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Abstract

Fine-Grained Cycle Sharing (FGCS) systems aim at uti-
lizing the large amount of computational resources avail-
able on the Internet. In FGCS, host computers allow guest
jobs to utilize the CPU cycles if the jobs do not signifi-
cantly impact local host users. Such resources are generally
provided voluntarily and their availability fluctuates highly.
Guest jobs may fail unexpectedly, as resource becomes un-
available. We present empirical studies on the detection and
predictability of resource availability in FGCS systems. A
multi-state availability model is derived from a study of re-
source behavior. The model combines generic hardware-
software failures with domain-specific resource behavior in
FGCS. To understand the predictability, we traced resource
availability in a production FGCS system for three months.
We found that the daily patterns of resource availability are
comparable to those in recent history. This observation sug-
gests the feasibility of predicting future resource availabil-
ity, which can be applied for proactive management of guest
jobs.

1 Introduction

Distributed cycle-sharing systems have shown success
through popular projects such as SETI@home [6], which
have attracted a large number of participants, contributing
their home PCs to a scientific effort. These PC owners vol-
untarily share the CPU cycles only if they incur no signif-
icant inconvenience from letting a foreign job (guest pro-
cess) run on their machines. To exploit available idle cycles
under this restriction, fine-grained cycle sharing (FGCS)
systems [14] allow a guest process to run concurrently with
local jobs (host processes) whenever the guest process does
not impact the performance of the latter noticeably. For
guest users, the free compute resources come at the cost
of highly fluctuating availability with the incurred failures

leading to undesirable completion times of guest jobs. The
primary victims of such failures are large compute-bound
guest applications, most of which are batch programs. Typ-
ically, they are either sequential or composed of multiple
related jobs that are submitted as a group and must all com-
plete before the results can be used (e.g., simulations con-
taining several computation steps [1]). Therefore, response
time rather than throughput is the primary performance met-
ric for such compute-bound jobs. The use of this metric
represents an extension to the traditional use of idle CPU
cycles, which had focused on high throughput in an envi-
ronment of fluctuating resources.

In FGCS systems, resource unavailability has multiple
causes and has to be expected frequently. First, as in a nor-
mal multi-process environment, guest and host processes
are running concurrently and competing for compute re-
sources on the same machine. Host processes may be de-
celerated significantly by a guest process. Decreasing the
priority of the guest process can only alleviate the decel-
eration in few situations [14]. To completely remove the
impact on host processes, the guest process must be killed
or migrated off the machine, which represents a failure. In
this paper, we refer to such resource unavailability as UEC
(Unavailability due to Excessive resource Contention). An-
other type of resource unavailability in FGCS is the sudden
leave of a machine — URR, (Unavailability due to Resource
Revocation). URR happens when a machine owner sus-
pends resource contribution without notice, or when arbi-
trary hardware-software failures occur.

To achieve fault tolerance with efficiency for remote pro-
gram execution, proactive approaches have been proposed
in the environment of large-scale clusters [10]. These ap-
proaches explore availability prediction in job scheduling
or runtime management. They achieve significantly im-
proved job response time compared to the methods which
are oblivious to future unavailability [18]. While proac-
tive approaches can also be applied to FGCS systems, they
require successful mechanisms for availability prediction,
which in turn rely on the understanding of the characteris-



tics of resource availability. Unfortunately, little is known
about resource availability in FGCS systems. Although
several previous contributions have measured the distribu-
tion of general machine availability in networked environ-
ment [2, 11], or the temporal structure of CPU availability
in Grids [8], no work has studied availability with regard to
both resource contention and resource revocation in FGCS
systems.

