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ABSTRACT

A novel tandem-free solution for multiparty VoIP conferences 

called PASS (Peer-Aware Silence Suppression) is presented. 

Similar to traditional tandem-free solutions, PASS introduces a 

limit on the number of concurrent speakers in a conference. But in 

contrast to traditional solutions, PASS silence suppression and 

speaker selection are completely distributed, running on each 

client. No speaker selection is performed at the bridge at all. This 

configuration leads to better scalability, lower bandwidth 

occupation and jitter buffer delay, and higher compatibility with a 

wide variety of network topologies. The key component of PASS, 

distributed silence suppression and speaker selection, is realized 

through a robust approach proposed in this paper. Based on a voice 

activity measure derived using machine learning techniques, this 

approach is able to reliably suppress silence in complex 

environments, and perform accurate and transparent speaker 

selection as well. 

1. INTRODUCTION

Voice over IP (VoIP) is becoming mainstream. This can be 

partially attributed to the proliferation of broadband connections, 

and the availability of low-cost hardware and software. But 

equally important is the fact that most technological challenges 

have been addressed. In particular, solutions to minimize delay, 

delay jitter, and packet loss have all been extensively researched in 

the last several years.  As these technologies go from research to 

actual products, research effort must concentrate on the next needs 

of VoIP technology. One of such needs is high-quality multiparty 

voice conference. When migrating to VoIP, a central bridge-based 

architecture mimicking PSTN conferencing system seems to be an 

obvious design choice.  However, various new problems arise 

when this design is applied to VoIP: 1) A best-effort packet 

network such as the Internet introduces variable delays and packet 

losses into the transport process, requiring the bridge to absorb 

variable delay by a jitter buffer and include some loss concealment 

mechanisms. 2) The central bridge has to decode the clients’ voice 

packets, sum them, compress, and send them back to each client.  

Because each client requires his own voice to be subtracted from 

the sum, the packet compression usually has to be done separately 

for each individual client.  3) Since the voice packets are encoded 

twice, a problem known as tandem encoding [6] arises, and the 

voice quality is reduced. 

Because of problems 1) and 2), the CPU, memory and 

bandwidth load on the bridge increase linearly to the number of 

clients it is connected to.  In order to reduce these costs, silence 

suppression is often used on the clients.  By sending out packets 

only when actual speech is detected from the microphone, the 

bridge only needs to receive and mix those packets that contain 

actual voice.  Thus the cost on the bridge is reduced substantially. 

In practice, however, the effective savings from silence 

suppression depends highly on external factors such as microphone 

quality, its position relative to the user’s mouth, the gain of the 

sound card, the level and type of background noise.  Since many of 

those factors are not controllable by the bridge, the bridge is forced 

to reserve a significant amount of resources to deal with the 

fluctuation in the number of incoming packets. 

Our proposed solution, namely PASS (Peer-Aware Silence 

Suppression), tries to reduce the amount of packet fluctuation by 

restricting the number of concurrent speakers to be less than 

(including) a pre-set number (e.g. 3). This solution is based on the 

observation that in a natural conservation, it is rare that more than 

3 people speak at the same time.  And even when that happens, it 

is not likely that all of them can be understood clearly -- so it is 

less important to transmit all of them. 

There have been several published solutions in which the 

bridge runs a speaker selection algorithm [2][6]. Our solution has a 

major difference from those earlier works: the enforcement of such 

restriction in our solution is distributed. We propose an improved 

silence suppression algorithm to be run on each client.  Unlike the 

traditional silence suppression, a packet not only has to pass the 

client's own speech/silence test, the test is also dependent on the 

level of voice activity of the packets that the client is currently 

receiving from its peers. Conceptually similar to the Ethernet 

protocol, when a client does decide to send the packets, its packets 

can suppress the clients with lower voice activity level from 

sending their packets if the conference already has more than a 

pre-set number of speakers. 

The distributed architecture of our solution has a number of 

benefits comparing a bridge-based one: 1) The client sends less 

packets so bandwidth utilization is more efficient on both the client 

and the bridge. 2) It offloads some CPU processing from the 

bridge. 3) Since the client knows the number of concurrent 

speakers, it can encode the packets at a different bit rate so the 

total bandwidth from all those speakers is fixed. Accomplishing 

this using a bridge-based algorithm will require a scalable audio 

codec. 4) Most importantly, a distributed algorithm can be applied 

to a variety of network topologies (such as full mesh, bridge-based, 

or a hybrid of the two) thus allowing the benefits of speaker 

selections to be applied to more voice conferencing scenarios. 

