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ABSTRACT 

In this paper, we propose an efficient algorithm, called MQS-
change (changes of Music Query Streams), to detect the 
changes of maximal melody structures in user-centered music 
query streams. Two music melody structures (set of chord-sets 
and string of chord-sets) are maintained and four melody 
structure changes (positive burst, negative burst, increasing 
change and decreasing change) are monitored in a new data 
structure MSC-list (a list of Music Structure Changes). 
Experiments show that MQS-change algorithm is an online, 
single-pass approach to detect the changes of music melody 
structures over continuous music query streams. 

1. INTRODUCTION 

Recently, database and data mining communities have been 
focused on a new data model, where data arrives in the form of 
continuous streams. It is often refer to data streams or 
streaming data. Many applications generate large amount of 
data streams in real time, such as sensor data generated from 
sensor networks, transaction flows in retail chains, Web click 
and record streams in Web applications, performance 
measurement in network monitoring and traffic management, 
call records in telecommunications, etc. Mining streaming data 
differs from mining traditional static data sets in two main 
aspects [2] [6]: 

� The volume of a continuous stream over its lifetime 
could be huge and fast changing. 

� The queries require timely answers, and the response 
time is short. 

    Hence, it is not possible to store all the data in main memory 
or even in secondary storage. This motivates the design for in-
memory summary data structure with small memory footprints 
that can support both one-time and continuous queries. In other 
words, online algorithms of mining data streams have to 
sacrifice the correctness of their analysis results by allowing 
some counting errors, i.e., approximate results, and only have 
one pass over the data.  
    Mining music data is one of the most important research 
issues in data mining. Although several techniques have been 

developed recently for discovering and analyzing the content of 
static music data [3][7][12][13], new techniques are needed to 
analyze and discover the content of streaming music data. Li et 
al. [9][10] proposed efficient single-pass algorithms to find 
maximal frequent melody structures and closed frequent 
melody structures over continuous music query streams. The 
problem comes from the context of online music-downloading 
services (such as iTunes, Kuro [14] and KKBOX [15]), where 
the streams in question are streams of queries, i.e., music-
downloading requests, sent to the server, and we are interested 
in finding the useful music melody structures requested by 
most customers during some period of time. With the 
computation model of music melody streams presented in Fig. 
1, the melody stream processor and the summary data structure 
are two major components in such a streaming environment. 
The user query processor receives user queries in the form of 
<Timestamp, Customer-ID, Music-ID>, and then transforms 
the queries into music data (i.e., melody sequences) in the form 
of <Timestamp, Customer ID, Music-ID, Melody-Sequence> 
by querying the music database. Note that the buffer can be 
optionally set for temporary storage of recent music melodies 
from the music melody streams. 
    With data streams, people are more often interested in 
mining queries such like “Compared to the history, what are 
the distinct features of the current status?”, “ What are the 
most popular melody structures in the last four hours?” and 
“What are the relatively stable factors over time?” To answer 
the above queries, we have to examine the changes of 
streaming data [5][11]. Hence, this paper studies a new 
problem of how to detect the changes of maximal melody 
structures over user-centered music query streams. An efficient 
single-pass algorithm MQS-change is proposed to detect the 
changes of music query streams. Experiments show that the 
proposed algorithm is an effective algorithm to detect the 
changes in data streams efficiently. 
    The remainder of the paper is organized as follows. The 
problem is defined in Section 2. In Section 3, we describe the 
design of the MQS-change algorithm for detecting changes of 
music query streams. Experiments are discussed in Section 4. 
Finally, we conclude our work in Section 5.   
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2. PROBLEM DEFINITION 

