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Abstract

Fault tolerance is critical for efficient utilisation of
large computer systems. Dynamic fault tolerance allows
the network to remain available through the occurance of
faults as opposed to static fault tolerance which requires
the network to be halted to reconfigure it. Although dy-
namic fault tolerance may lead to less efficient solutions
than static fault tolerance, it allows for a much higher
availability of the system. In this paper we devise a dy-
namic fault tolerant adaptive routing algorithm for the
fat tree, a much used interconnect topology, which re-
lies on misrouting around link faults. We show that we
are guaranteed to tolerate any combination of less than
num switch ports

2 link faults without the need for additional
network resources for deadlock freedom. There is also a
high probability of tolerating an even larger number of
link faults. Simulation results show that network perfor-
mance degrades very little when faults are dynamically
tolerated.

1. Introduction

As the size and complexity of computer systems in-
creases, efficient fault tolerance methods become of in-
creasing importance. The key to high performance in
today’s supercomputers and high-end servers is par-
allelism, interconnecting a large number of processing
units which work together. The interconnection net-
work interconnecting the processing units among them-
selves and/or these units with the storage subsystem
becomes a critical component in the system, and it is
essential that it is able to operate correctly despite in-
termittent failure of network elements.

To keep the network connected despite the failure
of switches and links, several strategies have been pro-
posed and/or implemented. The most frequently used

technique in commercial systems is to implement the
circuits required to switch off the faulty component
(e.g. switching off several planes of the BlueGene/L
3D torus), possibly switching in some spare compo-
nents (e.g. by implementing a few extra planes). This
strategy has the benefit of simplifying routing by keep-
ing the same topology, but it is quite expensive and
often switches off too many healthy components. An-
other approach followed in many academic papers con-
sists of exploiting the existence of alternative paths in
the network by defining a fault-tolerant routing algo-
rithm. These algorithms provide alternative paths that
can be followed in case of failure. They have become
very popular among researchers because they do not
require the use of spare components and usually dis-
able very few (if any) healthy components. We will re-
fer to this strategy as dynamic fault tolerance in this
paper. Endpoint dynamic fault tolerance allows the
source nodes to choose a different path through the
network up on being informed of a network fault, the
approach used in e.g. [15]. Local dynamic fault toler-
ance, on the other hand, provides multiple paths from
any single network element to avoid any faulty compo-
nent it may be connected to. Unfortunately, most pro-
posals introduce significant complexity (e.g. several ad-
ditional virtual channels) to avoid deadlock in the pres-
ence of failures.

The third and most recent group of techniques con-
sists of adding a network management layer that ex-
plores the topology in case of failure and computes
new routing tables. This is by far the most flexible ap-
proach, supporting a large number of failures. This ap-
proach, known as network reconfiguration, can be con-
sidered as an extension of the network configuration
software found in technologies like Myrinet and Infini-
Band. However, flexibility comes at the expense of us-
ing a generic routing algorithm that may not be op-
timal for a given topology. Also, statically reconfigur-



ing the network is time-consuming since the network
applications must be halted and the network drained
of all traffic to avoid dependencies between packets
routed following the old and new routing algorithms.
Dynamic fault tolerance is much more time efficient in
this respect, both the endpoint, but even more the lo-
cal, approaches. However, the local solution of rout-
ing around the faulty elements may lead to nonopti-
mal paths. Despite this, local dynamic fault tolerance
is overall much more efficient in large systems with fre-
quent fault events, and it is the approach we will follow
in this paper.

Rerouting packets around network faults is most
easily achieved by using an adaptive routing algorithm.
An adaptive routing algorithm supplies several alter-
native paths for a destination if available, allowing the
switch to choose the output queue with, for instance,
the shortest length. Related to fault tolerance, when
discovering a faulty network element, the switch is free
to adaptively choose a different path which is not af-
fected by the fault. It is therefore relatively straight-
forward to provide dynamic fault tolerance in networks
with multiple available paths such as meshes and tori
topologies.