To understand the behavior of resource availability, we
have conducted a set of empirical studies in a production
FGCS system, iShare [12]. Our studies focus on the observ-
ability and predictability of when a resource will become
unavailable. The studies on observability show that UEC
can be detected by observing host resource usage (that is the
resource usage of all the host processes on a machine) and
URR is accompanied by the termination of FGCS services.
Based on these studies, we develop a multi-state availability
model and apply this model to detect resource unavailabil-
ity in our FGCS system. To evaluate the predictability, we
traced resource unavailability in an iShare testbed over a pe-
riod of three months. A key observation made in this trace
analysis is that the daily patterns of resource availability are
comparable to those in the history. This suggests the feasi-
bility to predict resource availability over an arbitrary time
window. The prediction will use the history data for the
corresponding time windows of recent days.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 presents the discussion on
detecting resource unavailability and the empirical studies
on resource contention. The multi-state availability model
is described in Section 4. In Section 5, the studies on pre-
dictability, including trace collection and analysis, are pre-
sented.

2 Related Work

The concept of fine-grained cycle sharing was intro-
duced in [14], where a strict priority scheduling system
was developed and added to the OS kernel to ensure that
host processes always receive priority in utilizing resources.
However, deploying such a system involves an OS upgrade,
which can be unacceptable for resource providers. In our
FGCS system, available OS facilities (e.g., renice) are uti-
lized to limit guest priorities. Resource unavailability hap-
pens if these facilities fail to prevent guest processes from
impacting host processes significantly. In [14], the focus
was on maintaining priority of host processes. By contrast,
our work studies resource availability behavior with the fi-
nal goal of improving completion times of guest jobs via
proactive management.

Emerging platforms that support Grids [5] and global
networked computing [4] motivated the work to provide ac-
curate forecasts of performance characteristics [16] of dis-

tributed compute resources. Our work will complement the
existing performance monitoring and prediction schemes
with the empirical studies on resource availability. These
studies take us a step further towards proactive job manage-
ment in systems that support fine-grained cycle sharing.

There have been several research efforts in measur-
ing and analyzing machine availability in enterprise sys-
tems [11, 2], or large Peer-to-Peer networks [3] (where ma-
chine availability is defined as the machine being reachable
for P2P services). While these results were meaningful for
the considered application domain, they do not show how
to relate machine up-times to actual available resources that
could be exploited by a guest program. By contrast, our
approach integrates machine availability into a multi-state
model, representing different levels of availability of com-
pute resources.

A few other studies have been conducted on percentages
of CPU cycles available for large collections of machines
in Grid systems [17, 8]. The monitored CPU availabil-
ity in [17] was obtained on time-shared systems assuming
equal priorities of concurrent jobs. The authors of [8] stud-
ied both machine and CPU availability in a desktop Grid
environment similar to FGCS. However, they conducted in-
trusive measurements by starting real applications on tested
nodes. By contrast, we develop a model based on which re-
source unavailability, including CPU unavailability, can be
detected in a non-intrusive way. Furthermore, we study the
availability of general compute resources in a host system,
while the studies in [8] solely focused on CPU cycles.

3 Detecting Resource Unavailability

This section presents our studies, based on which we cre-
ate the availability model shown in Section 4. The goal of
these studies is to find a practical and non-intrusive method
to detect resource unavailability, especially unavailability
due to excessive resource contention. Such a detection
method is critical for preventing significant slowdown ex-
perienced by host jobs. The detection would be trivial if we
could measure the slowdown of host jobs directly. However,
direct measuring requires preknowledge of contention-free
performance of host jobs, which is not practical. Therefore,
we need to use observable parameters as indicators for the
slowdown. By observable parameters, we mean parameters
that can be obtained without special privileges on the host
machine. The overall detection method we use is to deter-
mine the thresholds for observed CPU and memory utiliza-
tion of host jobs, which constitute noticeable slowdown of
host processes. The intuition is that resource contention is
aggravated when host jobs need more resources; unavail-
ability will happen when host resource utilization exceeds
a threshold. We use offline experiments to determine the
values of these thresholds on specific systems.



In the rest of this section, we first discuss the observabil-
ity of both types of unavailability, UEC (unavailability due
to excessive resource contention) and URR (unavailability
due to resource revocation). Then we present the details of
our offline experiments on resource contention. The goal
of these experiments is to determine the thresholds of host
resource utilization that constitute UEC.

