
MODELING ADAPTIVE MEDIA PROCESSING WORKFLOWS

K. Selçuk Candan# Gisik Kwon# Lina Peng# Maria Luisa Sapino$

#Computer Science and Engineering Dept. $Dipartimento di Informatica
Arizona State University Universita’ di Torino
Tempe, AZ, 85287, USA. Torino, Italy

{candan, lina.peng, gisik.kwon}@asu.edu mlsapino@di.unito.it

ABSTRACT
ARIA, ARchitecture for Interactive Arts, is a middleware to
process, filter, and fuse sensory inputs and actuate responses
in real-time. An ARIA media processing workflow describes
how the data sensed through media will be processed and
what audio-visual responses will be actuated. Each object
streamed between ARIA processing components is subject
to transformations, as described by a media workflow graph.
The media capture and processing components, such as media
filters and fusion operators, are programmable and adaptable;
i.e, the delay, size, frequency, and quality/precision charac-
teristics of individual operators can be controlled via a num-
ber of parameters. In this paper, we present the underlying
model which captures the dynamic nature of the ARIA me-
dia processing workflows. This model enables design time
verification, optimization, and runtime adaptation.

1. INTRODUCTION

Interactive performances (which incorporate realtime, sensed,
and archived media and audience responses into live perfor-
mances) require an information architecture that processes,
filters, and fuses sensory inputs and actuates audio-visual re-
sponses in real-time, while providing appropriate QoS. On
the other hand, currently, media artists and choreographers
are using best-effort tools, such as Max/MSP [1] and Pd[2],
which are limited in their expressive power and lack the capa-
bility of describing and enforcing realtime constraints. AR-
chitecture for Interactive Arts (ARIA) is a middleware we de-
signed to capture, stream, and process various audio, video,
and motion data in such sensory/reactive environments.

ARIA media processing workflows are modelled as di-
rected graphs where vertices (or nodes) represent sensors, fil-
ters, fusion operators, and actuators, while edges represent
connections that stream objects between components (Fig-
ure 1). In this paper, we present the underlying model which
captures the dynamic nature of ARIA. This model enables us
to develop optimization [5] and adaptation [10] algorithms for
QoS supported realtime operation. It also enables design time
reasoning on the resource-aware and quality-adaptive nature
of the workflows and estimation of their runtime properties.

THIS WORK IS SUPPORTED BY NSF GRANT # 0308268

χ

S

F

F

E

S

S

S

A

A

A

χ

Localization

Synchronizer

Synchronizer

Voice synthesizer

F

Lights

Monitor

Speakers

Mic.

Mic.

Camera

Color

Object detection

Object database

Motion detector

Detection
Target

Fig. 1. A media processing workflow: “S” denotes sensors,
“F” filters, “χ” fusion operators, and “A” actuators

2. ARIA MEDIA PROCESSING WORKFLOWS

An ARIA media processing workflow is created by combin-
ing various ARIA operators (i.e., nodes in the workflow graph)
which sense, filter, transform, and fuse media objects.

Objects: The basic information unit is a data object. Depend-
ing on the task, an object can be as simple as a numeric value
(such as an integer denoting the pressure applied on a surface
sensor) or as complex as an image component segmented out
from frames in a video sequence. Each object has (a) an ob-
ject payload, such as a string, a numeric value, or an image
segment, and (b) an object header, which consists of

• an object property descriptor, describing the object state.
It includes object size and object precision1.

• an object history descriptor, consisting of the set of re-
source usage stamps and timestamps acquired by the
object’s predecessors as they go through various oper-
ators. Among other things, the history descriptor en-
ables the computation of the overall age of an object in
the system (total delay observed since sensing) and the
corresponding resource consumption.

Operators: The adaptive nature of ARIA is largely thanks to
the components of the architecture that are programmable; in
particular, the delay and quality characteristics of individual
operators can be controlled via input parameters.

1For different object types, precision may mean different things; for an
image, its precision may mean its resolution, whereas for a coordinate value,
it may mean the level of confidence provided by the object tracking sensors.

5731424403677/06/$20.00 ©2006 IEEE ICME 2006

Fig. 2. An operator with three input queues and two behav-
iors; only one behavior will operate on the selected (darker
shaded) input objects. Each queue is overseen by a queue
manager, which may shed some of the objects (light shaded)

Sensors act as object sources. A scalable sensor can make
objects available at different frequencies, sizes, and preci-
sions. While sensors generate object streams, actuators con-
sume object streams and map them to appropriate outputs.

