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ABSTRACT

Video encoding now is being implemented in various 

computing platforms with different computing capability, 

the requirement on the encoding complexity is also different 

according to different applications. As the most 

computation-intensive part of video encoding, the ME 

(motion estimation) should have a scalable complexity. This 

paper proposes a ME algorithm with fine-granular scalable 

complexity, a more important feature of the proposed 

algorithm is that it seeks for the complexity-distortion 

optimization. The given computation budget will be 

allocated to each MB (macroblock) in one frame. Each MB 

will consume its allocated computation by a hybrid search 

pattern. Experimental results show that the proposed 

algorithm can get a better computation-distortion 

performance than the existing ME algorithms. 

1. INTRODUCTION 

The ME (motion estimation) is the most computation-

intensive part of a video codec, that is why there are so

many fast ME algorithms such as [1]-[4] in literature. These 

algorithms aim at reducing the complexity while trying to 

keep the search accuracy as possible, but the complexity of 

these algorithms is not scalable. Nowadays the computing 

capability of different computing platforms differs greatly, 

even in the same computing platform, the constraint on 

encoding complexity is also different for different 

applications. For the conventional ME algorithms, if the 

actually spent complexity has exceeded the computation 

budget, the ME process has to be terminated ungracefully 

with search efficiency lost. On the contrary, if the 

computing capability is greater than that needed by the ME 

algorithm, the redundant computing capability is wasted 

without gain in search accuracy. 

There have been some ME algorithms which have 

scalable complexity such as [5]-[7]. In these algorithms, the 

complexity scalability is achieved by adjusting some 

parameters or thresholds. As a result, the complexity of 

these algorithms is only “layered” scalable. But they can not 

adjust their complexity accurately according to the 

computation budget. 

Different from the above algorithms, the proposed 

algorithm can accurately control its complexity to be equal 

with any given computation budget, thus the fine-granular 

scalable complexity is achieved. More important, the 

proposed algorithm seeks for the complexity-distortion 

optimization. The complexity-distortion optimization is to 

get better distortion result with a given computation budget. 

To achieve this goal, a computation allocation is used to 

allocate computation to different MBs in one frame, then a 

hybrid search pattern is used by each MB to fully utilize the 

allocated computation. 

The rest of the paper is organized as follows: section 2 

is to present the computation allocation strategy, section 3 

describes the hybrid search pattern, experimental results are 

in section 4 and conclusions in section 5. 

2. COMPUTATION ALLOCATION FOR 

COMPLEXIYT-DISTORTION OPTIMIZATION 

In the following of this paper, we will use the number of 

searching points to evaluate the complexity of a ME 

algorithm. The MSE (mean square error) between the 

current MB (macroblock) and the reference MB is used to 

evaluate the distortion. Suppose the MSE of the initial 

searching point is MSE0, after checking all the searching 

points, the MSE of the best point is MSE1, then the 

distortion benefit brought by ME is (MSE0-MSE1). 

Suppose the searching points budget for one frame is C and 

there are N MBs in one frame. The complexity-distortion 

optimization targets at the following goal: 
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D(MBi) is the distortion benefit of the ith MB, C(MBi) is the 

searching points that allocated to the ith MB. 

Due to the variety of motion field, the distortion benefit 

differs greatly for different MBs in one frame. For those 

MBs which belong to a stationary background, the 

distortion benefit is usually zero since the MV is often zero, 

but those MBs on the moving foreground object can get 

larger distortion benefit if they can successfully find the 

optimal MV (motion vector). If more computation is 
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allocated to the MBs which have larger potential distortion 

benefit, the overall distortion benefit of the whole frame can 

be larger. But the distortion benefit of one MB is not known 

before taking its ME.  

Previous work such as [8]-[9] has used an on-line 

strategy to allocate computation, take [8] for example, all 

the MBs in one frame are sorted into a list in descending 

order with their current MSE, at each allocation step, the 

computation is always allocated to the MB that has largest 

MSE. There exist some problems in this on-line strategy: 

the ME of all the MBs in this frame is actually processed in 

an interleaving way, a MB’s ME may be interrupted by 

other MB’s ME. Considering that the practical encoder 

always processes the MBs one by one, this interleaving ME 

process is not suitable for practical application. So we are 

using a heuristic method to pre-allocate computation before 

one frame’s encoding. 