3.1 Observability of Resource Unavail-
ability

URR happens when machines are removed from the
FGCS system by their owners, or fail due to hardware-
software faults without externally visible prior symptoms.
System-internal symptoms, such as memory leakage and
disk block fragmentation [15], have been considered to de-
tect failures. However, in FGCS systems, such information
is often inaccessible to external uses. Therefore, in the view
of guest applications, machines may suddenly become of-
fline and the resulting URR can only be detected in that
FGCS services, such as the service for job submission, are
terminated. This fact supports a two-state model for URR: a
machine is either available or unavailable; there are no other
observable states in-between.

UEC happens when host processes incur noticeable
slowdown due to resource contention from guest processes.
Detecting UEC requires the quantification of noticeable
slowdown of host processes. Our FGCS system uses the
observed CPU and memory utilization of host jobs for the
quantification. If the host resource utilization reaches cer-
tain thresholds, the system claims that UEC happens. The
exact thresholds for what constitutes UEC may vary on sys-
tems with different OS scheduling and resource manage-
ment methods. We use offline experiments to obtain these
thresholds on specific systems. The reason to use empirical
studies instead of analytical models is that developing such
models is very difficult, if not impossible, considering the
complexities in OS resource management. The experimen-
tal approaches and results are discussed in the next section.

3.2 Studies on Resource Contention

In our experiments, we ran guest and host jobs together.
The CPU and memory usages of each job, when it is run-
ning alone, are known beforehand. We measured the re-
duction rate of host CPU usage (total CPU usage of all
the host processes running on a machine) due to the con-
tention from a guest job running concurrently. The “notice-
able slowdown” of host jobs is represented by the reduc-
tion rate going above an application-specific threshold (we
chose a threshold of 5%). We are interested in finding out
the exact values of host resource usage when the reduction
rate exceeds 5%, that is when UEC happens.

To make sure that the experimental results are not biased
by arbitrary workloads, we use representative guest appli-
cations and a broad range of host applications. In FGCS
systems, guest applications are normally CPU-bound batch
programs, which are sequential or composed of multiple
tasks with little or no inter-task communication. Such ap-
plications arise in many scientific and engineering domains.
Common examples include Monte-Carlo simulations and
seismic analysis tools [1]. Because these applications use
files solely for input and output, file I/O operations usually
happen at the start and the end of a guest job; file transfers
can be scheduled accordingly to avoid peak I/O activities
on host systems. Some of the guest applications also have
large memory footprints. Therefore, CPU and memory are
the major resources contended by guest and host processes.
Host applications, on the other hand, can be computational
tasks, OS command-line utilities, etc. In our experiments,
they are represented by processes with various CPU and
memory usages.

We conducted a set of experiments by running host pro-
cesses with various resource usages together as an aggre-
gated host group. To avoid any adverse contention among
multiple guest processes, no more than one guest process is
allowed to run concurrently on the same machine. The pri-
ority of a running guest process is minimized (using renice)
whenever it causes noticeable slowdown on the host pro-
cesses. If this does not alleviate the resource contention, the
reniced guest process is suspended. The guest process re-
sumes if the contention diminishes after a certain duration
(1 minute in our experiments), otherwise it is terminated.

3.2.1 Experiments on CPU Contention

To study the contention on CPU cycles, we created a set
of synthetic programs. To isolate the impact of memory
contention, all the programs have very small resident sets.
The host programs have isolated CPU usage (CPU usage
of a program when it runs alone) ranging from 10% to
100%. The wall clock time (gettimeofday) and CPU time
(getrusage) measurements were inserted in the synthetic
programs to calculate their CPU usages and to adjust the
sleep time to achieve the given isolated CPU usages. The
guest process is a completely CPU-bound program. In the
experiments, these programs were run on a 1.7 GHz Redhat
Linux machine.