Filter and fusion operators have rich analysis, aggrega-
tion, and filtering semantics. In particular, they may perform
complex media processing, information clustering, and data
cleaning tasks. A filter takes a single stream of objects as in-
put, processes and transforms its inputs, and outputs a new
object. For example, consider a module that takes facial im-
ages as its input and returns face signature vectors as its out-
put. This module is a transforming filter. Note that the preci-
sion of the result may depend on the number of consecutive
face images considered or may depend on the algorithm used.
Consequently, filters are adaptable and may provide multi-
ple precisions, each with its own delay and resource require-
ment. A fusion operator is similar to a filter, except that it
takes multiple input object streams. For example, consider a
component which receives object-tracking information from
multiple redundant sensors and outputs fused highly-precise
object-tracking information. Fusion operators are also adapt-
able. In general, we model an operator as follows (Figure 2):

Definition 2.1 (Operator) An operator, v, has input and out-
put queues (Inqu(v) = {in qui, 1 ≤ i ≤ l} and Outqu(v) =
{out quj, 1 ≤ j ≤ k}) and a set of behaviors, B(v). The
operator picks a set, pickseti (where |pickseti| = wi), of
objects from each input queue in qui and applies one of its
behaviors, b ∈ B(v), to the resulting l-tuple

input intance = 〈pickset1, pickset2, . . . , picksetl〉
and outputs processed results into the output queues.
Based on the characteristics of the selected behavior function,
b ∈ B(v), the operator fuses and transforms the object pay-
loads (and combines and updates object histories).

Resources: Let Res denote the set of hardware resources
on which the ARIA architecture operates. Each resource,
r ∈ Res has a limit, limit(r), beyond which it stops function-
ing properly. Example resources include network resources,
CPU, and buffer available to ARIA nodes.

Queues: An operator v with l incoming and k outgoing edges
has l input queues, Inqu(v), and k output queues, Outqu(v).
Each edge e ∈ E between nodes vi and vj connects one out-
put queue of vi to an input queue of vj .

Each queue, q, in the system has limit on the number of
objects, obj limit(q), and a byte limit, byte limit(q). Once
any one of these limits is passed, no new objects are admitted
into the queue until the queue length drops below the upper-
bound. A queue manager, QM(q), oversees the queue, q.

Overloaded queues may necessitate object shedding [10].
Thus, each queue manager, QM(q), has a drop policy which
governs the object shedding criteria:

• drop selection criteria, dropC, help choose which ob-
jects to drop based on the age, size, precision, or history
(amount of resources used so far etc.).

Alternative Behaviors and Implementations: Each opera-
tor node v has a set of behaviors, B(v), where a behavior, b, of
an operator with l inputs is a tuple 〈inv sig, inqueue par1,
. . . , inqueue parl〉, where

• inv sig is the invocation signature, consisting of the
name of the code (or library) and the set of applicable
input parameter values; for instance, an image filter has
a different behavior for different distortion parameters.
Note that the complexity of the operator (in terms of
delay and CPU usage) and the result precision varies
with the value of the distortion parameter.

• inqueue pari is a tuple, 〈wi, ignCi, prCi, φi, sftCi〉,
describing the operation characteristics of the ith queue
for this particular behavior. These are described next.

Note that each behavior of a given operator can potentially
use the objects in the queues differently. The parameters gov-
erning how a behavior uses the queue in qui are as follows:

• a window size, wi, denotes the number of objects from
this queue to be used by the behavior at a time,

• object priority criteria, prCi, determine the order of the
objects in the queue for this behavior. If the criterion is
FIFO, objects are read from the queue in first in first out
manner. However, objects can also be read in the order
of a priority, based on the age, size, precision, or history
(such as the amount of resources already consumed).

• object ignore criteria, ignCi, determine which objects
in the queue should be ignored by this behavior. This
can be based on the age, size, precision, or history.

Once a behavior triggers and starts processing the selected
input objects, it may mark some objects in the queue (possibly
the objects used as inputs) unavailable for the next cycle.

• a shift parameter, φi, denotes the number of objects that
will be marked unavailable as a result of a triggering.

• object shift criteria, sftCi, determine which objects
will be marked unavailable. This condition can be based
on the age, size, precision, or history (amount of re-
sources used so far etc.) of the objects in the queue.

574

A special marker used identifies those objects which
have been used as input objects if they will be marked
unavailable for the next cycle.

The lightest objects in Figure 2 are those objects that are being
ignored by the selected behavior. The darkest objects, on the
other hand, are those that are selected for processing.

Note that since each operator has multiple behaviors, each
object in a queue is accessible by the multiple behaviors of
the corresponding node. An object in a queue processed and
marked unavailable by one of the implementations may be
ignored or not, depending on the ignore criteria (ignC) of the
other implementations. If an object in the queue is marked
unavailable or ignored by all implementations of an operator,
the object is dropped from the corresponding queue.

In ARIA, depending on the properties of an incoming ob-
ject (which in turn may depend on the characteristics of the
operators applied in earlier nodes) a node may necessitate a
different behavior. As illustrated below, the operating and
output characteristics of the queues and the implementation
semantics of the operator determines the output properties.

