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Abstract

Efficient indexing is a key in content-based video retrieval
solutions. In this paper we represent video sequences as traces
via scaling and linear transformation of the frame luminance
field. Then an appropriate lower dimensional subspace is
identified for video trace indexing. We also develop a trace
geometry matching algorithm for retrieval based on average
projection distance with a locally embedded distance metric.
Simulation results demonstrated the high accuracy and very
fast retrieval speed for the proposed solution.

1. Introduction

As video content grows exponentially, an efficient content
based video shot retrieval that can handle very large size
collections is becoming very important. In a typical search
engine application scenario, the system would be required to
identify the existence of the video shot in the collection and
return the shot locations within a very short time. Extremely
large size of video collections puts new challenges on video
indexing/retrieval algorithms.

In previous work, various image/video features based
indexing and retrieval solutions are reported, e.g, color based
in [3], and [13], color and motion based in [7], [8], [14],
object level spatial-temporal feature based in [2], and time
interval statistics based in [11].

In video content indexing, a well-known problem is the
“curse of dimensionality”, when the feature space dimension
is high, which is typically the case for image features like
color, shape and textures, the indexing efficiency falls rapidly
[1]. To resolve this problem a lower dimensional feature
space with an appropriate matching metric need to be found.
In [5], [6], we developed such a metric based on a trace
representation of video sequence in luminance field’s
principal component space. However, the loss of information
from dimension reduction may degrade the retrieval metric
performance, therefore the conflicting requirement for
indexing efficiency and retrieval accuracy on subspace
dimensionality need to be addressed.

In this paper, motivated partly by various manifold
learning algorithm, like principal component analysis (PCA)
[12], local linear embedding [10], we develop an efficient
indexing/retrieval solution utilizing the embedded low

dimensional feature space and metric. First a global model is
built to represent video sequence as traces. Then different
embedded subspaces are trained for indexing and retrieval to
achieve better efficiency and accuracy.

The paper is organized into the following sections, in
Section 2, we briefly review the low dimensional feature
space and metric developed for video retrieval, in Section 3,
we develop indexing scheme based on kd-tree [9], and a fast
retrieval algorithm with locally embedded metrics, in Section
4, simulation results in terms of both accuracy and speed are
presented, in Section 5, we draw the conclusion and outline
the future directions of our work.

2. Global Luminance Field Trace Model

In search of a lower dimensional feature space and metric for
video shot indexing, instead of using the image features that
may have obvious interpretation, like colour, shape and
texture, we view video sequences as high dimensional traces
spanned by the luminance field’s variations over time. If a
lower dimension representation of video trace can be found,
then a space partition type indexing scheme and a trace
geometry matching metric for retrieval can be developed.

We developed a global luminance field trace
representation of the video sequence via scaling and PCA [5],
[6], such that a video frame luminance field fk is mapped into
an d-dimensional point xk, as,

))(( kNk fSAx = (1)

where S is the scaling operator, which scales and stacks an
input luminance field of W x H pixels into an image icon
vector in Rwxh, with the desired icon size of w x h pixels. The
d-dimensional PCA [12] transform basis functions, AN =[ a1

T,
a2

T, …, ad
T], are obtained from the eigen vectors of the

covariance matrix of video frames in a local neighbourhood,
denoted as N. For global model, N consists of randomly
sampled frames from a large collection. AN identifies the d-
dimensional subspace in Rwxh which preserves maximum
amount of energy, that is,
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The scaling and PCA transform reduce the
dimensionality of the feature space, but inevitably introduce
loss of energy/fidelity of the video trace. There is a trade off
between the retrieval metric accuracy and the indexing and
computational efficiency obtained from dimensionality
reduction.
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Figure 1. Video Trace Example
With a proper choice on scale [w h] and PCA dimension

d, a global model can be built to map an n-frame video
sequence into an n-point trace in some d-dimensional PCA
space, preserving sufficient information in trace geometry for
accurate retrieval. Example of a short 400 frame news video
trace is plotted in an 3-d global space in Fig. 1. An efficient
indexing and retrieval scheme is developed in the next
section.

3. Indexing and Retrieval in Embedded
Subspaces

The global video trace model may not be the most efficient
for indexing and retrieval. For a “good” indexing space, we
need the video traces to be evenly distributed in a much lower
dimensional subspace, e.g., dindx=2 to 6. While for good
retrieval performance, we need a subspace with higher
dimension, drtrv, to more accurately represent video traces. To
address this conflict, we identify separate subspaces for
indexing and retrieval purposes, with local optimisations.

