
DETECTING CHANGES IN USER-CENTERED MUSIC QUERY STREAMS

Hua-Fu Li∗a, Man-Kwan Shanb, and Suh-Yin Leea

a Department of Computer Science, National Chiao-Tung University, Hsinchu 300, Taiwan
b Department of Computer Science, National Chengchi University, Taipei 116, Taiwan

{hfli, sylee}@csie.nctu.edu.tw; mkshan@cs.nccu.edu.tw

∗ Corresponding author. Fax: 886-3-5721490. E-mail: hfli@csie.nctu.edu.tw

ABSTRACT

In this paper, we propose an efficient algorithm, called MQS-
change (changes of Music Query Streams), to detect the
changes of maximal melody structures in user-centered music
query streams. Two music melody structures (set of chord-sets
and string of chord-sets) are maintained and four melody
structure changes (positive burst, negative burst, increasing
change and decreasing change) are monitored in a new data
structure MSC-list (a list of Music Structure Changes).
Experiments show that MQS-change algorithm is an online,
single-pass approach to detect the changes of music melody
structures over continuous music query streams.

1. INTRODUCTION

Recently, database and data mining communities have been
focused on a new data model, where data arrives in the form of
continuous streams. It is often refer to data streams or
streaming data. Many applications generate large amount of
data streams in real time, such as sensor data generated from
sensor networks, transaction flows in retail chains, Web click
and record streams in Web applications, performance
measurement in network monitoring and traffic management,
call records in telecommunications, etc. Mining streaming data
differs from mining traditional static data sets in two main
aspects [2] [6]:

� The volume of a continuous stream over its lifetime
could be huge and fast changing.

� The queries require timely answers, and the response
time is short.

 Hence, it is not possible to store all the data in main memory
or even in secondary storage. This motivates the design for in-
memory summary data structure with small memory footprints
that can support both one-time and continuous queries. In other
words, online algorithms of mining data streams have to
sacrifice the correctness of their analysis results by allowing
some counting errors, i.e., approximate results, and only have
one pass over the data.
 Mining music data is one of the most important research
issues in data mining. Although several techniques have been

developed recently for discovering and analyzing the content of
static music data [3][7][12][13], new techniques are needed to
analyze and discover the content of streaming music data. Li et
al. [9][10] proposed efficient single-pass algorithms to find
maximal frequent melody structures and closed frequent
melody structures over continuous music query streams. The
problem comes from the context of online music-downloading
services (such as iTunes, Kuro [14] and KKBOX [15]), where
the streams in question are streams of queries, i.e., music-
downloading requests, sent to the server, and we are interested
in finding the useful music melody structures requested by
most customers during some period of time. With the
computation model of music melody streams presented in Fig.
1, the melody stream processor and the summary data structure
are two major components in such a streaming environment.
The user query processor receives user queries in the form of
<Timestamp, Customer-ID, Music-ID>, and then transforms
the queries into music data (i.e., melody sequences) in the form
of <Timestamp, Customer ID, Music-ID, Melody-Sequence>
by querying the music database. Note that the buffer can be
optionally set for temporary storage of recent music melodies
from the music melody streams.
 With data streams, people are more often interested in
mining queries such like “Compared to the history, what are
the distinct features of the current status?”, “ What are the
most popular melody structures in the last four hours?” and
“What are the relatively stable factors over time?” To answer
the above queries, we have to examine the changes of
streaming data [5][11]. Hence, this paper studies a new
problem of how to detect the changes of maximal melody
structures over user-centered music query streams. An efficient
single-pass algorithm MQS-change is proposed to detect the
changes of music query streams. Experiments show that the
proposed algorithm is an effective algorithm to detect the
changes in data streams efficiently.
 The remainder of the paper is organized as follows. The
problem is defined in Section 2. In Section 3, we describe the
design of the MQS-change algorithm for detecting changes of
music query streams. Experiments are discussed in Section 4.
Finally, we conclude our work in Section 5.