Example 2.1 Let us consider a motion detector filter which
receives a stream of frames and identifies the motion direction
of a frame-object in this stream. Let the following describe
the operation characteristics of this filter: (a) the filter has a
parameter w which denotes how many input frames are used
together to identify the motion direction, (b) the filter has a
phase parameter φ which denotes how many input frames are
skipped between two computations, (c) the queue drops one
out of every λ input frames. Let us also assume that the fre-
quency of the frames is fin and the size of each frame is sin.
We can compute the output characteristics as follows:

• since the queue drops one out of every λ input images,
the effective input frequency of the filter is fin × λ

λ+1

• the buffer requirement of the filter is r = w × sin,

• the filter computes one output for each φ input images,

therefore its output frequency is f =
fin× λ

λ+1
φ

• the operation delay (the maximum delay observed by
an input image before the output is generated) is d =
(w − 1) × 1

fin× λ
λ+1

+ dprocessing(sin)

• the output precision is a function of the processing pre-
cision of the filter operator as well as the window size,
the precision of the input objects, and the rate at which
some of the inputs have been dropped from the queue
before it is being processed

• the size of the output objects, sizeof(motion object),
is fixed and independent of the input size. �

Output qualities of the behaviors are modeled as functions of
the assessments of input objects. Each behavior, b, has an
associated quality merge function, µb, describing the qualities
of the output objects in terms of the qualities of the inputs.

cond

Processing

Completed

exec. cond

Preempted

preemption

trigger c.
Idle Waiting Ready

Fig. 3. State transitions for the behaviors of hard operators

In general, each behavior has a fixed amount of process-
ing bandwidth. If the operator is receiving more inputs to con-
sider, then the behavior should choose one appropriate input
combination (referred to as input instance) to process. Such
combination selection decisions have significant impacts on
the qualities of the fusion results. Therefore, each behav-
ior has an input selection model, which answers the question
“which combination of inputs in the input queues will be se-
lected as input instance to be processed by the behavior?”
The way the operator picks its inputs is governed by resource,
time, and quality constraints. When the number of combina-
tions to consider is larger than the behaviors capacity, then
system needs to shed (not the individual queued objects but)
combinations of objects that are not promising fusion candi-
dates. Therefore, each behavior also has an input combina-
tion shedding model. Finally, the consumption model of a
behavior determines whether an object, oi, already included
in an input instance processed by the behavior, will be re-
considered for further operations or will be marked used af-
ter its use.

Operating Conditions: In ARIA there are four types of op-
erators: hard regular, soft regular, hard irregular, and soft
irregular. Regular operators operate with a fixed frequency:
hard regular operators preempt any preexisting operation if
not completed on time, whereas soft regular operators wait
until the uncompleted operation finishes. Irregular operators
do not have associated frequencies; their behaviors are trig-
gered only when certain conditions are satisfied. In general,
behaviors are triggered only when one or more of the follow-
ing trigger conditions are satisfied:

• A temporal regulating condition (TC) is satisfied when
a proper amount of time has elapsed since the last time
the frequency condition was satisfied.

• A queue condition (QC) is satisfied when the queue
satisfies certain constraints (for instance, when the num-
ber of objects in the queue exceeds a threshold)

• Object property and history conditions (OPC, OHC)
are satisfied when the property and history descriptors
of the objects in the queues satisfy certain constraints
(for instance, when the precision of an object in the
queue exceeds a threshold)

• A flow control condition (FC) ensures the formation
of desirable workflows. These conditions enable the

575

dynamic behavior of the ARIA operators by adapting
workflows to real-time changes in the environment.

Furthermore, a behavior can be executed only when its exe-
cution conditions are satisfied. A behavior may not be in an
executable state for various reasons, including (but not limited
to) resource shortages. As the queue changes with the addi-
tion and removal of objects, the behaviors of a soft operator,
thus, can be in one of the five states.

• idle: behavior’s trigger condition is not yet satisfied.
• waiting: behavior’s trigger condition is satisfied, but

there is no implementation in the executable state.
• ready: behavior’s trigger condition is satisfied and there

is an implementation in the executable state.
• processing: the behavior is allocated the resources

needed for its operation, collected all the required ob-
jects, and is processing.

• completed: the behavior places its output objects into
the corresponding output queues and returns its resources
back to the system.

The behaviors of a hard operator, on the other hand, can also
be in a sixth state (Figure 3):

• preempted: the behavior has been preempted; thus it
returns the resources it holds back to the system.