Interconnection networks are often interconnected
in regular topologies like the k-ary n-cube, mesh, and
various Multistage Interconnection Networks (MIN).
Multistage interconnection networks were first intro-
duced in 1953 by C. Clos as a means of producing non-
blocking switching networks consisting of few switches
organised in switching stages [4]. The fat tree, a MIN
developed by C. Leiserson in 1985 [12], is an ideal topol-
ogy for use in supercomputer systems. It is an area uni-
versal network, a network able to emulate any other
network topology built from the same amount of hard-
ware with only a small decrease in computational ef-
ficiency [12]. Because of this the fat tree is a much
used interconnection topology in parallel computer sys-
tems. As many as seven of the top 20 supercomputers
rely on the fat tree topology in some parts of their in-
terconnection network (Q4, 2005). A classical exam-
ple is CM5 [5], and a more recent example is SGI Al-
tix 3700 [21] which is used in NASA’s Colombia, cur-
rently ranked number three. Most of the commercial
interconnects for SANs and clusters also use fat trees
or other similar bidirectional MINs, for instance Infini-
Band [1], Myrinet 2000 [2], and Quadrics [17].

The fat tree (Figure 1) is usually a tree with multi-
ple roots. The bottom stage of the network consists of
the processing units connected as leaves to the switches
at the bottom of the tree. The switches are organised in
stages, and the number of stages depends on the num-
ber of nodes connected to the network and the switch

Figure 1. A small fat tree with radix 4 switches.
The black dots are switches, and the black
squares are processing nodes connected to the
bottom of the network. The outline describes a
switch group as it is defined in Section 3.

radix (the number of ports in the switch). The fat tree
is distinct from an ordinary tree in that the aggregate
link capacity between two switch stages is maintained
at every stage to the top, i.e. the branches of the tree
get fatter nearer the root. Fat-trees in which the capac-
ity of the links themselves increases towards the root
are also feasible, but the common approach is to in-
crease the number of links and switches at the upper
stages. The fat tree we consider in this paper is the
commonly used K-ary N-tree as it is defined in [16].

Packet routing in the fat tree is performed as in any
tree topology.The packet is forwarded from the source
upwards to any least common ancestor of the source
and destination, and then downwards following a de-
terministic path determined by the least common an-
cestor to the destination. We call this the upward phase
and the downward phase.

Previous approaches to dynamic fault tolerance in
fat trees [19, 18] have considered dynamic fault toler-
ance combined with deterministic routing. Strict rout-
ing rules, extra mechanisms in the switches, and addi-
tional network resources have been required to route
around faults and guarantee deadlock freedom. In this
paper we will achieve local dynamic fault tolerance in
conjunction with adaptive routing. However, since the
fat tree is deterministic in the downward phase, the
use of an adaptive routing algorithm will not automat-
ically lead to local dynamic fault tolerance. We there-
fore develop an adaptive local dynamic fault tolerant
routing algorithm which misroutes packets one hop to-
wards a different destination to reach an alternative de-
terministic path, avoiding the fault.

The main contributions of this paper are: 1) A new
and efficient routing algorithm for fat trees that is able
to tolerate at least up to an including radix

2 −1 link fail-
ures without disconnecting the network; 2) a detailed
theoretical proof of the fault tolerant properties of the
proposed routing algorithm; and 3) a performance eval-



uation showing that network performance experiences
a small degradation in the face of faults.

After an overview of past efforts in the field of fault
tolerance in interconnection networks in Section 2, we
propose an adaptive routing algorithm designed to pro-
vide dynamic fault tolerance in fat tree networks in Sec-
tion 3. In Section 4 we present an evaluation of the pro-
posed algorithm, and a conclusion is given in Section
5.

2. Related work

Not all MIN topologies intrinsically provide mul-
tiple paths that may be utilised for fault tolerance.
For example, the Butterfly network [9] only provides
a single path between each source/destination pair. A
large amount of work concerning fault-tolerant MINs is
based on adding additional hardware in terms of adding
extra links and switches to existing switching stages,
or adding entirely new switching stages [23]. Another
much used approach is to route the packet through the
network in several passes. Routing through multiple
passes requires the MIN to possess a dynamic full ac-
cess (DFA) property, i.e. the ability to route between
any node pair using a limited number of passes [10].
Hybrid approaches combining multiple paths and mul-
tiple passes have also been suggested [22]. In [13]
the authors give an overview of a number of fault-
tolerant MIN topologies, describe their basis for fault-
tolerance and evaluate their performance. J. Sengupta
and P.K.Bansal [20] use several parallel MINs to cre-
ate redundancy, with each MIN functioning as a dis-
joint path between the sources and destinations. The
fault tolerance of Butterfly networks is studied in [3]
and [11]. F.Cao and D. Du [3] discuss the fault toler-
ance property of the Butterfly network and show how
to construct paths through the faulty network. In [7]
the authors analyse the fault tolerance properties of
MINs without additional redundancy. Most of his work
is based on unidirectional MINs, there is little work
done on bidirectional MINs.

