&B search
involves four basic operations: Subproblem Selection, Tree
Traversal, Subproblem Generation, and Termination, each
of which is governed by the following four rules: Selec-
tion rule, Branching rule, Elimination rule, and Termina-
tion rule, respectively. Branching rule divides a feasible
solution set X into X1, X2, . . . , Xn, where x ∈n

i=1 Xi

and Xi ∩ Xj = ∅ for all i �= j. Let pi denote the opti-
mization subproblem corresponding to X i, and Z(pi) be its
optimal value, then, Z(p) = min1≤i≤n Z(pi). Selection
Rule chooses the most promising subproblem for further
branching, and Elimination Rule recognizes and eliminates
subproblems that cannot yield an optimal solution. Termi-
nation Rule determines whether a complete solution is opti-
mal or not. A subproblem Q can be eliminated if (a) Q has
been solved or (b) there exists another subproblem R which
dominates Q, i.e., Z(R) ≤ Z(Q). For any B&B algorithm,
branching and termination rules are problem specific, while
selection and elimination rules rely on search strategies and
data structures.

2.1 Branch & Bound Approach for MP

This section presents our B&B approach to solve the
problem of phylogenetic tree reconstruction and describes
our novel techniques to improve its performance. First we
introduce the terminology that we will be using in rest of
the paper. For a dataset Dn,m, (a) any subproblem T q

k is a
partial tree with k taxa at qth level in the B&B search tree,
for 3 ≤ k < n, and 1 ≤ q ≤ (n − 2), (b) a child tree is a
tree with (k +1) taxa that is generated from Tk by adding a
new taxa into any one of its branches, (c) a complete tree is
a tree with all n taxa in it, and (d) a lower bound for partial
tree T q

k is the minimum score of the complete tree, which is
formed by adding all the remaining (n− q) taxa to T q

k . Our
B&B approach approach is as follows.

First, an upper bound U is specified by constructing a
sub-optimal tree through heuristic algorithms, and Purdom
et al.’s [24] lower bounding function is used to compute the
lower bound of partial trees. In Purdom’s lower bounding

method, for a given partial tree, a difference set is computed
for each site. A difference set is a set of characters with a
cost associated to it. The elements in a difference set of a
partial tree include all the characteristic features that do not
occur in the partial tree but occur in a complete tree. The
cost of a difference set is simply its cardinality. A lower
bound for such a partial tree is the sum of the score of the
partial tree and the cardinality of the difference set. Though
there is no guarantee that using this method will improve the
performance of the B&B algorithm, however, the number of
partial trees that are decomposed is greatly reduced in many
cases [24].

Next, each partial tree in the enumeration of the set of
all Π3

i=n(2i − 5) trees is considered in the following man-
ner. Beginning with an initial three-taxa partial tree T3, its
first child tree T 1

4 is evaluated. If the lower bound of T 1
4 ex-

ceeds the upper bound U , then T 1
4 and all its child trees are

eliminated from further consideration. If the lower bound
does not exceed U , then each of the five child trees of T 1

4 is
evaluated. If a partial tree is eliminated from further consid-
eration, the search starts from another unconsidered partial
tree in a depth-first manner. This is continued throughout
the entire B&B search tree. During this process, when a
complete tree is encountered at the last level of the B&B
search tree, and its score U ′ < U , then U is reduced to U ′.

Consider a dataset D5,4 with 5 taxa and 4 sites shown in
Table 2 and the corresponding B&B search tree in Fig. 2.
Let the specified upper bound for this dataset be U . An
initial tree A with three randomly chosen taxa 1, 2, and 3
from D5,4 is constructed. Let’s call this the first level. Next
taxa 4 from D5,4 can be added to any of the three branches
in A resulting in three trees B, C, and D at the second level.
If Purdom’s lower bound of B is greater than U , then B and
all its child trees are eliminated. In such a case the next
partial tree C is evaluated. To evaluate C, next taxa 5 is
added to each branch in C resulting in five trees 1, 2, 3,
4, and 5 as shown in the figure. Since 1, 2, 3, 4, and 5
are complete trees, their score is compared with U for an
improvement. For each of them, if their score U ′ < U , then
U = U ′. However, if Purdom’s lower bound of B is less
than U , then the next taxa 5 is added to all the branches in
B resulting in five child trees. In this way, for any arbitrary
dataset, the B&B search continues until all partial trees in



the B&B search space are either eliminated or evaluated.