Figure 1 presents the reduction rate of host CPU usage
(the total CPU usage of all the host processes in a host
group), when a guest process (G) is running together with
a host group (H). Figure 1 (b) shows the results when G’s
priority is set to 19 (lowest) while H’s priority is 0. LH is
the CPU usage of a host group without interference of guest
processes. To create a host group with a given LH that con-
sists of M (M > 1) processes, we randomly chose M host



0%

10%

20%

30%

40%

50%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Host CPU usage in absence of guest process (L H )

R
ed

uc
tio

n 
ra

te
 o

f 
ho

st
 C

P
U

 u
sa

ge
 

w
he

n 
ru

nn
in

g 
to

ge
th

er
 w

ith
 a

 g
ue

st
 

pr
oc

es
s

1 host process
2 host processes
3 host processes
4 host processes
5 host processes

 
(a) All processes have the same priority. Th1 indicates the lowest value of 
LH, above which host jobs can be slowed down by larger than 5%. 
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(b) Guest process takes the lowest priority. Th2 indicates the lowest value 
of LH , above which host jobs can be slowed down by larger than 5% even 
with minimum guest priority. 

Th2 

  5% 

 5% 

Th1 

Figure 1. Host CPU utilization under CPU
contention. The x-axis (LH ) is the CPU us-
age of a group of host processes when the
group is running alone. The y-axis shows the
reduction rate of the host group’s CPU usage
(compared to LH ) when a guest process is
running together.

programs with different isolated CPU usages and ran them
together without the guest process. If the total CPU usage
of the M processes was equal to LH , they were chosen as
a combination to generate the host group. For each tested
host group, multiple combinations of host processes were
used to measure the reduction rate of host CPU usage. The
average of the measurements is plotted in Figure 1. This ap-
proach considers the fact that the same host workload can
come from various individual host processes.

We tested host groups with LH ranging from 10% to
100%, when M was set to 1 to 5, respectively. There are
two reasons why we chose M to be no larger than 5. First,
the total number of active processes started by a typical host
user is usually in the range of tens. Second, as shown in Fig-
ure 1, the curves for different M converge. That is, for the
same LH , the reduction rate of host CPU usage decreases
as M increases. Intuitively, in a time-sharing system, the

chances that a guest process can steal CPU cycles decrease
when there are more host processes running. When the size
is beyond 5, the reduction saturates and therefore experi-
ments do not need to be conducted for arbitrary sizes of the
host group.

The results in Figure 1 show the existence of two thresh-
olds, Th1 and Th2, for LH , that can be used as indicators
of noticeable slowdown of host processes. Th1 and Th2

are picked according to the lowest values of LH among the
different host group sizes, where the guest process needs to
be set to a low priority or terminated, respectively, to keep
the slowdown below 5%.

3.2.2 Experiments on CPU Contention Using Different
Methods to Control Guest Priority

To verify that the existence of the two thresholds is not the
simple result of our method of controlling guest priorities,
we tested resource contention using different ways to adjust
guest priorities, as used in practical FGCS systems. The
two alternatives are, gradually decreasing the guest prior-
ity from 0 to 19 under heavy host workload (LH > Th1),
or set the guest priority to its lowest value whenever the
guest process starts [4]. (The extreme case of terminating a
guest application whenever a host application starts makes
it a coarse-grained cycle sharing system [6].) In the first
alternative, fine-grained values between Th1 and Th2 are
needed to indicate different guest priorities. Relating to the
second alternative, only Th2 is needed. We conducted a
set of experiments to test if these two alternatives deliver a
better model of CPU availability than using the two thresh-
olds. In these experiments, we ran the same set of synthetic
programs on the 1.7 GHz Linux machine.

In the experiment for testing the first alternative, a host
process was run concurrently with a guest process of dif-
ferent priorities. Figure 2 presents the degradation of host
CPU usage due to resource contention. When the isolated
host CPU usage (LH ) is between 20% and 50%, impact of
different guest priorities is trivial. This indicates that the
guest process does not consume significantly more CPU by
taking higher priorities than 19. When LH is larger than
50%, the guest priority must be set to 19 (lowest) to ensure
acceptable degradation of host CPU usage. Therefore, grad-
ually decreasing guest priority does not achieve additional
benefit in terms of CPU availability for guest processes; it
introduces redundancy to managing guest jobs at runtime.

