
PASS: PEER-AWARE SILENCE SUPPRESSION FOR INTERNET VOICE CONFERENCES
Xun Xu †, Li-wei He‡, Dinei Florêncio‡, and Yong Rui‡

† Beckman Institute,

University of Illinois at Urbana-Champaign,

Urbana, IL 61801

xunxu@ifp.uiuc.edu

‡ Microsoft Research,

One Microsoft Way,

Redmond, WA 98052-6399

{lhe, dinei, yongrui}@microsoft.com

ABSTRACT

A novel tandem-free solution for multiparty VoIP conferences

called PASS (Peer-Aware Silence Suppression) is presented.

Similar to traditional tandem-free solutions, PASS introduces a

limit on the number of concurrent speakers in a conference. But in

contrast to traditional solutions, PASS silence suppression and

speaker selection are completely distributed, running on each

client. No speaker selection is performed at the bridge at all. This

configuration leads to better scalability, lower bandwidth

occupation and jitter buffer delay, and higher compatibility with a

wide variety of network topologies. The key component of PASS,

distributed silence suppression and speaker selection, is realized

through a robust approach proposed in this paper. Based on a voice

activity measure derived using machine learning techniques, this

approach is able to reliably suppress silence in complex

environments, and perform accurate and transparent speaker

selection as well.

1. INTRODUCTION

Voice over IP (VoIP) is becoming mainstream. This can be

partially attributed to the proliferation of broadband connections,

and the availability of low-cost hardware and software. But

equally important is the fact that most technological challenges

have been addressed. In particular, solutions to minimize delay,

delay jitter, and packet loss have all been extensively researched in

the last several years. As these technologies go from research to

actual products, research effort must concentrate on the next needs

of VoIP technology. One of such needs is high-quality multiparty

voice conference. When migrating to VoIP, a central bridge-based

architecture mimicking PSTN conferencing system seems to be an

obvious design choice. However, various new problems arise

when this design is applied to VoIP: 1) A best-effort packet

network such as the Internet introduces variable delays and packet

losses into the transport process, requiring the bridge to absorb

variable delay by a jitter buffer and include some loss concealment

mechanisms. 2) The central bridge has to decode the clients’ voice

packets, sum them, compress, and send them back to each client.

Because each client requires his own voice to be subtracted from

the sum, the packet compression usually has to be done separately

for each individual client. 3) Since the voice packets are encoded

twice, a problem known as tandem encoding [6] arises, and the

voice quality is reduced.

Because of problems 1) and 2), the CPU, memory and

bandwidth load on the bridge increase linearly to the number of

clients it is connected to. In order to reduce these costs, silence

suppression is often used on the clients. By sending out packets

only when actual speech is detected from the microphone, the

bridge only needs to receive and mix those packets that contain

actual voice. Thus the cost on the bridge is reduced substantially.

In practice, however, the effective savings from silence

suppression depends highly on external factors such as microphone

quality, its position relative to the user’s mouth, the gain of the

sound card, the level and type of background noise. Since many of

those factors are not controllable by the bridge, the bridge is forced

to reserve a significant amount of resources to deal with the

fluctuation in the number of incoming packets.

Our proposed solution, namely PASS (Peer-Aware Silence

Suppression), tries to reduce the amount of packet fluctuation by

restricting the number of concurrent speakers to be less than

(including) a pre-set number (e.g. 3). This solution is based on the

observation that in a natural conservation, it is rare that more than

3 people speak at the same time. And even when that happens, it

is not likely that all of them can be understood clearly -- so it is

less important to transmit all of them.

There have been several published solutions in which the

bridge runs a speaker selection algorithm [2][6]. Our solution has a

major difference from those earlier works: the enforcement of such

restriction in our solution is distributed. We propose an improved

silence suppression algorithm to be run on each client. Unlike the

traditional silence suppression, a packet not only has to pass the

client's own speech/silence test, the test is also dependent on the

level of voice activity of the packets that the client is currently

receiving from its peers. Conceptually similar to the Ethernet

protocol, when a client does decide to send the packets, its packets

can suppress the clients with lower voice activity level from

sending their packets if the conference already has more than a

pre-set number of speakers.