In this section, we describe several features of music data used 
in this paper and define the problem of detecting changes of 
user-centered music query streams. For the basic terminologies 
on music, we refer to [8][12].  
Definition 1 A chord is the sounding combination of three or 
more notes at the same time. A note is a single symbol on a 
musical score, indicating the pitch and duration of what is to be 
sung and played. A chord-set is a set of chords.  
Definition 2 The type I melody structure is represented as a set 
of chord-sets. 
Definition 3 The type II melody structure is represented as a 
string of chord-sets.  
Definition 4 Let Ψ = {i1, i2,…, in} be a set of chord-sets, called 
items for simplicity. A melody sequence S with m chord-sets is 
denoted by Sm = <x1x2…xm>, where xi ∈Ψ, ∀i = 1,2, …, m. A 
basic window w is consecutive subsequence of t melody 
sequences. The size of a basic window |w| is t. 
Definition 5 A music melody stream (MMS) is an infinite 
sequence of basic windows, where each window wi is 
associated with a window identifier i, and z is the identifier of 
the ‘‘latest’’ window wz, i.e., MMS = [w1, w2, …, wz). The 
current length of MMS, written as |MMS|, is zt, i.e., |MMS| = 
|w1| + |w2| + � + |wz|. These windows arrive in some order 
(implicitly by arrival time or explicitly by timestamp), and may 
be seen only once. 
Definition 6 A set Y ⊆ Ψ is called an itemset, i.e., a set of 
chord-sets. A k-itemset is represented by (y1y2� yk). The 
support of an itemset Y, denoted as sup(Y), is the number of 
melody sequences containing Y as a subset in the MMS so far. 
An itemset Y is frequent if sup(Y) ≥ s⋅|MMS|, where s is a user-
defined minimum support threshold in the range of [0, 1]. 
Definition 7 A string Z is called an item-string, i.e., a string of 
chord-sets. A k-item-string is represented by <z1z2 … zk>, 
where zi ∈Ψ, ∀i = 1, 2, . . ., k. The support of an item-string Z, 
denoted as sup(Z), is the number of melody sequences 
containing Z as a substring in the MMS so far. An item-string 
is frequent if sup(Z) ≥ s⋅|MMS|.  
Definition 8 A frequent itemset is called a maximal frequent 
itemset (MFI) if it is not a subset of any other frequent itemsets.  
Definition 9 A frequent item-string is called a maximal 
frequent item-string (MFS) if it is not a substring of any other 
item-strings. 
Definition 10 A maximal frequent itemset P is called positive 
itemset burst (PIB) if its sup(P)z − sup(P)z−1 ≥ ∂MFI, where ∂MFI

is a user-specified itemset burst threshold in the range of [0, 1], 
sup(P)z is the estimated support of P from window w1 to 
window wz.   
Definition 11 A maximal frequent itemset P is called negative 
itemset burst (NIB) if its sup(P)z−1 − sup(P)z ≥ ∂MFI.  
Definition 12 A maximal frequent item-string Q is called 
positive item-string burst (PSB) if its sup(Q)z − sup(Q)z-1 ≥

∂MFS, where ∂MFS is a user-specified item-string burst threshold 
in the range of [0, 1], sup(Q)z is the estimated support of Q
from window w1 to window wz.   
Definition 13 A maximal frequent item-string Q is called 
negative item-string burst (NSB) if its sup(Q)z-1 − sup(Q)z ≥

∂MFS.
Definition 14 A maximal frequent itemset P is called 
increasing changed itemset (ICI) if ∂MFI > (sup(P)i+1 − sup(P)i) 
≥ εMFI, ∀i, i = z-h1+1, z-h1+2, …, z, where εMFI is a user-
specified increasing changed itemset threshold in the range of 
[0, 1], and h1 is a number of basic windows defined by user.   
Definition 15 A maximal frequent item-string Q is called 
increasing changed item-string (ICS) if ∂MFS > (sup(Q)j+1 −

sup(Q)j) ≥ εMFS, ∀j, j = z-h2+1, z-h2+2, …, z, where εMFS is a 
user-specified increasing changed item-string threshold in the 
range of [0, 1], and h2 is a number of basic windows defined by 
user. 
Definition 16 A maximal frequent itemset P is called 
decreasing changed itemset (DCI) if ∂MFI > (sup(Q)j −

sup(Q)j+1) ≥ γMFI, ∀j, j = z-h1+1, z-h1+2, …, z, where γMFI is a 
user-specified decreasing changed item-string threshold in the 
range of [0, 1], and h1 is a number of basic windows defined by 
user. 
Definition 17 A maximal frequent item-string Q is called 
decreasing changed item-string (DCS) if ∂MFS > (sup(Q)j −

sup(Q)j+1) ≥ γMFS, ∀j, j = z-h2+1, z-h2+2, …, z, where γMFS is a 
user-specified decreasing changed item-string threshold in the 
range of [0, 1], and h2 is a number of basic windows defined by 
user.  