19771424403677/06/$20.00 ©2006 IEEE ICME 2006

2. PROBLEM DEFINITION

In this section, we describe several features of music data used
in this paper and define the problem of detecting changes of
user-centered music query streams. For the basic terminologies
on music, we refer to [8][12].
Definition 1 A chord is the sounding combination of three or
more notes at the same time. A note is a single symbol on a
musical score, indicating the pitch and duration of what is to be
sung and played. A chord-set is a set of chords.
Definition 2 The type I melody structure is represented as a set
of chord-sets.
Definition 3 The type II melody structure is represented as a
string of chord-sets.
Definition 4 Let Ψ = {i1, i2,…, in} be a set of chord-sets, called
items for simplicity. A melody sequence S with m chord-sets is
denoted by Sm = <x1x2…xm>, where xi ∈Ψ, ∀i = 1,2, …, m. A
basic window w is consecutive subsequence of t melody
sequences. The size of a basic window |w| is t.
Definition 5 A music melody stream (MMS) is an infinite
sequence of basic windows, where each window wi is
associated with a window identifier i, and z is the identifier of
the ‘‘latest’’ window wz, i.e., MMS = [w1, w2, …, wz). The
current length of MMS, written as |MMS|, is zt, i.e., |MMS| =
|w1| + |w2| + � + |wz|. These windows arrive in some order
(implicitly by arrival time or explicitly by timestamp), and may
be seen only once.
Definition 6 A set Y ⊆ Ψ is called an itemset, i.e., a set of
chord-sets. A k-itemset is represented by (y1y2� yk). The
support of an itemset Y, denoted as sup(Y), is the number of
melody sequences containing Y as a subset in the MMS so far.
An itemset Y is frequent if sup(Y) ≥ s⋅|MMS|, where s is a user-
defined minimum support threshold in the range of [0, 1].
Definition 7 A string Z is called an item-string, i.e., a string of
chord-sets. A k-item-string is represented by <z1z2 … zk>,
where zi ∈Ψ, ∀i = 1, 2, . . ., k. The support of an item-string Z,
denoted as sup(Z), is the number of melody sequences
containing Z as a substring in the MMS so far. An item-string
is frequent if sup(Z) ≥ s⋅|MMS|.
Definition 8 A frequent itemset is called a maximal frequent
itemset (MFI) if it is not a subset of any other frequent itemsets.
Definition 9 A frequent item-string is called a maximal
frequent item-string (MFS) if it is not a substring of any other
item-strings.
Definition 10 A maximal frequent itemset P is called positive
itemset burst (PIB) if its sup(P)z − sup(P)z−1 ≥ ∂MFI, where ∂MFI

is a user-specified itemset burst threshold in the range of [0, 1],
sup(P)z is the estimated support of P from window w1 to
window wz.
Definition 11 A maximal frequent itemset P is called negative
itemset burst (NIB) if its sup(P)z−1 − sup(P)z ≥ ∂MFI.
Definition 12 A maximal frequent item-string Q is called
positive item-string burst (PSB) if its sup(Q)z − sup(Q)z-1 ≥

∂MFS, where ∂MFS is a user-specified item-string burst threshold
in the range of [0, 1], sup(Q)z is the estimated support of Q
from window w1 to window wz.
Definition 13 A maximal frequent item-string Q is called
negative item-string burst (NSB) if its sup(Q)z-1 − sup(Q)z ≥