3.1 kd-Tree Based Indexing

For indexing, we need video traces to be evenly distributed in
a low dindx-dimensional space, therefore a hierarchical data-
partition type indexing scheme like kd-tree [9] can be applied
to partition the video trace space into non-overlapping
subspaces such that a binary tree structure can be built. At
retrieval time, query clip trace will only need to match with a
subset of video traces identified from the tree structure,
instead of the whole collection, therefore improving the
retrieval efficiency.

The PCA space is indeed, a good subspace for indexing
purpose, because it finds the dimensions with maximum
scatter of the data. For indexing purpose, we simply use the
first d basis functions from global PCA, AINDX =[a1

T, a2
T, …,

ad
T]. The objective here is to partition the video traces space

into hierarchical, non-overlapping subspaces such that a
binary tree structure can be built and the actually matching of
video shot traces can be limited to video traces in one or
several leaf nodes, therefore improve the retrieval speed
performance.

The covariance information obtained from global PCA
process is utilized in the indexing. The indexing starts with a
split of the whole collection along the maximum variance
basis a1, at the median value for all trace points projection on
a1. Then for left and right child, the maximum variance basis
ak is identified and the median value split along ak is
performed. The process is repeated in a breadth-first fashion
and propagate down the tree structure until some pre-
determined criteria for number of levels in the tree, and/or,
number of frames in each leaf node is met. At each node, a
minimum bounding box (MBB), Vmin, Vmax ∈ Rd is also
computed and stored with the split dimension k, and medium
value v.
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Figure 2. Indexing space partition example, L=12, d=2
An example of 200,000 frame video collection indexing

space partition is illustrated in Fig. 2. The trace space
dimension is d=2, and the depth of the kd-tree is L=12. There
are total 2048 leaf node level MBBs, each contains roughly
98 frames.

With the kd-tree partition of the trace space, video
sequences are further segmented by the MBB boundaries of
each leaf node, in addition to semantically meaningful
boundaries obtained from shot boundary detection. It is not
surprising that a semantically meaningful shot can be further
segmented by the leaf node MBB boundaries.

3.2 Retrieval with Leaf Node Embedded Metric

The retrieval consists of two steps. First, the area in the
indexing space traversed by the query clip, i.e. the leaf node
MBBs intersected by the querying clip trace, need to be
identified. Second, for all video traces in the identified MBBs,
compute the average projection distance between query clip
trace and video collection traces, if the minimum projection
distance is below certain threshold, then report a match ahs
been found and return the location of matching, otherwise,
report there is no match.

For a given point x in the query clip, the leaf node it
belongs to is identified through the algorithm given below,
FindLeafNode(x, node) {

IF IsLeafNode(node)
//MBB check
IF node.Vmin ≤ x ≤ node.Vmax

RETURN(node)
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ELSE
RETURN(NULL)

// check the cutting plane
k = node.cutDim; v = node.cutValue;
IF xk < v

FindLeafNode(x, node.LeftChild);
ELSE

FindLeafNode(x, node.RightChild);
}
For querying clips not exist in the collection, their trace points
may or may not pass thru any leaf node MBBs. Therefore, an
early rejection criteria is checked. As certain percentage of
query trace points fall outside all leaf node MBBs, then the
query clip is rejected as non-exist.
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Figure 3. Leaf nodes traversed space example
An example 40-frame query clip and its traversed MBBs

in the 2-d indexing space shown in Fig. 2 are plotted in Fig. 3.
A total of 3 leaf nodes are traversed by this query clip, which
is plotted as a connected line, while database side video
frames are plotted as dots.

Once the MBBs traversed by the query clip are identified,
the query clip need to be matched with all traces in those
MBBs to find out if there’s any match.

The trace geometry matching is based on the average
projection distance metric. Let an m-frame query clip trace be
Q=[q1, q2, ..., qm], and an n-frame video collection trace in
traversed leaf nodes be T=[t1, t2, ..., tn], then the average
projection distance, d(Q,T), as a function of location k, is
found by,
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Since this is a temporal sequence matching, the order of
projection location indices need to be enforced, that is, k1

*,
k2

*, …, km
* must be consecutive. Therefore the minimizer of

Eq. (3) can be uniquely identified k*=k1.
In deciding the existence of a query clip, all traces in the

traversed leaf nodes must be checked to compare the
minimum average projection distance with a threshold dmin,
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where T* is the trace with the minimum projection distance
with Q.