The remainder of this paper is organized as follows. In 

Section 2 we will give a brief overview of some of the existing 

works and compare them against our approach. Section 3 describes 

the basic overview of how the system works. In Section 4 we 

discuss the voice activity measure and ranking algorithms. 

Concluding remarks are given in Section 5.

2. RELATED WORKS 

As we mentioned, the traditional architecture for VoIP multiparty 

conference comprising a mixing bridge has quite a few drawbacks, 

such as the tandem encoding, excess jitter buffer delay, as well as 

the bridge’s heavy demand on the bandwidth and computing 

power. One solution avoiding these problems is the full-mesh 

architecture [3], where no bridge (server) exists, and all clients 

directly communicate among themselves, sending/receiving 

packets to/from each other. In this architecture, no tandem 

encoding is involved since every audio packet only goes through 
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only one encoding-decoding cycle. Jitter buffer delay is also 

reduced. The major drawback of full-mesh architecture is its high 

bandwidth consumption because every client is consistently 

sending/receiving audio packets to/from all the peers. The 

scalability of this architecture is rather poor because as the number 

of parties, say N, increases, the whole network will get jammed 

quickly since there are N(N-1) streams flowing across the network 

at anytime. The computing demand for the clients is another 

potential problem, since each of them needs to decode and mix 

signals coming from N-1 peers. Overall, full-mesh is a simple 

topology that can provide high quality audio for conferencing 

among a small number of clients (e.g. <5).

A relatively recent proposal to address tandem encoding 

problem is Tandem Free Operation (TFO) [6].  Unlike a traditional 

central bridge, the TFO bridge does not mix the packets into a 

single channel.  In order to limit the bandwidth, it forwards packets 

from at most M channels (e.g. 2 or 3, usually M<<N) at any 

moment, assuming there are at most M concurrent speakers - note 

that this is a reasonable assumption for conferences in real life, and 

is also validated by experiments in [6]. In TFO, each client sends 

some auxiliary bits along with each voice packet.  When each 

voice packet arrives at the bridge, a speaker selection algorithm is 

run at the bridge to decide if it is going to forward to the other 

clients or is simply dropped. TFO can be thought of as a bridge-

based silence suppression, where channels not selected as the top 

M channels are treated as if they were in silence.  By using this 

technique, the upper bound of incoming bandwidth to each client 

is M times of a single channel.  It is possible to limit the bandwidth 

further if a scalable audio codec is used and the bridge can do 

some bit chopping. 

However, in the TFO architecture the bandwidth utilization is 

still not optimized, since all the clients are consistently sending 

audio packets to the bridge, whereas most of these packets are 

simply dropped by the bridge through the speaker selection 

procedure. In other words, these “useless” packets are sent out 

anyway, resulting in the unnecessary bandwidth occupation in the 

bridge’s downloading channel and the uploading channel of each 

client as well. 

3. SYSTEM OVERVIEW 

Our PASS system has a decentralized architecture, the idea 

distinguishing it from conventional full mesh architecture is that 

here the clients are more intelligent and able to decide whether to 

send out packets based on the states of both itself and its peers. 

Similar to TFO, in PASS the number of concurrent speakers is 

limited to be M (again, usually M<<N), which implies the 

existence of a speaker selection mechanism. However in PASS, 

speaker selection is done separately by each client, unlike TFO 

where the bridge performs the task. 

In the PASS system, each audio packet contains a Voice

Activity Score (VAS), which quantifies the level of voice activity 

(not simply the volume, as we shall see in Section 4) of the audio 

frame encoded in this packet. Each time a client captures an audio 

frame from the microphone, it computes the VAS. Subsequently, 

silence suppression is performed for current audio frame by 

comparing its VAS with a threshold. If the VAS is below the 

threshold, the audio frame is considered as silence and discarded 

immediately. Otherwise, the client further compares its own VAS 

with those of its peers, which it obtained from the incoming 

packets. If the local client finds itself ranked among the topmost M

clients, it encodes the audio frame and sends out the packet (with 

the VAS embedded in) towards all the other clients. Otherwise, it 

knows at once that it doesn’t have the chance to be heard, thus 

discarding the audio frame. 