∂MFS.
Definition 14 A maximal frequent itemset P is called
increasing changed itemset (ICI) if ∂MFI > (sup(P)i+1 − sup(P)i)
≥ εMFI, ∀i, i = z-h1+1, z-h1+2, …, z, where εMFI is a user-
specified increasing changed itemset threshold in the range of
[0, 1], and h1 is a number of basic windows defined by user.
Definition 15 A maximal frequent item-string Q is called
increasing changed item-string (ICS) if ∂MFS > (sup(Q)j+1 −

sup(Q)j) ≥ εMFS, ∀j, j = z-h2+1, z-h2+2, …, z, where εMFS is a
user-specified increasing changed item-string threshold in the
range of [0, 1], and h2 is a number of basic windows defined by
user.
Definition 16 A maximal frequent itemset P is called
decreasing changed itemset (DCI) if ∂MFI > (sup(Q)j −

sup(Q)j+1) ≥ γMFI, ∀j, j = z-h1+1, z-h1+2, …, z, where γMFI is a
user-specified decreasing changed item-string threshold in the
range of [0, 1], and h1 is a number of basic windows defined by
user.
Definition 17 A maximal frequent item-string Q is called
decreasing changed item-string (DCS) if ∂MFS > (sup(Q)j −

sup(Q)j+1) ≥ γMFS, ∀j, j = z-h2+1, z-h2+2, …, z, where γMFS is a
user-specified decreasing changed item-string threshold in the
range of [0, 1], and h2 is a number of basic windows defined by
user.

Problem Definition Given a MMS, s, ∂MFI, ∂MFS, εMFI, εMFS,
γMFI, and γMFS, the problem of detecting changes in user-
centered music query streams is to maintain the set of MFI and
MFS, and to detect the set of PIB, NIB, PSB, NSB, ICI, ICS,
DCI, and DCS, by one scan of a continuous user-centered
music query stream.

3. DETECTING CHANGES IN USER-CENTERED
MUSIC QUERY STREAMS

In this section, a new summary data structure MSC-list (a list of
Music Structure Changes) is developed to maintain the
essential information about MFI, MFS, PIB, NIB, PSB, NSB,
ICI, ICS, DCI, and DCS with their supports embedded in the
individual window of the current MMS. An online, single-pass
algorithm MQS-change (changes of Music Query Streams) is
proposed to mine the changes from user-centered music query
streams.

1978

3.1. A New Summary Data Structure MSC-list
MSC-list consists of two temporal lists, MFI-list and MFS-list,
where MFI-list is a list of entries which contains current
maximal frequent itemsets, and MFS-list is a list of entries
which maintains maximal frequent item-strings so far. Each
entry of MFI-list consists of two fields: pattern-id Y and
support-list Y.support-list, where pattern-id is a unique
identifier of this maximal frequent itemset, and support-list is
composed of a list of (sup(Y), i), where i is the window
identifier of window wi containing the itemset e. For example,
an entry <abcd, (30%, 1), (37%, 2), (46%, 3), (70%, 4)> of
MFI-list indicates that the itemset abcd is a maximal frequent
itemset and its estimated support is 30% in window w1, 37% in
w2, 46% in w3, and 70% in w4. Assume that the ∂MFI is 0.2 (i.e.,
20%), εMFI = 0.05 (i.e., 5%), and h1 be 3 (i.e., 3 consecutive
windows). Hence, the pattern abcd is an increasing changed
itemset from windows w1 to w3, and has a positive itemset burst
in window w4. Eeach entry of MFS-list also consists of two
fields: pattern-id Z and support-list Z.support-list, where
pattern-id is a unique identifier of this maximal frequent item-
string, and support-list is composed of a list of (sup(Z), i),
where i is the identifier of window wi containing the item-string
Z. In the following, we use the term maximal frequent pattern
(MFP) to substitute the maximal frequent itemset and maximal
frequent item-string.
 Two operations are used to maintain the MSC-list:
(1) Update MSC-list: For each entry <pattern-id, support-

list> of MSC-list, MQC-change algorithm updates the
support-list of this entry, i.e., append a new support record
to the support-list. If there are changes happen (according
to the definition 11 through definition 17), the pattern is
inserted into a temporal change output queue (TCOQ). If
an entry e is not a MFP, i.e., sup(e) ���⋅|MMS|, the entry is
deleted from the current MSC-list.