None of the above contributions consider dynamic
fault tolerance. An exception to this statement is the
approaches in [19] and [18]. The first paper describes
a method for achieving dynamic fault tolerance using
two parallel fat-trees with crossover paths between the
corresponding switches in both trees. The method is
shown to yield almost as good performance as when us-
ing static fault tolerance to route around failed links.
The second paper presents a dynamic fault tolerant
routing algorithm which provides dynamic one fault
tolerance in singleton fat-trees. A deterministic rout-
ing algorithm is used combined with a dynamic fault

tolerance algorithm, so the use of additional virtual
layers is therefore required to guarantee deadlock free-
dom.

Concerning fat-trees, some work has been done on
fat-trees in general, and to some small extent on fault
tolerance. Fat-trees are extended to generalised fat
trees in [14], allowing them to have a varying num-
ber of switches in switching stages and links between
the stages. Another variation of fat-trees are orthogo-
nal fat-trees as presented in [24]. Orthogonal fat-trees
are built using simple two level fat trees as the build-
ing blocks to achieve a larger network and they pro-
vide only a single path between any source/destination
pair. The authors extend this work in [23] by provid-
ing several disjoint paths through the addition of net-
work links.

3. Fault-Tolerant Routing in the Fat
Tree

We consider a fat tree made up of virtual cut-
through switches. In the virtual cut-through switch-
ing scheme, packets are divided into small data units.
During traversal of the network, the separate units of a
packet may be spread over several switches, but on be-
ing blocked the packet as a whole is buffered in a single
switch, thus reducing contention and simplifying dead-
lock avoidance.

Failures may be transient or permanent. Transient
failures can be easily handled by using a suitable com-
munication protocol that re-transmits the information
in case of transmission errors. Therefore, we will fo-
cus on permanent failures.

We consider only link faults in this paper. A link
is either present and operational, or faulty, in which
case it may be viewed as non-existent. We assume that
the network elements directly connected to the failed
element can detect the failure of that element, infor-
mation about failed elements need not be propagated
further. Additionally, we do not allow the links con-
necting processing nodes to the bottom of the tree to
fail. Note that additional hardware is required to sup-
port the failure of these links (e.g. using two NICs per
processing node to connected to two different network
ports, which also implies doubling the number of net-
work ports).

In the first section below we will present a routing al-
gorithm which is able to guarantee a connected network
for one link fault without modifying the packet header
or network switches in any way, and for less than radix

2

link faults if we add a small field of length radix
2 bits.

The non-minimal paths used to avoid the faulty links
may lead to deadlocks, a state where every next hop



queue for a set of packets is full, forming a cyclic de-
pendency. We will therefore present a proof that shows
that the proposed algorithm is deadlock free in Sec-
tion 3.2.

3.1. The Routing Algorithm

The routing algorithm we present here relies on the
numerous paths between two neighbouring switches.
When a link between two switches fails, the switch at
the top of the failed link will no longer have a path to
the destinations it used to reach through the failed link.
However, the switch at the bottom end of the failed link
has links to numerous switches next to the switch at
the top of the failed link. If a packet is routed to one of
these switches it will have a valid path down to its des-
tination. We construct a routing algorithm that mis-
routes the packet, forcing it to traverse two extra hops,
one hop down and one hop up, to reach a fault-free path
to the destination upon encountering a link fault. The
path around a faulty link is shown in Figure 2, the de-
tails of this will be discussed later.

Definition 1. Anadaptive routing function R* supplies
a set of output queues to be used by a packet in switch s to
reach a destination d.

We construct an adaptive, dynamic fault-tolerant
routing algorithm by dividing packet routing into the
following two phases. In the following, a faulty queue
is a queue associated with a faulty link.

1. In the upward phase, all upward queues are sup-
plied by the routing function and one is selected
for output. If any of the queues are faulty, they are
simply not chosen.

2. In the downward phase only one single queue
is supplied by the routing algorithm, the short-
est path from the current switch to the destina-
tion. If this queue is faulty, all other downward
queues are supplied, forcing the packet to be mis-
routed through one of them. Once a packet has
been misrouted downwards, a new upward phase
commences, with the adaptive algorithm exclud-
ing queues associated with the link on which the
packet arrived.

Definition 2. A U-turn switch is a switch in which a
transition from a downward to upward phase takes place.

There will be U-turn switches in the network only
in the case of faults.