The distributed architecture of our solution has a number of

benefits comparing a bridge-based one: 1) The client sends less

packets so bandwidth utilization is more efficient on both the client

and the bridge. 2) It offloads some CPU processing from the

bridge. 3) Since the client knows the number of concurrent

speakers, it can encode the packets at a different bit rate so the

total bandwidth from all those speakers is fixed. Accomplishing

this using a bridge-based algorithm will require a scalable audio

codec. 4) Most importantly, a distributed algorithm can be applied

to a variety of network topologies (such as full mesh, bridge-based,

or a hybrid of the two) thus allowing the benefits of speaker

selections to be applied to more voice conferencing scenarios.

The remainder of this paper is organized as follows. In

Section 2 we will give a brief overview of some of the existing

works and compare them against our approach. Section 3 describes

the basic overview of how the system works. In Section 4 we

discuss the voice activity measure and ranking algorithms.

Concluding remarks are given in Section 5.

2. RELATED WORKS

As we mentioned, the traditional architecture for VoIP multiparty

conference comprising a mixing bridge has quite a few drawbacks,

such as the tandem encoding, excess jitter buffer delay, as well as

the bridge’s heavy demand on the bandwidth and computing

power. One solution avoiding these problems is the full-mesh

architecture [3], where no bridge (server) exists, and all clients

directly communicate among themselves, sending/receiving

packets to/from each other. In this architecture, no tandem

encoding is involved since every audio packet only goes through

21491424403677/06/$20.00 ©2006 IEEE ICME 2006

only one encoding-decoding cycle. Jitter buffer delay is also

reduced. The major drawback of full-mesh architecture is its high

bandwidth consumption because every client is consistently

sending/receiving audio packets to/from all the peers. The

scalability of this architecture is rather poor because as the number

of parties, say N, increases, the whole network will get jammed

quickly since there are N(N-1) streams flowing across the network

at anytime. The computing demand for the clients is another

potential problem, since each of them needs to decode and mix

signals coming from N-1 peers. Overall, full-mesh is a simple

topology that can provide high quality audio for conferencing

among a small number of clients (e.g. <5).

A relatively recent proposal to address tandem encoding

problem is Tandem Free Operation (TFO) [6]. Unlike a traditional

central bridge, the TFO bridge does not mix the packets into a

single channel. In order to limit the bandwidth, it forwards packets

from at most M channels (e.g. 2 or 3, usually M<<N) at any

moment, assuming there are at most M concurrent speakers - note

that this is a reasonable assumption for conferences in real life, and

is also validated by experiments in [6]. In TFO, each client sends

some auxiliary bits along with each voice packet. When each

voice packet arrives at the bridge, a speaker selection algorithm is

run at the bridge to decide if it is going to forward to the other

clients or is simply dropped. TFO can be thought of as a bridge-

based silence suppression, where channels not selected as the top

M channels are treated as if they were in silence. By using this

technique, the upper bound of incoming bandwidth to each client

is M times of a single channel. It is possible to limit the bandwidth

further if a scalable audio codec is used and the bridge can do

some bit chopping.

However, in the TFO architecture the bandwidth utilization is

still not optimized, since all the clients are consistently sending

audio packets to the bridge, whereas most of these packets are

simply dropped by the bridge through the speaker selection

procedure. In other words, these “useless” packets are sent out

anyway, resulting in the unnecessary bandwidth occupation in the

bridge’s downloading channel and the uploading channel of each

client as well.

3. SYSTEM OVERVIEW

Our PASS system has a decentralized architecture, the idea

distinguishing it from conventional full mesh architecture is that

here the clients are more intelligent and able to decide whether to

send out packets based on the states of both itself and its peers.

Similar to TFO, in PASS the number of concurrent speakers is

limited to be M (again, usually M<<N), which implies the

existence of a speaker selection mechanism. However in PASS,

speaker selection is done separately by each client, unlike TFO

where the bridge performs the task.

In the PASS system, each audio packet contains a Voice

Activity Score (VAS), which quantifies the level of voice activity

(not simply the volume, as we shall see in Section 4) of the audio

frame encoded in this packet. Each time a client captures an audio

frame from the microphone, it computes the VAS. Subsequently,

silence suppression is performed for current audio frame by

comparing its VAS with a threshold. If the VAS is below the

threshold, the audio frame is considered as silence and discarded

immediately. Otherwise, the client further compares its own VAS

with those of its peers, which it obtained from the incoming

packets. If the local client finds itself ranked among the topmost M

clients, it encodes the audio frame and sends out the packet (with

the VAS embedded in) towards all the other clients. Otherwise, it

knows at once that it doesn’t have the chance to be heard, thus

discarding the audio frame.