For the ME in MPEG or H.26x, the MV prediction 

technique is used, one MB’s MV is predicted according to 

the neighboring MBs’ motion vectors. The initial searching 

point of the ME is the predicted MV. Suppose the MVD 

(motion vector difference) between the predicted MV and 

the best MV is (MVDx, MVDy). If the MVD is zero, there 

will be no distortion benefit. To further explore the relation 

between the MVD and the distortion benefit, we define the 

variable MVD_MB: 

_   ( )  ( )MVD MB abs MVDx abs MVDy              (1) 

Note that the abs(MVDx) is to get the absolute value of 

MVDx. If the MVD_MB is large, the best MV is far away 

from the predicted MV, the difference between the best 

candidate MB and the initial candidate MB is larger, thus 

the difference between the smallest MSE and the initial 

MSE is larger. So the MVD_MB can be used as an indicator 

for the potential distortion benefit. In the proposed strategy, 

the computation is allocated in proportion to the MVD_MB. 

But the MVD_MB of one frame’s MBs are still not 

known before this frame’s ME, fortunately, the MVD_MB 

can be predicted by using the context motion field 

information. Since there exists similarity between two 

successive frames’ motion fields, the distribution of the 

MVD_MB in two successive frames should also be similar, 

the distribution of MVD_MB in the previous frame can be 

used to predict the next frame’s. 

The MVD_MB of the co-located MB in the previous 

frame can be used to predict the current frame’s MVD_MB, 

but according to our experimental result, this MB to MB 

prediction is not so accurate since the two successive 

frame’s motion fields are not totally same, so we use a 

window-based prediction, a 3x3 MB window in the 

previous frame is selected (the center MB of this window is 

co-located to the current MB), the average value of the 9 

MBs’ MVD_MB is used to predict the current MB’s 

MVD_MB. 

To describe the details of the proposed computation-

allocation strategy, we assign each MB an index (t, i, j), t is 

the frame index, i and j means that the MB is in the ith MB-

row and jth MB-column of frame t., the variable 

MVD_region(t,i,j) is defined as: 
11
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Supposing one frame consists of MxN MBs, the given total 

searching points of each frame is C, the searching points 

allocated to MB(t,i,j) is C(t,i,j). In the proposed strategy, 

C(t,i,j) is allocated in proportion to MVD_regoin(t,i,j). As 

mentioned above, the MVD_region(t,i,j) is replaced by 

MVD_region(t-1,i,j): 
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In (2), a constant value 1 is added so that MVD_region(t,i,j) 

will always be non-zero, so the C(t,i,j) will not be zero in 

(3), i.e. each MB’s can at least get a non-zero computation 

budget. 

3. HYBRID SEARCH PATTERN 

After the computation allocation is completed, each MB 

should use a search pattern to fully utilize the allocated 

computation without exceeding or wasting. There are many 

search patterns for ME, they can be classified into three 

types: 

Local Search: these are the most popular search patterns 

such as [1]-[2], these search patterns assume that the ME’s

distortion surface is monotonic in a local region around the 

optimal MV, so these search patterns are compact and local-

based. They can get optimal MV with very few searching 

points when the motion is slow and small, but are easy to be 

trapped into local minimal when the motion is intensive. 

Global Search:  in the global search such as [4], the 

searching points compose of sparse grids which span the 

whole search window. The local minimal can be avoided 

under global search, but the computation waste may happen 

when the best MV is very near to the initial searching point. 

Full Search: the full search checks all the searching points 

in the search window, it can get the best search accuracy 

with the highest complexity. 

We evaluate a ME search pattern by its CD

performance, the CD performance is the ratio of the 

distortion benefit and the computation result that is needed 

to get this distortion benefit. The CD performance order 

should be local search > global search > full search, but 

when the computation budget is enough, the distortion 

benefit order should be full search > global search > local 

search.

To get the best distortion result under any computation 

budget, we propose a hybrid search pattern, local search 

pattern is firstly used, global search is then used, full search 
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is finally used. The search at any stage should be terminated 

if the allocated computation budget is exhausted. 

Figure.2 Hybrid search pattern 

Fig.2 shows the detail of the proposed hybrid search 

pattern, it can be divided into 3 steps: 

Step 1: Local search. The HEXS in [2] is used for the 

local search, the center of the initial hexagon is the 

predicted MV. The HEXS is terminated whenever the 

number of searching points has been equal to the budget. 

Step 2: Global search. The distribution of the searching 

points should conform to the distribution of the optimal MV. 