Definition 3. A U-turn is a transition from downward
to upwardmovement involving a downward link, aU-turn
switch, and an upward link.

Thus the term U-turn does not apply to the up-
ward to downward transition which separates the up-
ward and downward paths in the routing algorithm. In
a fault-free network no U-turns will therefore ever be
performed.

This simple algorithm will be able to guarantee net-
work connectivity when no more than one link fails [18],
without having to modify the packet header in any way.
For it to be able to tolerate a larger number of link
faults, the algorithm must systematically test the set of
available paths once it has finished misrouting down-
wards and is about to perform the U-turn and com-
mence on a new upward phase. The reason is that sev-
eral of the other switches reachable upwards from the
U-turn switch might not have a fault-free downward
link towards the destination. It might therefore be nec-
essary to test several upward paths from the U-turn
switch to find one that leads one switch stage closer to
the destination. To preserve the adaptivity required by
the routing algorithm in the upward phase we must im-
plement a systematic check such that all possible paths
are tested without forcing the packet on to any path
unless we know that it is deadlock free. We will show
below that this may be achieved by having a field in
the packet header, a misroute vector, of length radix

2
bits, one for each of the upward paths to test. Com-
bined with the first algorithm the adaptive dynamic
fault-tolerant algorithm which is guaranteed to toler-
ate up to and including radix

2 − 1 link faults is as fol-
lows:

1. In the upward phase, all upward queues are sup-
plied by the routing function and one is selected
as the packet’s output. If any of the queues are
faulty, they are simply not chosen.

2. In the downward phase only one single queues is
supplied by the routing algorithm, the shortest
path from the current switch to the destination.
If this queue is faulty, all other downward queues
are supplied, forcing the packet to be misrouted
through one of them.

3. A switch receiving a packet from a link connected
to an upper stage for which it has no downward
path sets the bit in the misrouting bit-vector in the
packet header corresponding to the link on which
the packet arrived (it is not necessary to try to use
this link for forwarding the packet since we know
the path is broken). This switch is a U-turn switch.

4. The U-turn switch adaptively chooses one of its
upward queues which does not have its corre-
sponding bit set in the packet header and subse-
quently inserts the packet into this queue.



5. If the new switch that the packet arrived at from
the U-turn switch has a valid downward path as
the next hop, the misrouting vector in the packet
header is reset and the packet is forwarded as nor-
mal. Otherwise the packet is misrouted back to the
U-turn switch down the same link on which it ar-
rived at the current switch and step three is re-
peated. If this link has just failed reset the mis-
route vector and repeat from step 2.

6. A U-turn switch receiving a packet from an up-
ward link in which all other bits in the misrout-
ing vector are set discards the packet, Rm is dis-
connected. The switch may inform the source that
the path is no longer available. We know we have
tested all upward links of the U-turn switch and
there is no available path to the destination from
this switch.

This routing algorithm will be known as Rm

throughout the paper. We will now present a se-
ries of arguments and proofs to show the validity, and
explore the properties and limits of Rm.

Definition 4. Two switches are neighbours if they are
interconnected through a single link.

Definition 5. Two sets of switches, a and b, are com-
pletely interconnected if every switch in a is a neighbour
of all switches in b (and implicitly vice versa).

Definition 6. A switch group g is the union of two com-
pletely interconnected sets of switches, a and b, where
a contains only switches at stage l and b contains only
switches at stage l + 1. a contains all neighbours at stage
l of all switches in b, and b contains all neighbours at stage
l + 1 of all switches in a, g = a ∪ b.

Given the interconnection pattern of a fat tree, each
switch group consists of radix

2 upper stage switches and
radix

2 lower stage switches. Every switch in the fat tree
is part of two switch groups, but the upper stage of
one switch group, and at the lower stage of another.
The switches at the topmost and bottommost stages
of the tree are only members of one switch group. Fig-
ure 1 shows a fat tree consisting of switches of radix
four. The switch group encompassed by the line there-
fore consists of two upper stage and two lower stage
switches. For simplicity it is assumed that the top stage
switches of the fat tree have the same radix as the other
switches in the network, but with radix

2 unused ports.
Practical implementations may use switches without
the unused ports, or use the extra ports to halve the
number of top stage switches.

Corollary 1. There are radix
2 disjoint shortest paths

between any two switches at the same stage in a switch
group.