The experiment for the second alternative was conducted
via running a set of CPU-intensive guest processes (isolated
CPU usage ≥ 70%) with priority 0 and 19 under light host
workload (LH ≤ 20%) respectively. The CPU usage of the
guest process was measured and plotted in Figure 3. The
differences between the two sets of bars in this figure show
that, the guest CPU usage with priority 0 is about 2% higher
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Figure 2. Reduction rate of host CPU usage
due to the contention from a guest process
with different priorities. This figure implies
that gradually decreasing guest priority does
not make the guest process consume more
CPU cycles.

on average than that with priority 19. In FGCS systems,
the 2% more CPU usage can make a significant difference
in job completion time because some guest jobs take hours
to finish. Therefore, the approach of always enforcing the
lowest guest process priority is too conservative.

In all the above experiments, we used randomly-
generated host groups without relying on any specifics in
OS scheduling. The existence of the two thresholds is there-
fore viewed as a general, practical property of Linux sys-
tems. This also holds for Unix systems, as confirmed by
our experiments on both CPU and memory contention on a
Unix machine. The next section presents these experiments.

3.2.3 Experiments on CPU and Memory Contention

So far, we have considered CPU contention, only. To test
the more complicated contention on both CPU and mem-
ory, we experimented with a set of larger applications. For
guest processes, we chose four applications from the SPEC
CPU2000 benchmark suite [7]: apsi, galgel, bzip2 and mcf,
which are all CPU-bound. Their working set sizes range
from 29 MB to 193 MB. To simulate the behaviors of ac-
tual interactive host users on text-based terminals, we used
the Musbus interactive Unix benchmark suite [9] to cre-
ate various host workloads. The created workloads con-
tain host processes for simulating interactive editing, Unix
command-line utilities, and compiler invocations. We var-
ied the size of the file being edited and compiled by the
“host users” to create host processes with different usages
of memory and CPU. Table 1 lists the resource usages of
the four guest applications and the six host workloads (H1

to H6) created by Musbus.
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Figure 3. CPU usage of the guest process
with equal and lowest priority. The x-axis
is the isolated CPU usage for the coexist-
ing host and guest processes. For exam-
ple, “0.2+1” means that the isolated host and
guest CPU usage is 0.2 and 1.0, respectively.
The figure shows that always taking the low-
est guest priority does not achieve maximum
guest CPU usage.

We ran a guest process concurrently with each host
workload on a 300 MHz Solaris Unix machine with 384
MB physical memory. For each set of processes, we mea-
sured the reduction of the host CPU usage caused by the
guest process, when the guest process’s priority was set to
0 and 19 respectively. The results are shown in Figure 4.

In Figure 4, memory thrashing happens when running
H2 or H5 together with apsi, bzip2, or mcf under different
priorities. In all these cases, the total working set size of
the guest and host processes (including kernel memory us-
age of about 100 MB) exceeds the physical memory size of
the machine. Changing CPU priority does little to prevent
thrashing when the processes desire more memory than the
system provides. Therefore, the host processes make little
progress regardless of the guest process priorities. The fact
that memory thrashing happens for both H2 and H5 indi-
cates that the occurrences of UEC with memory contention
are orthogonal to host CPU usage. On the other hand, when
there is sufficient memory in the system, the occurrences of
CPU unavailability solely depend on the host CPU usage.
For example, in Figure 4, slowdown of the host processes
can be ignored for H1 and H3, while the guest process has
to be reniced under H4 and terminated under H6. In these
cases, the two thresholds, Th1 and Th2, can still be used to
evaluate CPU contention. From the results in Figure 4, Th1

is around 20% and Th2 is between 22% (CPU usage of H4)
and 57% (CPU usage of H5) for Solaris Unix systems.