Problem Definition Given a MMS, s, ∂MFI, ∂MFS, εMFI, εMFS, 
γMFI, and γMFS, the problem of detecting changes in user-
centered music query streams is to maintain the set of MFI and 
MFS, and to detect the set of PIB, NIB, PSB, NSB, ICI, ICS, 
DCI, and DCS, by one scan of a continuous user-centered 
music query stream. 

3. DETECTING CHANGES IN USER-CENTERED 
MUSIC QUERY STREAMS 

In this section, a new summary data structure MSC-list (a list of 
Music Structure Changes) is developed to maintain the 
essential information about MFI, MFS, PIB, NIB, PSB, NSB, 
ICI, ICS, DCI, and DCS with their supports embedded in the 
individual window of the current MMS. An online, single-pass 
algorithm MQS-change (changes of Music Query Streams) is 
proposed to mine the changes from user-centered music query 
streams.  
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3.1. A New Summary Data Structure MSC-list 
MSC-list consists of two temporal lists, MFI-list and MFS-list, 
where MFI-list is a list of entries which contains current 
maximal frequent itemsets, and MFS-list is a list of entries 
which maintains maximal frequent item-strings so far. Each 
entry of MFI-list consists of two fields: pattern-id Y and 
support-list Y.support-list, where pattern-id is a unique 
identifier of this maximal frequent itemset, and support-list is 
composed of a list of (sup(Y), i), where i is the window 
identifier of window wi containing the itemset e. For example, 
an entry <abcd, (30%, 1), (37%, 2), (46%, 3), (70%, 4)> of 
MFI-list indicates that the itemset abcd is a maximal frequent 
itemset and its estimated support is 30% in window w1, 37% in 
w2, 46% in w3, and 70% in w4. Assume that the ∂MFI is 0.2 (i.e., 
20%), εMFI = 0.05 (i.e., 5%), and h1 be 3 (i.e., 3 consecutive 
windows). Hence, the pattern abcd is an increasing changed 
itemset from windows w1 to w3, and has a positive itemset burst
in window w4. Eeach entry of MFS-list also consists of two 
fields: pattern-id Z and support-list Z.support-list, where 
pattern-id is a unique identifier of this maximal frequent item-
string, and support-list is composed of a list of (sup(Z), i), 
where i is the identifier of window wi containing the item-string 
Z. In the following, we use the term maximal frequent pattern
(MFP) to substitute the maximal frequent itemset and maximal 
frequent item-string. 
    Two operations are used to maintain the MSC-list: 
(1) Update MSC-list: For each entry <pattern-id, support-

list> of MSC-list, MQC-change algorithm updates the 
support-list of this entry, i.e., append a new support record 
to the support-list. If there are changes happen (according 
to the definition 11 through definition 17), the pattern is 
inserted into a temporal change output queue (TCOQ). If 
an entry e is not a MFP, i.e., sup(e) ���⋅|MMS|, the entry is 
deleted from the current MSC-list. 

(2) New MSC-list:  if MQC-change find a maximal frequent 
pattern P from the current window wz and P ∉ MSC-list, 
and sup(P) ≥ s⋅t, where s is the minimum support 
threshold, and t is the window size, a new entry of the 
form <P, (sup(P), z)>, where z is the current window 
identifier, is created in the current MSC-list. 

3.2. The Proposed Algorithm 
The proposed MQS-change algorithm is composed of four 
steps. First, MQS-change repeatedly reads a window of melody 
sequences into available main memory. Second, the maximal 
frequent itemsets and maximal frequent item-strings in the 
current window are mined using MMSLMS algorithm [10], and 
added into MSC-list with their potential supports computed. 
Third, the set of MFIs and MFSs are maintained in the current 
MSC-list, and the changes are verified by MQS-change. Finally, 
MQS-change will return the changed patterns immediately if 
the user-centered music query stream has a change. 

3.2.1. Description of MMSLMS Algorithm
We use an illustrative example to describe the main idea of 
MMSLMS algorithm. Let a window wj of MMS be <acdef>, 

<abe>, <cef>, <acdf>, <cef>, and <df>, and minimum support 
threshold s be 0.5, where a, b, c, d, e, and f are chord-sets.  
    First, MMSLMS algorithm projects each melody sequence into 
a set of item-suffix melody sequences. For example, the first 
melody sequence <acdef> is projected into five item-suffix 
melody sequences, i.e., <f>, <ef>, <def>, <cdef>, and <acdef>. 
    Second, these item-suffix melody sequences are inserted into 
a prefix tree-based summary data structure. The result of 
processing first melody sequence <acdef> is shown in Fig. 2.  