(2) New MSC-list: if MQC-change find a maximal frequent
pattern P from the current window wz and P ∉ MSC-list,
and sup(P) ≥ s⋅t, where s is the minimum support
threshold, and t is the window size, a new entry of the
form <P, (sup(P), z)>, where z is the current window
identifier, is created in the current MSC-list.

3.2. The Proposed Algorithm
The proposed MQS-change algorithm is composed of four
steps. First, MQS-change repeatedly reads a window of melody
sequences into available main memory. Second, the maximal
frequent itemsets and maximal frequent item-strings in the
current window are mined using MMSLMS algorithm [10], and
added into MSC-list with their potential supports computed.
Third, the set of MFIs and MFSs are maintained in the current
MSC-list, and the changes are verified by MQS-change. Finally,
MQS-change will return the changed patterns immediately if
the user-centered music query stream has a change.

3.2.1. Description of MMSLMS Algorithm
We use an illustrative example to describe the main idea of
MMSLMS algorithm. Let a window wj of MMS be <acdef>,

<abe>, <cef>, <acdf>, <cef>, and <df>, and minimum support
threshold s be 0.5, where a, b, c, d, e, and f are chord-sets.
 First, MMSLMS algorithm projects each melody sequence into
a set of item-suffix melody sequences. For example, the first
melody sequence <acdef> is projected into five item-suffix
melody sequences, i.e., <f>, <ef>, <def>, <cdef>, and <acdef>.
 Second, these item-suffix melody sequences are inserted into
a prefix tree-based summary data structure. The result of
processing first melody sequence <acdef> is shown in Fig. 2.

Fig. 2. Processing first melody sequence <acdef> by MMSLMS

Fig. 3. Processing the window wj by MMSLMS

Fig. 4. Pruning infrequent information by MMSLMS

 After processing the window wj (the result is shown in Fig.
3), MMSLMS prunes infrequent patterns, i.e., item b and its
super-patterns, by traversing the summary data structure
proposed by MMSLMS algorithm. The result after pruning
infrequent patterns is shown in Fig. 4.
 Finally, MMSLMS algorithm uses top-down maximal pattern
discovery technique to find the set of MFIs, (a), (cef) and (df),
and MFSs, (a), (c), (d), and (ef). More detail about the MMSLMS

algorithm can be found in [10].

3.2.2. Algorithm MQS-change
The MQS-change algorithm is shown in Fig. 5.

1979

Algorithm MQS-change
Input: (1) MMS, (2) s, (3) ∂MFI, (4) ∂MFS, (5) εMFI, (6) εMFS, (7) γMFI,
(8) γMFS, (9) h1, (10) h2.
Output: Changes (PIB, NIB, PSB, NSB, ICI, ICS, DCI, and DCS).
begin
 MSC-list = NULL;
 Repeat:
 for each window wi in MMS do // ∀i =1,2, …, z.
 Mine MFPs from wi by using MMSLMS algorithm;
 for each MFP of wi do
 if MFP ∈ MSC-list then
 Update MSC-list;
 Output TCOQ;
 else
 New MSC-list;
 end if
 end for
 for each entry e in the MSC-list do // Pruning
 for each sup(e) in e.support-list do
 if sup(e)i

� s⋅(z−i+1) then // i is the window identifier
 Delete the entry (sup(e), i) from e.support-list;
 end if
 end for
 if sup(e) � s⋅|MMS| then // e is not a MFP
 Delete e from MSC-list;
 end if
 end for
 end for
end