S1 S2 S3 S4
1 A A C D
2 A B D D
3 A B E I
4 A B F I
5 A C G I

Table 2. D5,4 with 5 Taxa, and 4 Sites.

2.2 Determining Taxa Addition Order

In phylogenetic tree reconstruction, the order in which
taxa are added to a partial tree greatly influences the per-
formance of the B&B algorithm. While the order has no
impact on correctness of the solution, it significantly affects
the running time. During our experiments, we observed sig-
nificant change in the number of partial trees decomposed
by altering the taxa addition order. Nei and Kumar [22]
propose an efficient heuristic for selecting a good addition
order called max mini. In max mini, we start with an initial
core tree Tp (where subscript p denotes parent) with three
taxa, and decide the addition order of the remaining input
sequences in the following way. Choose a taxa from the in-
put dataset which is not yet added to Tp. Add the selected
taxa in all possible branches j in Tp and compute the tree
score Lj

i at each branch j. Note the branch j, where L j
i is

smallest (score L for ith taxa at jth branch). For all remain-
ing taxa k, k �= i, compute Ll

k in Tp (without taxa i added).
If Ll

k > Lj
i , select k as next taxa to be added in branch l,

else select i as next taxa to be added in branch j. Add se-
lected taxa at the corresponding branch in Tp and remove it
from the input dataset. Repeat until any taxa is remaining
in the dataset. On an average, the max mini technique re-
duced the execution times of the datasets in our test bed by
a factor of up to 400.

2.3 Computing initial upper bound

Efficiency of any B&B algorithm is dependent on the
tightness of its bounds. Ibaraki [14] discussed how the effi-
ciency of B&B depends on tight upper and lower bounds. In
ExactMP Solver, we employ a four-stage approach to com-
pute an upper bound. Given a dataset and a taxa addition
order, the first stage involves computing upper bound using
Eck & Dayhoff’s [6] greedy (EDG) algorithm. The EDG
approach gives a tight upper bound in many cases. Con-
sider a partial tree Tk in Dn,m. While the EDG approach
searches for the best branch j for (k+1)th taxa in Tk to gen-
erate Tk+1, we suggest searching for the best branch j for
all remaining taxa t, k < t ≤ n and select the (taxa, branch)

pair which gives lowest tree score. We call it the Improved
EDG (IEDG) approach. Our results show that in all our
datasets where EDG gives a loose upper bound, IEDG gives
a tighter bound. This constitutes the second stage of com-
puting the upper bound in ExactMP Solver. In third stage,
we apply the Tree Bisection and Reconnection (TBR) [29]
algorithm to the solutions of the IEDG approach. Although
there is no guarantee of improvement, TBR usually results
in a tree topology with lower tree score. In the fourth stage,
we generate random sequences of taxa addition order and
apply the EDG and IEDG approaches followed by TBR of
their results. With this four-stage approach, we obtained
tight upper bounds for all the datasets in our testbed. In our
experiments, we found that with the application of our four
stage technique to compute an initial upper bound for the
datasets in our testbed, the running time reduced by a factor
of 2.4.

2.4 Improved Fitch Kernel

Identifying and alleviating hot spots in a code is essen-
tial for best performance. Analyzing the phylogenetic re-
construction code, we found that over 85% of the time in
our initial implementation was spent computing Fitch oper-
ations. A straightforward implementation of Fitch’s opera-
tion for a single character requires at least one if-then-else
branch. By considering processor-cache behavior, a more
efficient method can be developed. Using a Lookup Table
for Fitch’s operation is one such method. Since Fitch’s
operation is frequently referenced in phylogenetic recon-
struction, for most of the time this table is likely to be
placed inside cache. Hence, a Fitch’s operation can of-
ten be performed in one cache lookup. However, it may
be noted that if the size of table is of significant size then
this method will not be suitable. In our experiments with a
genome sequence consisting of four states, for five billion
Fitch operations over three different architectures, on an av-
erage, the Lookup Table scheme outperformed branching
and Multicharacter Optimization [21, 26] schemes by
a factor of 17.4 and 10.3, respectively.