In conclusion, memory contention and CPU contention
can be isolated in detecting UEC. We do not need to con-
sider the case of both resources under contention, since the
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                     (a) Guest process with priority 0                       (b) Guest process with priority 19 

* ** * ** * ** * **

Figure 4. Slowdown of host processes under resource contention. Bars with * at the top are for the
host processes dragged down due to memory thrashing.

Table 1. Resource usage of tested applica-
tions.

Workload CPU usage Resident size Virtual size
apsi 98% 193 MB 205 MB

galgel 99% 29 MB 155 MB
bzip2 97% 180 MB 182 MB
mcf 99% 96 MB 96 MB

H1 8.6% 71 MB 122 MB
H2 9.2% 213 MB 247 MB
H3 17.2% 53 MB 151 MB
H4 21.9% 68 MB 122 MB
H5 57.0% 210 MB 236 MB
H6 66.2% 84 MB 113 MB

additional effect due to one resource, when contention for
another is already underway, is negligible.

4 Multi-State Availability Model

The presented results for resource contention in Sec-
tion 3.2 show the feasibility of two thresholds, Th1 and
Th2, for the measured host CPU load (LH ), that can be
used to quantify the noticeable slowdown of host processes,
thus the occurrences of UEC. In our FGCS testbed, con-
sisting of Linux systems, Th1 and Th2 are 20% and 60%
respectively. Based on the two thresholds, a 3-state model
for CPU contention can be created, where the guest pro-
cess is running at default priority (S1), is running at lowest
priority (S2), or is terminated (S3). Due to the isolation be-
tween CPU contention and memory contention, the 3-state
model can be extended by adding a new unavailability state
(S4) for memory thrashing. These states are combined with
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Figure 5. Multi-state system for resource
availability in FGCS.

URR (S5) to give a five-state model, as presented in Fig-
ure 5. Note that, the three states, S3, S4, and S5, are all
unrecoverable failure states for guest processes. Even if the
CPU or memory usage of host processes drops significantly
or the host is reintegrated into the system, the guest process
is already killed or migrated off and no state is left on the
host.

The formal definition of the five states is as follows:

• S1: When the host CPU load is light (LH < Th1), the
resource contention due to a guest process can be ig-
nored. S1 also contains the cases when LH transiently
rises above Th2 and the guest process is suspended;

• S2: When the host CPU load is heavy (Th1 ≤ LH ≤
Th2), the guest process’s priority must be minimized
to keep the impact on host processes small (slowdown
≤ 5%). S2 also contains the cases when LH tran-
siently rises above Th2 and the guest process is sus-
pended;

• S3: When the host CPU load is steadily higher than
Th2, any guest process (with default or lowest priority)
must be terminated to relieve the resource contention;



• S4: When there is no enough free memory to fit the
working set of a guest process, the guest process must
be immediately terminated to avoid memory thrashing;

• S5: When the machine is revoked by its owner or in-
curs a system failure, URR happens whereby resources
immediately become offline.

In the above definition, S1 and S2 also represent the sce-
narios that LH gets higher than Th2 transiently (less than
1 minute in our experiments) and the guest process is sus-
pended. We do not introduce a new state for a temporarily
suspended guest process, because we find it very common
that the host CPU load which exceeds Th2 will drop down
shortly after several seconds. The transiently high CPU load
may be caused by a host user starting remote X applications
or by some system processes.

5 Predictability Study: Trace Collection and
Analysis

Based on the multi-state model presented in Section 4,
we developed an unavailability detection module and
traced resource availability in an Internet-sharing system,
iShare [12], which supports FGCS. The goal is to derive the
predictability of resource availability.

In iShare, resource publication and discovery [13] are
enabled by a Peer-to-Peer network. Cycle sharing hap-
pens when resource consumers submit guest jobs to pub-
lished machines. On each published machine, there is a re-
source monitor measuring CPU and memory usage of host
processes periodically. To achieve non-intrusiveness to the
host system, the monitor applies lightweight system utili-
ties, such as vmstat and prstat. The monitor is started au-
tomatically when the resource provider turns on the iShare
software and its termination indicates resource revocation.