The computational load to perform above silence suppression

and speaker selection algorithm is quite low. The only relatively

computation-intensive routine is the calculation of VAS. However,

notice that each client only needs to calculate its own VAS and

those of the peers can be obtained through partial decoding of the

incoming packets. Of course, in order to replay the audio signals of

the peers, the local client also needs to decode the incoming

packets and mix the signals. But recall that since the number of

concurrent speakers is bounded by M, decoding and mixing only

need to be done for at most M peers. In our experience, on a

Pentium 4 3.2G Hz desktop PC, the entire client consumes only

about 3% of its CPU time.

It can be seen that PASS generalizes the silence suppression

mechanism in full mesh. Now, each client decides whether to

suppress its packets not only based on its own voice activity, but

also on the voice activities of its peers, hence the name Peer-

Aware Silence Suppression. The PASS architecture is also similar

to TFO in that both systems try to limit the number of concurrent

speakers through some speaker selection procedure. The difference

is obvious, as in PASS this is done separately by the clients,

therefore the computing and bandwidth load on the TFO bridge is

now completely distributed to each client. In this way, the PASS

architecture absorbs the merits of both full mesh and TFO,

rendering a VoIP conferencing system with better scalability,

lower bandwidth occupation and jitter buffer delay.

4. VOICE ACTIVITY SCORE AND ITS RANKING

The core of PASS lies in how to rank the speakers’ voice activities

thus only allowing the most deserving ones to send their packets.

In practice, a good algorithm should possess these merits:

Accuracy: The voice activity should be correctly identified,

and silence should be effectively suppressed.

Robustness: Accuracy should be achieved under complex

circumstances. For example, users may be using microphones

of different quality, meanwhile the environment around them

may contain various background noises of different levels.

Transparency: The users should have a natural conferencing

experience. This involves several aspects. First, speaker

selection should be fair to all the conferees: different users

may have different volume level (due to the user’s own voice

property, the microphone’s distance to the user’s mouth, or

the gain of the sound card), but the one with lower volume

level shouldn’t have less chance to be selected when

speaking. Secondly, some important phenomena that occur in

a face-to-face meeting, such as interruption by raising voice,

should be allowed. On the other hand, spurious speaker

selection, such as quick switching back and forth, should be

avoided.

It can be seen in Section 3 that the key of the speaker selection

algorithm in PASS is how to compute VAS and how to rank the

clients. We are going to show how our speaker selection algorithm

tries to satisfy above requirements.

4.1. The Calculation of VAS

In order to satisfy the requirements for a good speaker selection

algorithm, the VAS should hold these properties:

2150

a) Effectively discriminating voice and silence. We would like

to point out that in practice, the definition of silence is in a

broad sense, because there are all kinds of background noises

captured by the microphone even when the conferee is not

speaking. In our experience, an especially interesting type of

noise is the breathing of the user if the microphone is close to

his/her mouth. The VAS’s calculated for a voice frame and a

silence (and/or noise) frame should differ as much as

possible, so that silence (in broad sense) can be effectively

suppressed.

b) Insensitivity to the volume level. The user with lower volume

wouldn’t be treated unfairly, i.e. receive lower VAS.

c) A sharp volume increase results in higher VAS in short term,

allowing a natural way of interruption by raising one’s voice.

d) Temporally smooth. Smooth VAS is not only favored for

accurate silence suppression and leads to less spurious

speaker switching. More importantly, because each client can

only compare its current VAS with the delayed version (due

to network transmission) of the peers’ VAS’s, smooth VAS

results in less decision discrepancy among clients.

4.1.1. Feature-based VAS (FVAS)

The most natural choice for the quantity measuring the voice

activity of an audio frame is its energy. Since frame energy is easy

to calculate, it is widely used for silence suppression [5].

Quantifying voice activity with frame energy involves the

assumption that background noises have much lower energy level

compared to voice. However in our experience, this assumption is

not valid. As we mentioned, a user may use a cheap microphone

which has low SNR and captures a lot of environmental noises.

Furthermore, some noises, e.g. the user’s breathing, have high

energy level per se. Therefore, many noises cannot be well

discriminated from true voice if only frame energy is considered.

Instead, we propose a pattern classification based method to

calculate a quantity which is able to identify voice frames robustly,

even in the existence of various noises with high energy level.

We model silence suppression as a standard two class

classification problem. For each audio frame, the MFCC (Mel-

Frequency Cepstral Coefficients) [4] and their 1st and 2nd order

temporal differences are concatenated, forming a D=39 dimension

feature vector. The task is to design a classifier that decides

whether an audio frame belongs to voice or noise. To train the

classifier, we collected audio signals recorded in meeting rooms

and offices, and labeled each audio frame as “voice” or “noise”.