Fig. 5. MQS-change algorithm

�

��

��

��

��

��

��

��

��

	�

���

� � � � � � � � 	 ��
���
�������������

�
�
�
��
��
��
�
�	
��

�
� ����������

����������

����������

����������

����������

����������

Fig 6. Coverage rate for T5.I4.D1000K-AB

4. PERFORMANCE EVALUATION

In this section, the performance of MQS-change algorithm is
analyzed by a synthetic music query stream T5.I4.D1000K-AB,
where three parameters denote the average melody sequence
size (T), the average maximal frequent pattern size (I), and the
total music melody sequences (D), respectively. The data is
generated by the IBM synthetic data generator proposed by
Agrawal and Srikant [1]. T5.I4.D1000K-AB consists of two
consecutive subparts TA and TB. TA denotes a set of melody
sequences generated by a set of chord-sets A while TB denotes
a set of sequences generated by a set of chord-sets B. There is
no common chord-sets between TA and TB. TA-100,000
indicates that the size of the tested window in TA is 100,000
melody sequences. Due to the space limitation, we only discuss
the adaptability of the proposed algorithm in this section.
 We use the coverage rate [4] to evaluate the adaptability of
the MQS-change algorithm. The result is shown in Fig. 6. As

the size of a window becomes smaller, the MQS-change adapts
more rapidly the change of recent information between the two
different subparts of T5.I4.D1000K-AB.

5. CONCLUSIONS

In this paper, we propose a new online algorithm MQS-change
(changes of Music Query Streams) to maintain two music
melody structures (sets of chord-sets and string of chord-sets)
and to detect three music melody structure changes (significant
pattern bursts, increasing changed patterns and decreasing
changed patterns) from a continuous user-centered music query
stream. A new summary data structure MSC-list (a list of
Music Structure Changes) is developed to maintain the
essential information about the maximal melody structures of
music query streams so far. Based on our knowledge, MQS-
change algorithm is the first online, single-pass method to
detect the changes in a continuous user-centered music query
stream.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast algorithms for mining
association rules,” in: Proc. VLDB, pp. 487–499, 1994.
[2] B. Babcock, S. Babu, M. Data, R. Motwani and J. Widom,
“Models and issues in data stream systems,” in: Proc. PODS, pp.
1–16, 2002.
[3] V. Bakhmutora, V. U. Gusev and T.N. Titkova, “The search for
adaptations in song melodies,” Computer Music Journal, 21 (1),
58–67, 1997.
[4] J. H. Chang and W. S. Lee, “Finding recent frequent itemsets
adaptively over online data streams,” in: Proc. SIGKDD, pp. 487-
492, 2003.
[5] G. Dong, J. Han, L.V.S. Lakshmanan, J. Pei, H. Wang and P.S.
Yu, “Online mining of changes from data streams: research
problems and preliminary results,” in: Proc. ACM SIGMOD-
MPDS, 2003.
[6] M. M. Gaber, A. Zaslavsky and S. Krishnaswamy, “Mining
data streams: a review,” ACM SIGMOD Record, 34(1), June 2005.
[7] J.-L. Hsu, C.-C. Liu and A.L.P. Chen, “Discovering nontrivial
repeating patterns in music data,” IEEE Transactions on
Multimedia, 3 (3), 311–325, 2001.
[8] G.T. Jones, Music Theory. Harper & Row, Publishers, New
York., 1974.
[9] H.-F. Li, S.-Y. Lee and M.-K. Shan, “Mining frequent closed
structures in streaming melody sequences,” in: Proc. ICME, 2004.
[10] H.-F. Li, S.-Y. Lee and M.-K. Shan, “Online mining maximal
frequent structures in continuous landmark melody streams,”
Pattern Recognition Letters, 26 (11), 1658-1674, August 2005.
[11] H.-F. Li, S.-Y. Lee and M.-K. Shan, “Online mining changes
of items over continuous append-only and dynamic data streams,”
Journal of Universal Computer Sciences, 11(8), 1411-1425, 2005.
[12] M.-K. Shan and F.-F. Kuo, “Music style mining and
classification by melody,” IEICE Transactions on Information and
Systems, E86-D (4), 655–659, 2003.
[13] A. Yoshitaka and T. Ichikawa, “A survey on content-based
retrieval for multimedia databases,” IEEE Transactions on
Knowledge and Data Engineering, 11 (1), 81–93, 1999.
[14] www.music.com.tw
[15] www.kkbox.com.tw

1980