Proof. It follows from Definition 6 that any switch s
at the upper/lower stage of a switch group has radix

2
neighbours at the lower/upper stage. Each of these
neighbours are neighbours to all switches in the group
at the same stage as s. Thus, there exists radix

2 paths
from s to each of the other switches in the group of the
same stage, one through each of its neighbours in the
group. Since there are no links between switches at the
same stage these paths will be the shortest paths, each
of length two hops.

Lemma 1. Rm is connected when there are less than
radix

2 link faults.

Proof. In the upward phase Rm is obviously always
able to forward every packet one stage upwards with
less than radix

2 link faults. As long as one link is
available in the upward direction the packet may be
forwarded. The downward phase is as follows: With
radix

2 − 1 link faults in the system at least one of the
radix

2 upper stage switches in a group with link faults
will not be connected to any faulty link. We call this
switch St. From corollary 1, there are radix

2 disjoint
paths between any two switches at the same stage in
a group. radix

2 − 1 link faults is not enough to discon-
nect all these paths, and thus, any upper stage switch
connected to a faulty link is able to reach St, which
we know has a healthy link moving the packet one hop
closer to its destination. Each lower stage switch in the
group will be connected to St, so by misrouting to an
arbitrary lower stage switch Sb there will be a path to
St. By checking all upward links from Sb exactly once,
we are guaranteed to reach St without cycles. Once the
packet has reached a lower stage switch in the group
with a valid downward path it enters a new group, so
subsequent link failures encountered will be tolerated
in a different group, further down in the tree with at
most radix

2 − 2 link faults.

In addition to Lemma 1 which proves that the algo-
rithm dynamically tolerates faults, we must show that
the algorithm is livelock free. The key to this is the mis-
route vector.

Lemma 2. Rm is livelock free when there are less than
radix

2 link faults in the network.

Proof. As the number of links is finite, a livelock re-
quires that a packet is forwarded in a loop. There must
therefore exist a set of switches that the packet tra-
verses an unlimited number of times. There are obvi-
ously no such loops in the upward phase, the only pos-
sible cause of a loop is the U-turn performed when mis-
routing around a fault. However, the misrouting vector
guarantees in point 4 of the misrouting algorithm that



all the upper stage switches in the switch group con-
taining the fault are visited at most once for each link
fault in the group, and hence none of these may be in-
volved in a livelock. Since there are less than radix

2 link
faults we are guaranteed a path which moves the packet
out of the switch group and one stage lower down
towards the destination. Consequently, every time a
packet is misrouted, it will find a path which brings it
one stage closer to its destination, and the algorithm is
livelock free.

(a)

Figure 2. Combinations of radix
2 − 1 faults with

misrouting within a group in radix=8 network.
The terms ingress and egress refer to the
switches where the packet enters and leaves the
switch group respectively. The bold lines are the
links traversed by the packet, the dashed links
are a faulty, and the long dashed path with an ar-
row is the path followed by a packet. The num-
bered U-turns refer to the corresponding states
of the misroute vector (listed next to the U-turn
switch) as the U-turn is performed.

Figure 2 gives an example of a fault configuration
with radix

2 −1 faults and how it is tolerated by the rout-
ing algorithm. The figure depicts a switch group in a
network consisting of radix eight switches. The packet
has to attempt to use several upward paths from the
lower stage switch in order to reach an upper stage
switch with a fault-free path to the destination. It is
clear from this figure that there exist combinations of
a large number of link faults that allow the routing al-
gorithm to remain connected. Therefore, in addition to
be able to guarantee radix

2 − 1 fault tolerance, the al-
gorithm will with some probability be able to tolerate
an even larger number of arbitrary link faults.

3.2. Deadlock Freedom

We have shown that Rm is connected and livelock
free for less than radix

2 link faults. Next we will prove
that it is deadlock free as long as we can guarantee con-
nectivity. The non-fault tolerant upward phase, down-
ward phase routing algorithm relies on that there can-
not be any downward to upward turns in the network to
be deadlock free. However, when we misroute around a
fault we introduce downward to upward turns and cre-
ate dependency cycles that may cause deadlocks. Dead-
lock freedom has previously been provided by utilising
virtual channels to break the cycles [18]. In this sec-
tion we will show that such a solution is unnecessary
when we use adaptive routing since the cycles will not
cause deadlocks. For this analysis, we assume the use of
virtual cut-through switches and will focus on the de-
pendencies between the switch queues where the pack-
ets are buffered.

The following definition and theorem are taken from
[6]:

Definition 7. A routing subfunction R1 of the routing
function R* is a routing function connecting the same set
of sources and destinations as R*, but provides a subset
of the queues provided by R*.