Fig. 2. Processing first melody sequence <acdef> by MMSLMS

Fig. 3. Processing the window wj by MMSLMS

Fig. 4. Pruning infrequent information by MMSLMS      

    After processing the window wj (the result is shown in Fig. 
3), MMSLMS prunes infrequent patterns, i.e., item b and its 
super-patterns, by traversing the summary data structure 
proposed by MMSLMS algorithm. The result after pruning 
infrequent patterns is shown in Fig. 4. 
    Finally, MMSLMS algorithm uses top-down maximal pattern 
discovery technique to find the set of MFIs, (a), (cef) and (df), 
and MFSs, (a), (c), (d), and (ef). More detail about the MMSLMS

algorithm can be found in [10]. 

3.2.2. Algorithm MQS-change
The MQS-change algorithm is shown in Fig. 5. 
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Algorithm MQS-change 
Input: (1) MMS, (2) s, (3) ∂MFI, (4) ∂MFS, (5) εMFI, (6) εMFS, (7) γMFI, 
(8) γMFS, (9) h1, (10) h2. 
Output: Changes (PIB, NIB, PSB, NSB, ICI, ICS, DCI, and DCS). 
begin 
    MSC-list = NULL;  
    Repeat: 
        for each window wi in MMS do  // ∀i =1,2, …, z. 
            Mine MFPs from wi by using MMSLMS algorithm; 
            for each MFP of wi do
                if MFP ∈ MSC-list then
                    Update MSC-list; 
                    Output TCOQ;                     
                else 
                           New MSC-list; 
                end if
            end for             
           for each entry e in the MSC-list do  // Pruning  
                for each sup(e) in e.support-list do
                    if sup(e)i

� s⋅(z−i+1) then // i is the window identifier 
                         Delete the entry (sup(e), i) from e.support-list; 
                    end if 
                end for                    
                if sup(e) � s⋅|MMS| then  // e is not a MFP 
                    Delete e from MSC-list; 
                end if 
           end for 
        end for 
end 

Fig. 5. MQS-change algorithm 

�

��

��

��

��

��

��

��

��

	�

���

� � � � � � � � 	 ��
���
�������������

�
�
�
��
��
��
�
�	
��

�
� ����������

����������

����������

����������

����������

����������

Fig 6. Coverage rate for T5.I4.D1000K-AB

4. PERFORMANCE EVALUATION

In this section, the performance of MQS-change algorithm is 
analyzed by a synthetic music query stream T5.I4.D1000K-AB, 
where three parameters denote the average melody sequence 
size (T), the average maximal frequent pattern size (I), and the 
total music melody sequences (D), respectively. The data is 
generated by the IBM synthetic data generator proposed by 
Agrawal and Srikant [1]. T5.I4.D1000K-AB consists of two 
consecutive subparts TA and TB. TA denotes a set of melody 
sequences generated by a set of chord-sets A while TB denotes 
a set of sequences generated by a set of chord-sets B. There is 
no common chord-sets between TA and TB. TA-100,000 
indicates that the size of the tested window in TA is 100,000 
melody sequences. Due to the space limitation, we only discuss 
the adaptability of the proposed algorithm in this section. 
    We use the coverage rate [4] to evaluate the adaptability of 
the MQS-change algorithm. The result is shown in Fig. 6. As 

the size of a window becomes smaller, the MQS-change adapts 
more rapidly the change of recent information between the two 
different subparts of T5.I4.D1000K-AB. 

5. CONCLUSIONS 

In this paper, we propose a new online algorithm MQS-change 
(changes of Music Query Streams) to maintain two music 
melody structures (sets of chord-sets and string of chord-sets) 
and to detect three music melody structure changes (significant 
pattern bursts, increasing changed patterns and decreasing 
changed patterns) from a continuous user-centered music query 
stream. A new summary data structure MSC-list (a list of 
Music Structure Changes) is developed to maintain the 
essential information about the maximal melody structures of 
music query streams so far. Based on our knowledge, MQS-
change algorithm is the first online, single-pass method to 
detect the changes in a continuous user-centered music query 
stream. 
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