The computational load to perform above silence suppression 

and speaker selection algorithm is quite low. The only relatively 

computation-intensive routine is the calculation of VAS. However, 

notice that each client only needs to calculate its own VAS and 

those of the peers can be obtained through partial decoding of the 

incoming packets. Of course, in order to replay the audio signals of 

the peers, the local client also needs to decode the incoming 

packets and mix the signals. But recall that since the number of 

concurrent speakers is bounded by M, decoding and mixing only 

need to be done for at most M peers. In our experience, on a 

Pentium 4 3.2G Hz desktop PC, the entire client consumes only 

about 3% of its CPU time. 

It can be seen that PASS generalizes the silence suppression 

mechanism in full mesh. Now, each client decides whether to 

suppress its packets not only based on its own voice activity, but 

also on the voice activities of its peers, hence the name Peer-

Aware Silence Suppression. The PASS architecture is also similar 

to TFO in that both systems try to limit the number of concurrent 

speakers through some speaker selection procedure. The difference 

is obvious, as in PASS this is done separately by the clients, 

therefore the computing and bandwidth load on the TFO bridge is 

now completely distributed to each client. In this way, the PASS 

architecture absorbs the merits of both full mesh and TFO, 

rendering a VoIP conferencing system with better scalability, 

lower bandwidth occupation and jitter buffer delay. 

4. VOICE ACTIVITY SCORE AND ITS RANKING  

The core of PASS lies in how to rank the speakers’ voice activities 

thus only allowing the most deserving ones to send their packets. 

In practice, a good algorithm should possess these merits: 

Accuracy: The voice activity should be correctly identified, 

and silence should be effectively suppressed. 

Robustness: Accuracy should be achieved under complex 

circumstances. For example, users may be using microphones 

of different quality, meanwhile the environment around them 

may contain various background noises of different levels. 

Transparency: The users should have a natural conferencing 

experience. This involves several aspects. First, speaker 

selection should be fair to all the conferees: different users 

may have different volume level (due to the user’s own voice 

property, the microphone’s distance to the user’s mouth, or 

the gain of the sound card), but the one with lower volume 

level shouldn’t have less chance to be selected when 

speaking. Secondly, some important phenomena that occur in 

a face-to-face meeting, such as interruption by raising voice, 

should be allowed. On the other hand, spurious speaker 

selection, such as quick switching back and forth, should be 

avoided.

It can be seen in Section 3 that the key of the speaker selection 

algorithm in PASS is how to compute VAS and how to rank the 

clients. We are going to show how our speaker selection algorithm 

tries to satisfy above requirements. 

4.1. The Calculation of VAS 

In order to satisfy the requirements for a good speaker selection 

algorithm, the VAS should hold these properties: 
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a) Effectively discriminating voice and silence. We would like 

to point out that in practice, the definition of silence is in a 

broad sense, because there are all kinds of background noises 

captured by the microphone even when the conferee is not 

speaking. In our experience, an especially interesting type of 

noise is the breathing of the user if the microphone is close to 

his/her mouth. The VAS’s calculated for a voice frame and a 

silence (and/or noise) frame should differ as much as 

possible, so that silence (in broad sense) can be effectively 

suppressed.

b) Insensitivity to the volume level. The user with lower volume 

wouldn’t be treated unfairly, i.e. receive lower VAS. 

c) A sharp volume increase results in higher VAS in short term, 

allowing a natural way of interruption by raising one’s voice. 

d) Temporally smooth. Smooth VAS is not only favored for 

accurate silence suppression and leads to less spurious 

speaker switching. More importantly, because each client can 

only compare its current VAS with the delayed version (due 

to network transmission) of the peers’ VAS’s, smooth VAS 

results in less decision discrepancy among clients. 

4.1.1. Feature-based VAS (FVAS) 

The most natural choice for the quantity measuring the voice 

activity of an audio frame is its energy. Since frame energy is easy 

to calculate, it is widely used for silence suppression [5].