R1 may in other words be viewed as a limited ver-
sion of R* where some of the network queues supplied
by R* for a destination are not supplied for that desti-
nation by R1.

Theorem 1. A routing algorithm is deadlock free iff
there exists a connected routing subfunction R1 of the
routing function R* which has no cycles in its extended
channel dependency graph.

The theorem relies on the terms dependency, cross
dependency, and extended channel dependency graph
as they are defined in [6]. There is a dependency from
one queue to another if the first packet in the first queue
is headed to the second queue following the routing al-
gorithm. There exists a cross dependency when there
are packets in queues that are legal for R*, but not for
R1, which have a queue that is legal for R1 as their
next hop. The extended channel dependency graph is
a graph whose vertices are queues, and the arcs are be-
tween pairs of queues where the first queue is either
dependent or cross-dependent on the other. The ex-
tended channel dependency graph is similar to the or-
dinary channel dependency graph except that the lat-
ter only considers queues that are dependent, not cross-
dependent.

Theorem 1 is primarily intended for direct networks,
so in order to make use of Theorem 1 we must con-
sider our indirect fat tree as a direct network. This im-



plies that every node in the network, both processors
and switches, must be viewed as packet producers, con-
sumers, and packet forwarders. This creates a hugely
complex routing algorithm since many of the paths in
the network will contain U-turns when packets are sent
from one switch to another. We may however disregard
many of these U-turns when considering deadlock free-
dom.

A configuration is an assignment of a set of pack-
ets to the queues in the network, and a legal config-
uration is such an assignment that is reachable from
an empty network by injecting and forwarding packets
as the routing algorithm dictates. A deadlocked con-
figuration is a nonempty legal configuration where sev-
eral of the network queues are full, and all queues sup-
plied by the routing function for the first packet in
every full queue are also full. Consequently, an ille-
gal configuration which is deadlocked is not an issue
since it may never be reached. It is therefore only nec-
essary to consider legal configurations when analysing
the dependencies of the routing algorithm. In an indi-
rect network such as the fat tree a switch will never be
a destination, and thus all configurations involving U-
turns without the U-turn switch being due to a faulty
link are illegal. This eliminates the numerous U-turns
that would occur if packets should be transmitted be-
tween two switches in the network. We are left with
U-turns only occurring below faults. In fact, the only
thing we must consider which is different from a direct
network is that the routing subfunction must be con-
nected with respect to any packet in any queue in the
network, i.e. we must view every switch as a “packet
producing” node, but not as a destination.

The deadlock freedom of Rm is not obvious since
many of the downward to upward turns performed
when attempting to misroute around a fault may close
cycles in the channel dependency graph. To show that
Rm is deadlock free we must show the existence of
a routing subfunction R′

m of Rm which is connected
and has no cycles in its extended channel dependency
graph as is required by Theorem 1. It is important to
note that the routing subfunction need not be imple-
mented in any way, it is sufficient that we can prove
the existence of such a function. The rest of this sec-
tion is devoted to finding R′

m and proving that it is
cycle free in its extended channel dependency graph
and connected within the fault tolerance limits set by
the dynamic fault-tolerant routing function Rm. In or-
der to achieve this we must create a basis upon which
to construct the routing algorithm. We will first iden-
tify which U-turn switches may be part of a deadlock.

Definition 8. Assume we have a channel dependency
cycle. A switch is part of a dependency cycle when

queues in that switch are part of the channel dependency
chain forming the cycle in the extended channel depen-
dency graph.

Lemma 3. A dependency cycle must always involve two
or more U-turn switches.

Proof. Suppose there is a dependency cycle involving
only one U-turn switch, b, with the downward link of
the U-turn from switch a to b and the upward link of
the U-turn from b to switch c. In this case there is a
chain of dependencies from b, c to a, b which is closed by
the downward to upward U-turn a, b, c. In other words,
it is possible to follow the chain of dependencies from
b, c and arrive at a, b. However, if we follow the chain of
dependencies from the upward link it will lead us some
way upwards in the tree before it will turn downwards.
a and c can not be part of the same subtree (other-
wise switches at higher stages would have more than
one path downward to a destination, which is not the
case) so they have no common ancestors, and it is im-
possible to reach a from c with only one upward and
downward phase. From here on the chain will there-
fore only involve downward channels since there are no
other U-turns and the chain will terminate in a process-
ing node. Thus, there is no cycle.