The accuracy of the distance metric, ||.||, used in Eq. (3)
directly affect the retrieval accuracy. The global Euclidean
distance metric in the indexing space does not offer enough
accuracy, especially for large collections, because the video
traces are not well separated, as shown in the example in Fig.
4. We need to find a new subspace/metric that more
accurately captures the behaviour of the traces.
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Figure 4. Embedded metric space example
Since a global model is not necessary for the retrieval, we

can project video traces in each leaf node, l, to a new
subspace, Bl, embedded in the global PCA model. For a given
number of dimensions drtrv, Bl =[b1, b2, ...,

rtrvdb ] is obtained

thru a local PCA with frame points x in node l,
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Therefore the distance for original PCA space points x1 and x2

in leaf node l becomes,

)()(|||| 212121 xxBBxxyy T
ll

T −−=− . (6)

By allow more dimensions in each leaf node than the
indexing space, the metric in Eq. (6) is more accurate. The
example embedded subspace for retrieval is shown in Fig. 4,
with the same 40 frame query example in Fig. 3. Notice that
in Fig. 4, the traces are better separated than in Fig. 3.

3.3 Computational Efficiency Analysis

Let the indexing efficiency of a kd-tree for a particular m-
frame query clip Q be,

)(
)(

QN

m
Q =η , (7)

where m is the length of the query clip, and N(Q) is the total
number of frames in leaf nodes traversed by Q. A perfect
efficiency is 1.0. The time complexity comprises of two parts,

)/()(),,( 2
2121 ηη mOtmLOtCCLmC +=+= . (8)

The leaf nodes search part is roughly C1, where m is the query
clip length and L is the leaf node depth in the kd-tree, and t1

reflects time spent on a scalar value comparison. The trace
matching part is C2, which is a product of query clip length m,
and number of leaf node trace points compared η/m . t2 is the

time to evaluate vector distance metric in Eq. (6). Notice that
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as video collection size doubles, to maintain roughly the same
indexing efficiency, we need to double the number of leaf
nodes. Therefore, L grows at O(logn), but C2 shall stay
relatively constant if indexing efficiency does not degrade
drastically.

4. Simulation Results

We set up our simulation from sequences in the MPEG-7 and
NIST TREC video data set. A total of 300,000 frames are
used in training the global PCA model A =[ a1

T, a2
T, …, ad

T].
At the luminance field scale of 8x6, we found that the global
model preserves 90.15% of energy at d=12. The data is
divided into set 1 and 2 consist of 200K and 100K frames
respectively.

For data set 1, we built two indexing structure with
dindx=2 and 3. Both indexing tree has L=12 levels and they
took 168 and 176 seconds to built on a 2.4GHz/256MB
Celeron notebook PC. Data set 2 is reserved for the negative
queries.

The proposed method is very fast and robust in retrieval.
For both indexing structure, we randomly set up 800 positive
with query clips lengths m=15,30,45, from data set 1, and
similarly 800 negative queries from data set 2. The
performance is summarized in Tables 1 and 2.
Table 1. Indexing/Retrieval Performance, L=12, dindx=2

Data
Set

m ErrRate
(e/200)

T1

(ms)
T2

(ms)
mean(η )

1 15 1/200 1.0 15.9 0.036
1 30 1/200 3.1 27.5 0.042
1 45 0/200 3.0 43.8 0.045
1 60 0/200 5.5 49.4 0.051

2 15 0/200 1.7 8.8 0.049
2 30 0/200 3.2 19.3 0.060
2 45 0/200 4.0 25.3 0.060
2 60 0/200 7.7 34.4 0.072

Table 2. Indexing/Retrieval Performance, L=12, dindx=3
Data
Set

m ErrRate
(e/200)

T1

(ms)
T2

(ms)
mean(η )

1 15 0/200 1.3 9.5 0.049
1 30 0/200 2.1 19.5 0.064
1 45 0/200 2.7 23.2 0.070
1 60 0/200 6.5 32.7 0.079

2 15 0/200 1.9 5.2 0.849
2 30 0/200 2.6 9.2 0.115
2 45 0/200 4.6 14.5 0.125
2 60 0/200 7.1 19.8 0.126

Notice that the accuracy is very good in both cases, and the
dindx=3 case has better indexing efficiency. T1 is the time
spent on locating leaf nodes, and T2 is the trace matching
time. The embedded retrieval metric space dimension used is
drtrv=2. The average total retrieval time range from 10.8 to
54.9 ms in both cases, this is a very fast performance
compared with the state-of-art.

5. Conclusion & Future work

In this paper, we developed an efficient video indexing and
retrieval scheme based on video traces. Locally embedded
metrics are trained for better retrieval performance. The
overall performance of the proposed solution is extremely fast
and very accurate.

In the future, we will try larger video data size, in range
of 100 hours, and add noise and corruption in query clip, to
test the robustness of the solution.
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