Quantifying voice activity with frame energy involves the 

assumption that background noises have much lower energy level 

compared to voice. However in our experience, this assumption is 

not valid. As we mentioned, a user may use a cheap microphone 

which has low SNR and captures a lot of environmental noises. 

Furthermore, some noises, e.g. the user’s breathing, have high 

energy level per se. Therefore, many noises cannot be well 

discriminated from true voice if only frame energy is considered. 

Instead, we propose a pattern classification based method to 

calculate a quantity which is able to identify voice frames robustly, 

even in the existence of various noises with high energy level. 

We model silence suppression as a standard two class 

classification problem. For each audio frame, the MFCC (Mel-

Frequency Cepstral Coefficients) [4] and their 1st and 2nd order 

temporal differences are concatenated, forming a D=39 dimension 

feature vector. The task is to design a classifier that decides 

whether an audio frame belongs to voice or noise. To train the 

classifier, we collected audio signals recorded in meeting rooms 

and offices, and labeled each audio frame as “voice” or “noise”. 

The first step is to seek in the original D-dimensional feature 

space a lower dimensional subspace, in which the two classes can 

be well discriminated. By visualizing the training data, it is found 

that in the feature space the noise samples are surrounded by voice 

samples and are much more concentrated than the latter. This 

suggests that silence suppression can be modeled as a “target 

detection problem” where the target class “noise” should be 

discriminated from the clutter class “voice”. For this type of 

problem, traditional discriminative method such as Fisher Linear 

Discriminant is not suitable. Instead, an effective method for 

seeking a discriminative subspace proposed in [1] is employed. 

The discriminative projection vector w* is obtained by solving: 

argmin
T

N

TT

N V N V N V
w

w R w
w

w R R m m m m w

,

where (mN , RN) and (mV , RV) are the mean-covariance pairs of the 

noise class and voice class respectively, which are calculated from 

the training data. This optimization problem can be easily solved 

through generalized eigenvalue decomposition. It should be 

pointed out that in [1] just a 1D subspace is sought, by picking the 

generalized eigenvector with the smallest eigenvalue, whereas in 

our case d>1 generalized eigenvectors are picked, forming a D-by-

d matrix W. The column vectors of W span a d-dimensional 

discriminative subspace (d=10 in our experiments). 

In the discriminative subspace, we assume Gaussian 

distribution for the noise class, thus the likelihood that an audio 

frame belongs to the noise class is given by: 

1
2| exp

T

N Np noisex x m K x m ,

where x is the D=39 dimensional feature vector for the audio 

frame, and 
1T

N

T
W W R W WK  is a constant square matrix. 

We define the audio frame’s Feature-based VAS as: 
T

NFVAS x m K x mN . (1) 

Clearly, larger FVAS implies that the audio frame is less likely to 

be noise, in other words, more likely to be voice. 

It is worthy noticing that the calculation of FVAS (1)can be 

done fairly efficiently. If we do an orthogonal diagonalization 
1 2T T

NC W R W U U  , where  is d-by-d orthogonal 

matrix and  is diagonal - this can always be done since C  is 

positive semi-definite. Defining 

U

T
H WU , we have: 

Figure 1: FVAS, VAS and the morphological filtering. 

 (2) 2 T T T
K WU U W H H

And (1) can be written as: 
2

NFVAS Hx m , (3) 

where  is a d-dimensional constant vector. Equation Nm HmN

(3) means that in order to calculate FVAS, we only need to project 

 to d-dimensional through H , then calculate the SSD (Sum of 

Squared Differences) between the projected vector and constant 

vector  in the d-dimensional subspace. 

x

Nm

The FVAS defined this way is able to effectively discriminate 

true voice and various noises, including high energy level noises 

which cannot be suppressed using frame-energy based methods. 

This is demonstrated in Figure 1. The first row shows the 

waveforms of an audio clip - among the four speech-like spurts, 

only the first corresponds to true voice, whereas the other three are 

actually the breathing noises of the speaker. As shown in the 3rd

row, frame-energy could not differentiate the true voice and the 
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noises. However, the FVAS, shown in the 2nd row (green curve), 

did a good job, correctly assigning very low responses to the high 

energy level noise frames. The red curve shows the 

morphologically filtered FVAS (see 4.1.3). 