As we shall see, not all combinations of U-turn
switches may form a dependency cycle, it depends on
where in the fat tree the U-turn switches are located.

Definition 9. The subtree of a switch consists of all
the links and switches reachable in the downward direc-
tion from that switch.

Every switch is member of a specific set of sub-
trees, i.e. there is a certain set of tree roots that can
be reached in the upward direction from the switch. A
top rooted subtree is a subtree of a top stage switch.

Definition 10. Two switches are members of the same
set of top rooted subtrees when they have all top stage
subtree roots in common.

Lemma 4. Only U-turn switches that are members of
the same set of top rooted subtrees may be part of a depen-
dency cycle.

Proof. First, a dependency cycle must involve two or
more U-turn switches (Lemma 3). Next, consider the
U-turn switches u and v1, v2, . . . , vn. Suppose that we
have a deadlocked configuration and that u is member
of a top rooted subtree st of which vi is not a mem-
ber for every 0 < i ≤ n. Any packet forwarded up-
wards through st from u will necessarily never reach vi

since vi is not in st. Consequently, there is a path out
of the cyclic dependency between the U-turn switches
and thus no dependency cycle.



From Lemma 4 we may make the following observa-
tion.

Observation 1. A dependency cycle may only occur
between U-turn switches at the same switch stage in the
network since U-turn switches at different stages will be
members of different sets of subtrees.

The basis for observation 1 is that with two switches
at different switch stages the switch at the upper stage
will necessarily be a member of fewer subtrees than the
switch at the lower stage, and they will therefore not
be members of the same set of top rooted subtrees.

We have established that any deadlock in the net-
work must involve at least two U-turn switches at the
same switch stage. Therefore, if we can guarantee that
a packet misrouted through a U-turn at stage l is for-
warded in a subtree with no further failures in the links
of the same stage l, it will not be able to close any de-
pendency cycles.

Definition 11. A subtree which is fault-free at stage
l is a tree whose root is at the top stage of the fat-tree, and
whose leaves are at stage l. The fault-free subtree contains
excactly all nodes and links that are reachable through
downward-links from the root, and that are at or above
level l.

Lemma 5. A U-turn switch at stage l will not be part
of any dependency cycle in the extended channel depen-
dency graph if it is connected to a subtree which is fault-
free at stage l and forwards misrouted packets in this sub-
tree.

Proof. For every link fault in the network both the
faulty link and the downward link of the associated
U-turn will be located in the same subtree. There are
consequently no downward links of U-turns at stage
l in the subtree that is fault free at stage l. There-
fore, if we follow the possible chain of dependencies
from the upward link of a U-turn through the sub-
tree that is fault-free we will never encounter a down-
ward link of a U-turn at stage l since we encounter no
faults. Since we may only have cyclic dependencies be-
tween U-turns at the same stage and this is impossible,
we are not able to create a cyclic dependency.

These are the foundations necessary to construct our
routing subfunction. The steps of the routing subfunc-
tion R′

m is listed below:

1. Adaptively forward the packet upwards towards
any least common ancestor.

2. Upon reaching the least common ancestor forward
the packet downwards.

3. If a fault is encountered in the downward direction
misroute the packet one step downwards, to stage
l.

4. Forward the packet back up the subtree that is
fault-free at stage l.

R′
m is obviously connected when considering every

switch as a packet producer. Any switch may forward
packets upwards to a least common ancestor of any
node pair, or forward the packet downwards if that
is the shortest path to the destination, and any switch
may forward packets downwards one hop when encoun-
tering a fault as long as there is less than radix

2 link
faults. It is equally obvious that R′

m is a routing sub-
function of Rm. The only limitation of R′

m is which up-
ward path may be taken after a U-turn.

The deadlock freedom of R′
m will be proven below,

but we must first determine the number of link faults
for which we can guarantee that every possible U-turn
switch is connected to a fault-free subtree.

Every possible U-turn switch in the network, that is,
all switches except the top stage switches, has radix

2 up-
ward links, each connecting them to a set of subtrees.
The size of this set will depend on at which stage the
individual switch is located. It is easy to see that if
every one of the radix

2 upward links of a switch should
fail there will be a link fault in all of the subtrees to
which the switch is connected. Similarly, if there are
only radix

2 − 1 link faults in the network it is impos-
sible to place a link fault in each of the subtree sets
to which a switch is connected. This is the basis for
Lemma 6.

Lemma 6. Every possible U-turn switch is connected to
a fault-free subtree of the same stage when there are less
than radix

2 link faults in the network.