2.5 Removing Redundant Information

While there are typically many sites in a given dataset,
not all contribute to the score of a phylogenetic tree. By
ignoring the sites that do not contribute to the score of a
phylogenetic tree, we may reduce computation. Fitch [9]
made a basic classification of sequence sites as parsimony-
informative, or parsimony non-informative depending on,
whether a site contributes or not to the score of a phylo-
genetic tree. At a sequence site, if only one state appears,
it is a singleton site. This is parsimony non-informative as
the state of this site will never change for any tree topol-
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Figure 2. Phylogenetic Tree Construction for dataset D5,4 shown in Table 2. 3rd level contains 15
trees of which only five trees are shown.

ogy. Such sites are ignored from parsimony analysis. How-
ever, if a site is non-singleton (site containing more than one
state), that does not guarantee it to be parsimony informa-
tive. For a non-singleton site that contains at most one non-
singleton state is again a parsimony non-informative site,
because in all the possible tree topologies, the number of
substitutions in its state remains the same. Hence, this can
be ignored during the analysis. However, a constant factor
is added in the end to the parsimony tree score that accounts
for the constant increase in cost due to non-singleton states.
The technique of site reordering and removing redundant
information, on an average, reduced the running time by a
factor of 4.1 on the datasets in our test bed.

For example, consider a dataset D5,4, with 5 taxa and 4
sites (see Table 2). Site S1 contains one state A through-
out. For all tree topologies, there will be no state change of
this site and hence this is deemed to be a parsimony non-
informative site. Site S2 contains two singleton states A, C
and one non-singleton state B. For all tree topologies, the
number of state changes from this site can be at most one
(due to state B, other states are always constant). Hence, site
S2 is a parsimony non-informative site contributing a con-
stant increase in tree score. Site S3 with five singleton states
is parsimony non-informative and hence tree topology can
be assigned any of the five states at random. Site S4 with
two non-singleton states is the sole parsimony informative
site. While site S4 affects the phylogenetic tree, sites S1,
S2, S3 do not. Hence, all the sites that are not parsimony-

informative can be safely removed from MP analysis and
adjusted later for the constant cost contributed by them.

A further improvement is to reorder the sites in a way
that parsimony informative sites with highest number of
non-singleton states (most parsimonious sites) are moved
to the first contiguous locations. Since maximum change in
tree score is due to the most parsimonious sites, this helps
in computing the cost of a partial tree more effectively.

3 Parallel Implementation of ExactMP

Performance of the B&B algorithm is highly dependent
on different factors, such as storage of open subtrees, choice
of data structures, communication protocols, and choice of
granularity. Benaı̈chouche et al. [4] provide an overview
of ways to organize a storage structure as a priority queue.
Usually, priority queues are represented by heaps where
each parent has higher priority than its children. Various
algorithms exist for heap management, for example Pairing
Heap [10], skew-heap [32], D-heap [16], and Leftist heap
[16]. Roucairol [27] showed shared, and distributed data
structures. Biswas and Browne [5] present the first concur-
rent heap, latter improved by Rao and Kumar [25]. In Rao
and Kumar’s scheme, multiple processors concurrently ac-
cess a binary-heap by acquiring locks on the nodes of the
heap. Yan and Zhang [34] propose a Lock Bypassing algo-
rithm that uses lock-on-demand and lock-bypassing tech-
niques to minimize locking granularity. Jones [15] propose



partial locking for skew heaps. [18] presents a good com-
parison of different data management schemes for concur-
rent PQs.

Several classic optimization problems, such as Vertex
Cover, Graph Partitioning, and Quadratic Assignment have
been solved in parallel using the B&B technique. Lüling
and Monien [19] implemented a parallel B&B for the Vertex
Cover problem and achieved a parallel speedup of 237.32
using a ring topology on a 256 processor system. Laursen
[17] presents a parallel B&B for Quadratic Assignment,
Graph Partitioning, and Weighted Vertex Cover problems
and demonstrates a processor utilization factor of up to
0.954 through specialized communication protocols, such
as Half-Surplus and On-Demand. However, the problem of
phylogenetic tree reconstruction using exact maximum par-
simony has not been implemented previously. Bader et al.
in [3, 2] and Yan in [33] provide a framework of a parallel
solver to solve this problem.