The first step is to seek in the original D-dimensional feature

space a lower dimensional subspace, in which the two classes can

be well discriminated. By visualizing the training data, it is found

that in the feature space the noise samples are surrounded by voice

samples and are much more concentrated than the latter. This

suggests that silence suppression can be modeled as a “target

detection problem” where the target class “noise” should be

discriminated from the clutter class “voice”. For this type of

problem, traditional discriminative method such as Fisher Linear

Discriminant is not suitable. Instead, an effective method for

seeking a discriminative subspace proposed in [1] is employed.

The discriminative projection vector w* is obtained by solving:

argmin
T

N

TT

N V N V N V
w

w R w
w

w R R m m m m w

,

where (mN , RN) and (mV , RV) are the mean-covariance pairs of the

noise class and voice class respectively, which are calculated from

the training data. This optimization problem can be easily solved

through generalized eigenvalue decomposition. It should be

pointed out that in [1] just a 1D subspace is sought, by picking the

generalized eigenvector with the smallest eigenvalue, whereas in

our case d>1 generalized eigenvectors are picked, forming a D-by-

d matrix W. The column vectors of W span a d-dimensional

discriminative subspace (d=10 in our experiments).

In the discriminative subspace, we assume Gaussian

distribution for the noise class, thus the likelihood that an audio

frame belongs to the noise class is given by:

1
2| exp

T

N Np noisex x m K x m ,

where x is the D=39 dimensional feature vector for the audio

frame, and
1T

N

T
W W R W WK is a constant square matrix.

We define the audio frame’s Feature-based VAS as:
T

NFVAS x m K x mN . (1)

Clearly, larger FVAS implies that the audio frame is less likely to

be noise, in other words, more likely to be voice.

It is worthy noticing that the calculation of FVAS (1)can be

done fairly efficiently. If we do an orthogonal diagonalization
1 2T T

NC W R W U U , where is d-by-d orthogonal

matrix and is diagonal - this can always be done since C is

positive semi-definite. Defining

U

T
H WU , we have:

Figure 1: FVAS, VAS and the morphological filtering.

 (2) 2 T T T
K WU U W H H

And (1) can be written as:
2

NFVAS Hx m , (3)

where is a d-dimensional constant vector. Equation Nm HmN

(3) means that in order to calculate FVAS, we only need to project

 to d-dimensional through H , then calculate the SSD (Sum of

Squared Differences) between the projected vector and constant

vector in the d-dimensional subspace.

x

Nm

The FVAS defined this way is able to effectively discriminate

true voice and various noises, including high energy level noises

which cannot be suppressed using frame-energy based methods.

This is demonstrated in Figure 1. The first row shows the

waveforms of an audio clip - among the four speech-like spurts,

only the first corresponds to true voice, whereas the other three are

actually the breathing noises of the speaker. As shown in the 3rd

row, frame-energy could not differentiate the true voice and the

2151

noises. However, the FVAS, shown in the 2nd row (green curve),

did a good job, correctly assigning very low responses to the high

energy level noise frames. The red curve shows the

morphologically filtered FVAS (see 4.1.3).

4.1.2. Normalized energy and VAS calculation

Although FVAS can effectively differentiate voice and noises, it is

not suitable for speaker selection since it does not directly reflect

the speaker’s volume thus does not hold properties b) and c).

Therefore, another quantity is introduced, which we call adaptively

normalized frame energy and denote as E . This normalized frame

energy is computed as follows:

1. Compute frame energy E.

2. Compute , the running average of voice energy, i.e. the

average energy of most recent (say, in a time window of

length TE=15sec) audio frames which are classified as voice.

3. Obtain via normalization: E E E .

E holds properties b) and c) that we demanded for VAS. It’s

clear that E is insensitive to the volume level because it is a

normalized quantity. Meanwhile, a sudden increase in E will cause

 to increase sharply, but this relatively larger E will last only

for a short term till the running average follows the increase.

E

The final VAS is defined to be the linear combination of

FVAS and : (4) E 1VAS kE FVAS

where the weight is also a function of FVAS:0 1

. (5)
1

1 exp b c FVAS

Constants b and c in (5) are chosen so that for noise frames

while for voice frames . The meaning of

0

1 (4) is clear: for

noise frames, we tend to use FVAS as VAS while for voice frames

we favor kE . The constant k is chosen to scale E to be

comparable with FVAS.