As previous work such as [3]-[4] has pointed out: the 

distribution of the optimal MV is cross-center biased, so the 

cross-shape is used for the global search, the center of the 

cross is the best point in step 1, the distance between two 

successive points is 2. Suppose the remaining searching 

points budget after step 1 is C, and there are W searching 

points in the horizontal direction and H searching points in 

the vertical direction, then we have the following equation: 

W H C                                                    (4) 

It should be pointed out that a MB’s motion may be either 

horizontal biased or vertical biased, so the computation 

should be unequally allocated to horizontal/vertical 

direction of the cross. We can predict the current MB’s 

motion trend with the motion information of the co-located 

MB in the previous frame. If current MB is MB(t, i, j), the 

MVD of MB(t-1, i, j) is (MVDx, MVDy),  W and H can be 

decided as follows: 

  min(   * /(   ) ,   )

   min(  * /(   ) ,   )

W C MVDx MVDx MVDy T

H C MVDy MVDx MVDy T
             (5) 

In (5), W and H are constrained by an upper bound T 

because a huge search range of the cross is not reasonable in 

practical ME. 

Step 3: Spiral search. Since the search range of the 

cross search is limited, there may be redundant computation 

after cross search when the budget is plenty. The full search 

uses a spiral pattern, the center of the spiral is the best point 

in step 2. When the remaining computation budget for the 

spiral search is very large, the spiral search will cover the 

whole search window and the optimal MV will not be 

missed. 

4. EXPERIMENTAL RESULTS 

To verify the performance of the proposed algorithm, we 

take two experiments. Experiment 1 is to compare the 

proposed algorithm with the full search. The full search 

searches all the searching points in a square window with 

the search range being [-R,R], if there are N MBs in one 

frame, the total searching points of one frame is (2R+1)2xN.

In experiment 1, R varies from 1 to 16, so the computational 

complexity fluctuates in a wide range. With each R, the 

equal computation budget is assigned to the proposed 

algorithm. The PSNR is used to evaluate the resulted 

distortion of ME. Three typical CIF sequences are chosen: 

Stefan (acute motion), Foreman (relatively fast motion), 

Paris (stationary background), the T in (5) is 32. 

Figure.3 Result on “Stefan” in experiment 1 

 Figure.4 Result on “Foreman” in experiment 1 

 Figure.5 Result on “Paris” in experiment 1 
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The above 3 figures show the results of experiment 1. It can 

be seen that the proposed algorithm’s complexity is fine-

granular scalable in a wide range, it also can be seen that the 

proposed algorithm can get a higher PSNR than full search 

at each comparing point set by R. 

As mentioned above, the full search has the worst CD 

performance among the existing ME algorithms, so 

experiment 1 can not demonstrate the optimized CD 

performance brought by the computation allocation. In 

experiment 2, the proposed algorithm is compared with 

HEXS in [2] which has a high CD performance. 

Stefan

Searching

points per frame 
Proposed HEXS 

4000 23.0808 22.5035 

5000 23.5611 23.0461 

6000 23.9976 23.3080 

7000 24.3420 23.4298 

8000 24.4959 23.4947 

Foreman 

Searching

points per frame 
Proposed HEXS 

4000 30.7624 30.0971 

5000 31.0454 30.7533 

6000 31.1913 31.0527 

7000 31.3737 31.2423 

8000 31.5044 31.3396 

Paris

Searching

points per frame 
Proposed HEXS 

4000 31.5848 30.9507 

5000 31.7315 31.4810 

6000 31.7624 31.6248 

7000 31.7886 31.6549 

8000 31.7974 31.6746 

Table.1 Result of experiment 2 

Since the computation spent by the HEXS is small, the 

computation budget in experiment 2 only fluctuates in a 

range of small value: from 4000 searching points per frame 

to 8000 searching points per frame. In HEXS, the 

computation budget is uniformly allocated to each MB, a 

MB terminates its search when its computation budget is 

exhausted. The experimental result is in Table 1. It can be 

seen that the PSNR of the proposed algorithm outperformed 

the HEXS in all the three sequences. The PSNR 

improvement is more obvious in “Foreman” and “Stefan”, 

this is because that there exists fast moving foreground 

object in the two sequences, more computation will be 

allocated to the MBs which are located in foreground object, 

these MBs can take global search to avoid the local minimal. 

On the contrary, nearly all the MBs of “Paris” belong to 

stationary background, the potential distortion benefit of 

these MBs are equally small, thus the effect of computation 

allocation is not so obvious. 

5. CONCLUSIONS 

To meet variable requirement on the complexity of ME, this 

paper presents a ME algorithm with fine-granular scalable 

complexity. To get an optimized CD performance, a 

computation allocation strategy is used to spend the 

computation at where it is needed. The context information 

of motion field is used as the clue of allocation. A hybrid 

search pattern which consists of local search, global search 

and full search is proposed. This search pattern can fully 

utilize any computation budget. Experimental results show 

that the proposed algorithm is not only fully scalable in a 

wide complexity range and but also has better CD 

performance than the existing ME algorithms. 
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