We installed and started a resource monitor on each ma-
chine in an iShare testbed, which contains 20 1.7 GHz Red-
hat Linux machines in a general purpose computer labora-
tory for student use at Purdue University. The local users on
these machines are students from different disciplines. They
used the machines for various tasks, e.g., checking emails,
editing files, and compiling and testing class projects, which
created highly diverse host workloads. On a tested machine,
processes launched via iShare are guest processes, and all
the other processes are viewed as host processes. An oc-
currence of resource unavailability leads to the termination
of the running guest process. Resource revocation happens
when the user with access to a machine’s console does not
wish to share the machine with remote users, and simply
reboots the machine. Therefore, resource behavior on these
machines is consistent to the availability model in Figure 5.

The availability of each tested machine was traced for
3 months from August to November in 2005, resulting in

Table 2. Resource unavailability due to differ-
ent causes.

UEC
Categories Total CPU Memory URR

amount contention contention
Frequency 405–453 283–356 83–121 3–12
Percentage 100% 69–79% 19–30% 0–3%

roughly 1800 machine-days of traces. The data contains the
start and end time of each occurrence of resource unavail-
ability, the corresponding failure state (S3, S4, or S5), and
the available CPU and memory for guest jobs. In the fol-
lowing, we present our results of trace analysis.

5.1 Resource Unavailability with Differ-
ent Causes

Table 2 lists the statistics on resource unavailability due
to different causes. In Table 2, frequency is the total amount
of unavailability during the 3 months on an individual ma-
chine, and percentage shows the relative values. The two
parameters were measured on each machine in the testbed,
and the ranges on all the tested machines are given in Ta-
ble 2.

Table 2 shows that high host CPU load is the main cause
of resource unavailability in our FGCS testbed. Because the
physical memory size is larger than 1 GB on all the tested
machines, memory thrashing happens less frequently. In
general, UEC happens much more often than URR in FGCS
systems. As discussed earlier, URR has two sources: re-
source providers’ intentional leave and software-hardware
failures. In our testbed, the first source corresponds to ma-
chine reboots, which appear in our traces as URR with in-
tervals shorter than one minute. Software-hardware failures
are represented by URR lasting longer than one minute. By
examining the interval lengths for all the recorded URR, we
found that around 90% of URR originated from machine
reboots. This is not surprising because, on our tested ma-
chines, a local user may experience slowdown due to re-
mote users other than iShare applications and then reboot
the machine. Such machine reboots would be very rare on
hosts used by only one local user, such as home PCs.

In conclusion, UEC constitutes the major part of re-
source unavailability in an FGCS system. Regarding our
goal of studying the predictability, this means that the pre-
dictability is tightly correlated with the pattern of host work-
loads, especially host CPU load. While previous studies
have observed the possibility to coarsely estimate the ag-
gregated CPU availability of desktop machines [8, 4], it is
difficult to relate the information directly to the predictabil-
ity of resource availability. In particular, the understand-
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Figure 6. Cumulative distribution of lengths
of resource availability intervals.

ing of temporal characteristics of availability intervals (that
is the statistical lengths of time intervals throughout which
a resource will be available) and the frequency of unavail-
ability occurrences is key to obtaining direct measures of
the predictability. We develop such characterizations in the
next two sections.

5.2 Distribution of Lengths of Resource
Availability Intervals

Resource availability intervals are periods during which
a guest application may utilize host resources or get sus-
pended, but does not fail. Facilities to predict such interval
lengths provide the knowledge of how much computation
power an FGCS system can deliver without interruption.
Figure 6 plots the cumulative distribution of the duration of
resource availability intervals, both for weekdays and week-
ends. These results were calculated from the traces of all the
20 machines during the 3 months.