Proof. Every U-turn switch in the network is connected
to radix

2 subtree sets. To put one fault in every sub-
tree set requires at least radix

2 link faults. One of the
subtree sets will therefore consist of subtrees that are
fault-free at the stage of the U-turn switch.

It is apparent that the U-turns performed in a U-
turn switch will not cause cyclic dependencies if the
upward link of the U-turn is part of a subtree that is
fault-free at the same stage. Furthermore, we know that
with less than radix

2 link faults every U-turn switch will
be connected to at least one subtree that is fault-free.
We will now use this to prove that the routing sub-
function R′

m is has no cycles in its extended channel
dependency graph.

Theorem 2. R′
m is connected and has no cycles in its

extended channel dependency graph with less than radix
2

link faults in the network.



Proof. With less than radix
2 link faults every U-turn

switch is connected to at least one fault-free subtree
(Lemma 6). A packet performing a U-turn in a U-
turn switch at any switch stage will not be part of any
dependency cycle involving U-turn switches at other
stages (Lemma 4), or U-turn switches at the same stage
when forwarded in the fault-free subtree from the U-
turn switch (Lemma 5). Thus, none of the U-turns pos-
sibly performed by a packet on its path from its source
to its destination will create dependency cycles in the
extended channel dependency graph.

Any switch can reach any processor in either the
upward or downward direction. In the upward phase
R′

m follows the same algorithm as Rm and it is there-
fore connected. In the downward phase, with less than
radix

2 link faults any packet encountering a fault at any
stage will be able to reach a U-turn switch. From this
it can reach a fault-free subtree which brings it at least
one stage closer to the destination. The routing algo-
rithm is therefore connected.

Therefore, using Theorem 1, we conclude that Rm

is deadlock free.

4. Performance Evaluation

The fault-tolerant routing algorithm has been eval-
uated through simulations in an event-driven simula-
tor developed in-house at the Simula Research Labo-
ratory, based on j-sim [8]. We have evaluated the ef-
fect of the number of link faults on the throughput
and latency experienced by network traffic with a uni-
form distribution of packet destinations. The network is
run both saturated and unsaturated to show the max-
imum achieved throughput and typical latency respec-
tively. The switch radix is eight. The results are dis-
played in Figures 3(a) and 3(b). We have tested 500
random link fault combinations for every number of
link faults between one and 20. We have also simulated
the network with zero link faults for reference. We have
only included results from the runs that neither dead-
locked nor disconnected the network. The network has
a width of 16 switches and a height of three switch lev-
els not counting processing nodes, a 4-ary 3-tree. The
vertical line in the plots marks the transition from the
guaranteed fault tolerance region which goes from zero
up to and including radix

2 −1 = 3 link faults, to the sta-
tistical region where there is only a probability of tol-
erating faults, from four link faults and upwards. In
this region the probability of deadlock or disconnect-
ing the network will gradually increase as the number
of link faults increases.

As the number of link faults increases, the saturated
throughput shows a steady decrease of about 2.7% per
link fault to begin with, decreasing to about 2% de-
crease per link fault around 20 faults. Similarly, the
saturated latency experienced by the packets increases
to almost double that of zero link faults when there
are 20 link faults in the network. This is in contrast to
the unsaturated throughput which remains stable un-
til we reach five link faults, from where it gradually
starts decreasing with an increasing rate. As we ap-
proach 20 link faults the rate of reduction has increased
to about the same as for the saturated network, indicat-
ing that the remaining paths that are not disabled by
the faults have saturated. The unsaturated latency dis-
plays the same behaviour as the saturated latency, but
it has a much lower starting point.

5. Conclusion

The fat tree is well-suited for interconnecting nodes
in parallel supercomputers and clusters. It supports
high throughput and has a large number of disjoint
paths between any source/destination pair making it
ideal for static fault tolerance. However, as static fault
tolerance has quite a long turnaround time when toler-
ating a single link fault, we have proposed a dynamic
fault tolerance algorithm utilising a simple misrouting
mechanism to tolerate up to and including radix

2 − 1
link faults locally. By relying on adaptive routing we
are able to guarantee deadlock freedom for any link
fault combination for which the fault tolerance algo-
rithm can guarantee a connected network. We do not
rely on the use of any network mechanisms such as vir-
tual channels in order to achieve this. Simulations show
that network throughput only suffers a small degrada-
tion when tolerating up to radix

2 −1 link faults dynam-
ically, and beyond.
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