4.1.3. Morphological filtering for VAS smoothing

VAS defined in (4) combines the merits of FVAS and E , thus

holding all the properties we listed except for d). Since VAS is

calculated independently for each frame, the correlation between

neighboring frames hasn’t been taken into account so far, resulting

in a quickly oscillating sequence. We may smooth this sequence

through a (nonlinear) filtering operation:

0,1,...,
max
k K

VAS n VAS n k , (6)

which is actually a unilateral morphological dilation. Note that

more complex technique modeling the temporal correlation, such

as HMM, could be used instead, but the method we are employing

is much faster, easy to implement, and working well for our

application. Moreover, this operation also introduces speech

hangover which helps avoid audible speech clipping [5].

The last row of Figure 1 (green curve) shows the VAS

calculated by fusing FVAS and frame energy, as well as its

morphologically filtered version (red curve). Compared to the

FVAS shown in the 2nd row, VAS better reflects the energy

properties for the voice frames. Meanwhile, it preserves FVAS’s

discriminative power on voice and noise frames.

4.2. Ranking VAS for speaker selection

With the well defined VAS, it seems that speaker selection can be

done simply by sorting the clients according to their VAS, and

selecting the top ranked M ones. However, this is not true.

Consider, for instance, a simple case where we select M=1 speaker

from N=2 clients, if we simply choose the speaker with higher

VAS, spurious switching will occur frequently when the two users

are speaking simultaneously. One effective method to prevent this

kind of switching is to introduce a “barge-in” mechanism [5]. With

this mechanism, the interrupter may suppress the current speaker

only if its VAS is higher than the latter’s by at least a margin

called the barge-in threshold.

In the two-client case discussed above, implementing the

barge-in mechanism is straightforward. For a general number of

clients, we suggest an efficient implementation for barge-in

mechanism enabled ranking. The key idea is to design an

appropriate comparison routine, so that any standard sorting

algorithm (e.g. qsort) can be used immediately. The pseudo code

of the comparison routine is given in Figure 2.

5. CONCLUDING REMARKS

Voice over IP is becoming a more and more accepted way of

communicating. Compared to the PSTN, the clients of VoIP

applications usually have much more powerful hardware available

so it becomes easier to run smart algorithms on those clients in

order to achieve optimal performance on the whole network. The

solution proposed in this paper, PASS (Peer-Aware Silence

Suppression), follows this movement. Unlike traditional silence

suppression, PASS puts a limit on the number of concurrent

speakers in a conference, thus making the number of incoming

packets more predictable. Conceptually similar to the Ethernet

protocol, our algorithm is distributed to run on each client –

making it suitable for a wide variety of network topologies. For

example, PASS is compatible with the full mesh architecture and

integrating PASS with full mesh clients will considerably improve

their scalability.

7. REFERENCES

[1] M. Elad, Y. Hel-Or, and R. Keshet, “Pattern Detection Using

a Maximal Rejection Classifier,” Pattern Recognition Letters,

Vol. 23, No. 12, pp. 1459-1471, Oct 2002.

[2] J. Forgie, C. Feehrer, and P. Weene, “Voice Conferencing

Technology Final Report,” Tech. Rep. DDC AD-A074498,

M.I.T. Lincoln Lab., Lexington, MA, Mar. 1979.

[3] ITU-T Recommendation H.323, “Packet-Based Multimedia

Communication Systems,” Nov. 2000.

Figure 2: The comparison routine for client ranking.

Routine: CompareClient(S1, S2)

If (PriorityLevel(S1)>PriorityLevel(S2))

 Return VAS(S1)>=(VAS(S2)-BargeInThres)

If (PriorityLevel(S1)<PriorityLevel(S2))

 Return VAS(S1)>(VAS(S2)+BargeInThres)

Else Return VAS(S1)>=VAS(S2)

Subroutine: PriorityLevel(S)

If (S is a current speaker): Return 1

Else Return 0

[4] L. Rabiner and B. Juang, “Fundamentals of speech

recognition,” Prentice-Hall, Inc., 1993.

[5] P.J. Smith, “Voice conferencing over IP networks,” Master’s

thesis, McGill University, Montreal, Canada, available online

at http://www.tsp.ece.mcgill.ca, Jan. 2002.

[6] P.J. Smith, P. Kabal and R. Rabipour, “Speaker Selection for

Tandem-Free Operation VOIP Conference Bridges,” Proc.

IEEE Workshop Speech Coding, pp. 120-122, Oct 2002.

2152