From Figure 6, we see that intervals are shorter during
weekdays, with an average of close to 3 hours, versus above
5 hours during weekends. Further, about 60% of intervals
are between 2 and 4 hours on weekdays, and between 4 and
6 hours on weekends. Such characteristics make it possible
to coarsely estimate the available computational power that
a guest application can expect from our FGCS system. We
also note that both curves are relatively flat for intervals be-
tween 5 minutes and 2 hours, denoting that host resources
rarely exhibit availability in that range. The small intervals
that are shorter than 5 minutes constitute about 5% among
all measured intervals. We found that they are mainly small
gaps resulting from variations of high host workloads. This
implies that the system should wait for about 5 minutes be-
fore harvesting a machine recently released from heavy host
workloads.
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Figure 7. Occurrences of unavailability dur-
ing each hour in a day. The value at hour i
means the amount of unavailability occurred
between (i − 1,i).

5.3 Daily Pattern of Failure Occurrences

To understand the more fine-grained behavior of re-
source availability, we counted the number of unavailability
occurrences during each hour of a day on all the machines in
the testbed. Figure 7 plots the distribution of unavailability
occurrences during a weekday and a weekend, respectively.
The value for hour i means the amount of unavailability oc-
curred in the time interval between hour i − 1 and i. The
unavailability spanning multiple hours was counted for each
of the one-hour intervals. Both the average values and the
ranges over all the weekdays and weekends in the period of
3 months are depicted.

The results in Figure 7 show that the frequency of un-
availability occurrences per hour is tightly correlated with
the host workloads during the corresponding hour. This
confirms our observation in Section 5.1. For example, un-
availability happens more frequently during the day time
after 10 AM with more students using the machines, and
for the same time window, the amount of unavailability is
larger on a weekday than on a weekend. One exception is
the extremely high number (20 on both weekdays and week-
ends) of unavailability occurrences between 4 and 5 AM,
when very few students are logging on the machines. We
found that this is caused by the high CPU load of a system
process updatedb (also viewed as host processes), which
updates file name databases used by GNU locate to search
for files in a system. The process is started at 4 AM every



day and lasts for about 30 minutes. Therefore, the amount
of unavailability happened between 4 and 5 AM is equal to
the total number of machines in the testbed (20). This “ex-
ception” also shows the correlation between unavailability
occurrences and host workloads.

The most important observation obtained from Figure 7
is that, the deviations of unavailability frequency over the
same time window across different weekdays (weekends)
are small. This means that the daily patterns of resource
availability are comparable to those in the recent history.
Therefore, it is feasible to predict resource availability over
an arbitrary future time window, if the prediction uses his-
tory data for the corresponding time windows from previous
weekdays or weekends. In FGCS systems, the time window
can be derived from the estimated execution time of a guest
job. An aggressive prediction algorithm would accommo-
date the small deviations of resource availability among re-
lated time windows. One approach is to use statistics on
history trace to alleviate the effects of “irregular” data.

6 Conclusion and Future Work

In this paper, we studied the detection and predictabil-
ity of resource availability in fine-grained cycle sharing
(FGCS) systems. The ultimate goal of this work is to de-
velop availability prediction algorithms used for proactive
job management. Based on the experiments of resource
contention among guest and host jobs, a multi-state avail-
ability model is derived. This model enables the detec-
tion of unavailability by observing resource usage of host
processes and liveness of FGCS services in a non-intrusive
way. To test the predictability, we traced resource availabil-
ity in a production FGCS testbed for three months. Analysis
on the trace data shows that, while lengths of resource avail-
ability intervals can be coarsely estimated, the frequencies
of unavailability occurrences are comparable for the same
time windows across different days.

In the future work, we plan to collect trace on testbeds
with different patterns of host workloads, for example a
testbed containing enterprise desktop resources. We expect
that data collected on the proposed testbeds will present
similar predictability, because the testbed used in this work
already provides highly diverse workloads. Another future
effort is to develop availability prediction algorithms and
evaluate them on various testbeds.
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