Solid state transitions in the graph in Figure 3 occur as objects
are inserted or removed from the input queues of the behav-
iors. A single operator functions as a collection of such state
transition graphs, one for each one of its behaviors. The ex-
clusive execution of a single behavior among all possible be-
haviors is ensured through flow conditions (FCs). We are cur-
rently investigating a higher-granularity model where a com-
mon subset of trigger functions (such as temporal synchro-
nization primitives) are explicitly captured as in [3].

Media Processing Workflows: An ARIA media processing
workflow is a directed connected graph, G(V, E, β, C):

• V is a set of nodes and E is a set of edges between the
nodes on V .

• Let Vl×k ⊆ V be the subset of nodes in V which have
l inputs and k outputs. Let also Bl×k denote all behav-
iors with l inputs and k outputs. Then, βl×k : Vl×k →
2Bl×k is a mapping from the nodes in the network to
the subsets of behaviors and β is the collection of all
mappings applicable to the nodes in V .

• C is a set of temporal and quality contraints that the
media processing workflow should enforce.

For example, C may include an end-to-end quality constraint
stating that we need to be at least κ confident that the quality
of the objects arriving to an actuator is above a lowerbound,
q⊥. A mapping, res map : V → 2Res, describe to which
resources the operators and their input and output queues are
mapped. Static optimization [5] and runtime adaptation [10]
schemes use this model for QoS supported operation, by se-
lecting appropriate behaviors and input objects to operate on.

3. RELATED WORK

Adaptation has always been a crucial aspect of data flow sys-
tems [13, 6]. Recently there has been a number of efforts
in composition of multimedia services (SpiderNet [8], SA-
HARA [12], SPY-Net [15], CANS [7], and Infopipes [4]).
In most of these, the goal is to communicate a media object
from a source server to a consumer, while the overlay rout-
ing nodes provide (mostly application level) services, such as
transcoding and mixing. Unlike these works, which focus on
the delivery of an object, our focus is to address challenges as-
sociated with media processing workflow design, adaptation,
and evolution that arise in sensory/reactive environments. In
[14] a multi-resource reservation framework for distributed
collaborating services is proposed. Q-RAM provides a set
of QoS optimization schemes, with discrete QoS options, in
the context of video-conferencing [9]. Unlike ARIA, which
considers workflows, Q-RAM considers each task as an in-
dependent application and imposes the quantification of the
system utility on users via weighting the linear combination
of all quality dimensions of all applications.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we described the model for representing the
dynamic and adaptive nature of operators in ARIA media
processing workflow middleware. The model presented here
is memoryful in the sense that state transition conditions are
described through high-level trigger conditions that rely on
object histories. We are currently investigating a model where
a common subset of trigger functions (such as temporal syn-
chronization primitives) are explicitly captured.

References
[1] http://www.cycling74.com/index.html
[2] http://www-crca.ucsd.edu/∼msp/Pd documentation/
[3] P. Bertolotti, O. Gaggi, and M.L. Sapino, A State-Transition Model for

Distributed Multimedia Documents, DMS 2004.
[4] A. Black, et al.. Infopipes: An abstraction for multimedia streaming,

Multimedia Systems 8: 406-419, 2002.
[5] Lina Peng, et al. Optimization of Media Processing Workflows with

Adaptive Operator Behaviors MTAP Journal, 2006.
[6] D.Carneyet.al. Monitoring Streams-A New Class of Data Manage-

ment Applications.VLDB02.
[7] X. Fu, W. Shi, A. Akkerman and V. Karamcheti. CANS: Composable,

Adaptive Network Services Infrastructure, USITS 2001.
[8] X. Gu and K. Nahrstedt. Distributed Multimedia Service Composition

with Statistical QoS Assurances, IEEE Trans. on Multimedia, 2005.
[9] C. Lee et al. On Quality of Service Optimization with Discrete QoS

Options, IEEE Real Time Tech. and App. Symposium, 1999: 276-.
[10] Lina Peng and K. Selcuk Candan. Confidence-driven Early Object

Elimination in Quality-Aware Sensor Workflows, DMSN 2005.
[11] L. Peng et al. ARIA: An Adaptive and Programmable Media-flow Ar-

chitecture for Interactive Arts, ACM MM Inter. Arts Program, 2004.
[12] B. Raman and R. H. Katz. An architecture for highly available wide-

area service composition, Computer Communication, 26(15):1727–
1740, September 2003.

[13] M.A.Shah and S.Chandrasekaran, Fault-Tolerant, Load-Balancing
Queries in Telegraph, SIGMOD Record, v.30 n.2, p.611, June 2001.

[14] D. Xu, K. Nahrstedt, and D. Wichadakul, QoS and Contention-Aware
Multi-Resource Reservation, Cluster Computing, 4, 95-107, 2001.

[15] D. Xu and K. Nahrstedt. Finding Services Paths in a Media Service
Proxy Network, MMCN, 2002.

576