We parallelize the phylogenetic reconstruction algorithm
in three simple steps: (a) perform the initial computa-
tions: preprocessing the input dataset, and computing initial
global upper bound using heuristics as described in Section
2, (b) maintain a shared set (hereafter denoted as Σ) of open
subtrees, and (c) let each processor synchronously select a
subset of open subtrees from Σ, solve all the elements in
the subset completely, and repeat step (c) until the set Σ is
not empty. During this process, if a processor finds a tree
whose score is lower than the current global upper bound,
then it synchronously updates the global upper bound to
the newly found value and continues. In the above three-
step scheme, part (c) becomes challenging because different
datasets of similar size behave very differently. Hence, the
performance of the B&B algorithm is dependent on the dif-
ficulty level of a dataset. We loosely categorize the datasets
into hard, moderate, and easy, depending on the number of
subtrees that are decomposed while solving them. Typi-
cally, the number of subtrees decomposed in a hard dataset
is larger by several orders than the number of subtrees de-
composed in an easy dataset. Due to this reason, the time
taken to solve a subtree of a hard dataset is also much higher
than time taken to solve a subtree of similar size of an easy
dataset.

Due to the difference in the number of subtrees decom-
posed, and the time taken to solve a subtree, between hard
and easy datasets, a load balancing technique that is opti-
mally tuned for a hard dataset may not work well for an
easy dataset. This makes the design of a parallel solver for
this problem that simultaneously achieves a load balance
and high parallel speedup on all types of datasets is hard.

In ExactMP, in order to achieve a uniform load balance
and good parallel speedup simultaneously, we designed and
implemented two methods to parallelize this problem: List
based and Queue based. In the List based method, the B&B

search tree is dynamically decomposed to an appropriate
level such that, on an average, each processor receives a
desired number of subtrees. All subtrees in that level are
maintained in a list according to Best-first (most promis-
ing subtree placed first) algorithm. For example, consider
a dataset with n taxa to be run on p processors such that
each processor receives at least k subtrees. An appropriate
level up to which the search tree should be decomposed can
be computed by recursively dividing pk by (2i − 5) for all
levels i ranging from 1 to n − 2. Once this is done, each
processor locks the list, selects a subtree, unlocks the list,
and solves the selected subproblem completely. This step is
repeated until the list is empty. This method performs well
on hard datasets because, in general subtrees in the B&B
search space of a hard dataset takes long time to complete
and hence, all processors finish up around the same time.
However, in an easy dataset, this is not the case. Some sub-
trees may be solved very fast and some subtrees may go on
for long time leaving some processors in idle state.

In the Queue based method, the B&B search tree is de-
composed up to a certain level and all subtrees at that level
are stored in a shared queue. A processor locks the queue,
receives k subtrees based on the Best-first algorithm, and
unlocks it. During this process, before unlocking the shared
queue, each processor decomposes one or more subtrees
from the set it received, and enqueues some subtrees back.
This step ensures a uniform load distribution by guarantee-
ing that the shared queue holds some partial trees until the
B&B search tree is not completely traversed.

In both methods, if a better score is found then it is glob-
ally updated. In the first method, the level to which the B&B
search tree is decomposed becomes the tuning parameter,
where as in the second method, the cardinality k of the set
of subtrees that a processor receives from the shared queue
becomes the tuning parameter. During our experiments, we
found that a range of 5 up to 8 for the tuning parameter
in List based method gave good results, and in the Queue
based method, a value of 10 for the tuning parameter gave
best results. Although both methods provide load balance
equally well, parallel speedup is higher in the Queue based
method. Hence, we chose the Queue based method for our
ExactMP Solver.