4.1.2. Normalized energy and VAS calculation 

Although FVAS can effectively differentiate voice and noises, it is 

not suitable for speaker selection since it does not directly reflect 

the speaker’s volume thus does not hold properties b) and c).

Therefore, another quantity is introduced, which we call adaptively

normalized frame energy and denote as E . This normalized frame 

energy is computed as follows: 

1. Compute frame energy  E.

2. Compute , the running average of voice energy, i.e. the 

average energy of most recent (say, in a time window of 

length TE=15sec) audio frames which are classified as voice. 

3. Obtain  via normalization: E E E .

E  holds properties b) and c) that we demanded for VAS. It’s 

clear that E  is insensitive to the volume level because it is a 

normalized quantity. Meanwhile, a sudden increase in E will cause 

 to increase sharply, but this relatively larger E  will last only 

for a short term till the running average  follows the increase. 

E

The final VAS is defined to be the linear combination of 

FVAS and :  (4) E 1VAS kE FVAS

where the weight  is also a function of FVAS:0 1

. (5) 
1

1 exp b c FVAS

Constants b and c in (5) are chosen so that for noise frames 

while for voice frames . The meaning of 

0

1 (4) is clear: for 

noise frames, we tend to use FVAS as VAS while for voice frames 

we favor kE . The constant k  is chosen to scale E  to be 

comparable with FVAS.

4.1.3. Morphological filtering for VAS smoothing 

VAS defined in (4) combines the merits of FVAS and E , thus 

holding all the properties we listed except for d). Since VAS is 

calculated independently for each frame, the correlation between 

neighboring frames hasn’t been taken into account so far, resulting 

in a quickly oscillating sequence. We may smooth this sequence 

through a (nonlinear) filtering operation: 

0,1,...,
max
k K

VAS n VAS n k , (6) 

which is actually a unilateral morphological dilation. Note that 

more complex technique modeling the temporal correlation, such 

as HMM, could be used instead, but the method we are employing 

is much faster, easy to implement, and working well for our 

application. Moreover, this operation also introduces speech 

hangover which helps avoid audible speech clipping [5].

The last row of Figure 1 (green curve) shows the VAS 

calculated by fusing FVAS and frame energy, as well as its 

morphologically filtered version (red curve). Compared to the 

FVAS shown in the 2nd row, VAS better reflects the energy 

properties for the voice frames. Meanwhile, it preserves FVAS’s

discriminative power on voice and noise frames. 

4.2. Ranking VAS for speaker selection 

With the well defined VAS, it seems that speaker selection can be 

done simply by sorting the clients according to their VAS, and 

selecting the top ranked M ones. However, this is not true. 

Consider, for instance, a simple case where we select M=1 speaker 

from N=2 clients, if we simply choose the speaker with higher 

VAS, spurious switching will occur frequently when the two users 

are speaking simultaneously. One effective method to prevent this 

kind of switching is to introduce a “barge-in” mechanism [5]. With 

this mechanism, the interrupter may suppress the current speaker 

only if its VAS is higher than the latter’s by at least a margin 

called the barge-in threshold.

In the two-client case discussed above, implementing the 

barge-in mechanism is straightforward. For a general number of 

clients, we suggest an efficient implementation for barge-in 

mechanism enabled ranking. The key idea is to design an 

appropriate comparison routine, so that any standard sorting 

algorithm (e.g. qsort) can be used immediately. The pseudo code 

of the comparison routine is given in Figure 2.

5. CONCLUDING REMARKS 

Voice over IP is becoming a more and more accepted way of 

communicating. Compared to the PSTN, the clients of VoIP 

applications usually have much more powerful hardware available 

so it becomes easier to run smart algorithms on those clients in 

order to achieve optimal performance on the whole network. The 

solution proposed in this paper, PASS (Peer-Aware Silence 

Suppression), follows this movement.  Unlike traditional silence 

suppression, PASS puts a limit on the number of concurrent 

speakers in a conference, thus making the number of incoming 

packets more predictable.  Conceptually similar to the Ethernet 

protocol, our algorithm is distributed to run on each client – 

making it suitable for a wide variety of network topologies. For 

example, PASS is compatible with the full mesh architecture and 

integrating PASS with full mesh clients will considerably improve 

their scalability. 
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