4 Experimental Results

Our experiments use an 8-way Western Scientific Fu-
sionA8, featuring 2.4 GHz AMD Opteron processors, each
with 1 MB of cache memory, and 32 GB of shared mem-
ory. Our testbed consists of 18 datasets containing DNA
sequences of varying sizes (from 12 to 27 taxa). We use
three real datasets (a) Eukaryotes rDNA (27 taxa) (b) rbcl
DNA (14 taxa), (c) Metazoan DNA (20 taxa), and fif-
teen randomly generated, hard, moderate, and easy, syn-



thetic datasets. Among the synthetic datasets, we classify
5 datasets as hard, 5 as moderate, and the remaining 5 as
easy. We observed that time taken to solve similar-sized
datasets exactly, depends on the number of parsimony-
informative sites (See Section 2.5) present in the dataset.
The higher the number of parsimony-informative sites in a
dataset, the longer it takes to be solved exactly. For ex-
ample, in our testbed, the hard datasets contain 100% of all
sites as parsimony-informative sites, moderate datasets con-
tain 69.4%, and easy datasets contain only 40% of all sites
as parsimony-informative sites.

Our experiments involved 8 processors for the above
testbed. We achieve an average parallel speedup (measured
w.r.t our own best sequential time) of up to 6.9 on 8 proces-
sors using the List based method and 7.26 on 8 processors
using the Queue based method. Fig. 3 shows the parallel
speedup and load distribution of both methods for differ-
ent datasets up to 8 processors. We see highest speedup on
hard datasets due to the availability of subproblems. Load
distribution is fairly uniform for all the datasets in both
methods which is indicative of an efficient usage of proces-
sors. Uniform load distribution and high parallel speedup
on hard datasets indicate that our parallelization techniques
are highly efficient. However, uniform load distribution and
a low parallel speedup in easy and real datasets point out
that the sizes of the datasets are small enough to be solved
on a parallel solver. This indicates that the ExactMP Solver
can handle much larger instances of real and easy datasets
efficiently.

Fig. 4 compares running times of ExactMP Solver and
PAUP* for hard datasets. PAUP* is a widely used tool
for constructing phylogenetic trees from genome sequence
data using maximum parsimony. However, the parameters
that can be set in PAUP* do not allow an even comparison
to our ExactMP Solver because the parsimony strategies
that we use cannot be selected in PAUP*. Here, we present
a close comparison between the two solvers by selecting
BranchAndBound operation with MulTree option turned on
in PAUP*. For all the datasets, we notice that the ExactMP
Solver takes less time than PAUP*. In all cases, the best
score with both methods is equal, and provided below.

Real Datasets:
Eukaryotes: 3512 (27 taxa, 2461 sites)
Metazoan: 825 (20 taxa, 1008 sites)
rbcL: 963 (14 taxa, 759 sites)

Easy Datasets (24 taxa and 500 sites):
E1: 593
E2: 589
E3: 584
E4: 577
E5: 579

Moderate Datasets (20 taxa and 64 sites):
M1: 124
M2: 192
M3: 118
M4: 303
M5: 128

Hard Datasets (H1, H2, H3 contain 12 taxa; H4, H5 con-
tain 13 taxa. All contain 64 sites):
H1: 364
H2: 367
H3: 359
H4: 397
H5: 396

5 Conclusions and Future Work

We designed an efficient parallel solver for reconstruct-
ing exact phylogeny trees using maximum parsimony. Our
new upper bounding methodology uses a combination of
heuristic and randomization techniques. We introduce a
method to optimize the Fitch kernel that outperforms the
well known multi-character optimization technique. Par-
allel speedups of up to 7.26 on 8 processors and a uni-
form load distribution pattern show that our parallelization
techniques are efficient. The observation that the parallel
speedup improves correspondingly with the difficulty level
of a dataset indicates that ExactMP Solver is well suited for
large instances of hard datasets and very large instances of
other datasets. ExactMP Solver may also be used as a base
method for the Disk Covering Method (DCM) [13] and to
establish the accuracy of heuristic algorithms.

Our future research efforts in this area will be directed
to making the ExactMP solver more general. Our goals
in the future are to add optimization for protein sequences,
schemes for missing character prediction, and incorporate
Wagner, and Dollo parsimony strategies.
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