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ABSTRACT

In this paper, we present a joint multimodal (audio, visual and
text) framework to map the informational complexity of the
media elements to comprehension time. The problem is
important for interactive multimodal presentations. We propose
the joint comprehension time to be a function of the media
Kolmogorov complexity. For audio and images, the complexity
is estimated using a lossless universal coding scheme. The text
complexity is derived by analyzing the sentence structure. For
all three channels, we conduct user-studies to map media
complexity to comprehension time. For estimating the joint
comprehension time, we assume channel independence resulting
in a conservative comprehension time estimate. The time for the
visual channels (text and images) are deemed additive, and the
joint time is then the maximum of the visual and the auditory
comprehension times. The user studies indicate that the model
works very well, when compared with fixed-time multimodal
presentations.

1 INTRODUCTION

In this paper we present a joint multimodal framework that
estimates the comprehension time for a multimodal element
(audio, images and text) based on the element information
complexity. The problem is important in interactive
presentations (slide shows, electronic games) where adaptive
multi-sensory display mechanisms are needed. This is also
important in consumer photo products such as [2], where the
consumers create automated audio-visual slideshows.

There has been prior work on mapping the visual content to
presentation time [9,14]. Both the models are limited to the
visual comprehension and attention. While [14] discusses a
relationship between visual complexity and comprehension
time, [9] discusses a simple spatial attention model for the
images. There has been prior work in auditory analysis [3,11]. In
[4], the creates an audio skim by shortening pauses and by
detecting segments of high-pitch activity. In [11] uses the idea
that auditory perception is related to the identification of
structure. There has been prior work on sentence complexity
[5,8]. They show the dependence of comprehension on sentence
structure and working memory usage. In prior work, there is no
formal mechanism to map complexity to presentation time.

In our approach, we develop a joint multimodal model for
comprehension. We build upon our early work on visual
complexity [14] and map the normalized image complexity to
comprehension time. The sound clips are analyzed using a
psychological experiment, and the normalized sound complexity
is then mapped to comprehension time, by determining upper
and lower comprehension time bounds. The sentences are
categorized into eleven categories, and are additionally limited
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to two-clause sentences. Another experiment is conducted to
map the category to comprehension time.

In our joint model, we assume that the audio, visual and text
modes are independent. This is a simplistic assumption, and
yields a conservative model. The joint compression is
determined as maximum of the visual comprehension time
(including sum of the time for reading text and seeing images),
and the audio comprehension time. The user-studies indicate
that the joint model works very well.

The rest of this paper is organized as follows. In the next
section, we discuss insights into the problem of complexity and
comprehension. Then in sections 3,4,5 we develop the
comprehension model for images, sound and text. We present
the joint model in section 6. We then discuss our experiments
and present our conclusions.

2  COMPLEXITY AND COMPREHENSION

There is empirical and experimental evidence that suggests that
there exists a relationship between the complexity of a media
element and its comprehensibility. In auditory scene analysis
[10], there are grouping rules for the perception of sound. In
film-making, there is a relationship between the size of the shot
and its apparent time (i.e. time perceived by the viewer):

“Close-ups seem to last relatively longer on the screen than
long shots. The content of the close up is immediately identified
and understood. The long shot on the other hand, is usually
filled with detailed information which requires eye-scanning
over the entire tableau. The latter takes time to do, thus robbing
it of screen time ’[12].

Recent results in experimental
psychology [7] indicate the
existence of an empirical law: the
subjective difficulty in learning a
concept is directly proportional
to the Boolean complexity of the
concept. Boolean complexity of a
concept is defined as the number
of literals, ‘n’ in its irreducible
form (the length of the shortest
prepositional formula
representing the concept — i.e. its
logical incompressibility).

Figure 1: How much time
is needed to comprehend
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relationship between the

compressibility and the concept learning, as well the wealth of
empirical evidence has motivated our work on comprehension
time of media based upon media compressibility. In this paper
we have developed a joint model relating the comprehension
time for a multimedia element (visual, audio and text), to their
respective normalized complexities.



3  VISUAL COMPEXITY

We now summarize the key findings of our earlier work [14] on
the relationship between visual complexity and comprehension,
as it is a key element of this paper. In [14] we defined the visual
complexity of an image to be its Kolmogorov complexity [6].
Thus the visual complexity is defined as follows:

Ky(x/m = min I(p), <1>

where, U(p) denotes the output of the program p on an universal
Turing machine, x is the string of length » and K (x/n) is the
Kolmogorov complexity of the string x given the length n.
Further, since Kolmogorov complexity is non-computable [6],
we showed that the Kolmogorov complexity of any string is
shown to be asymptotically upper-bounded by the compression
ratio provided by any universal lossless image coding such as
the Lempel-Ziv coding [14].

1iml1LZ (X)—> l1<U(X | n), <2>
n—epn n

where /; 7 is the length of the Lempel-Ziv codeword and where X
is a binary string of length n. A psychological experiment was
used to map the visual complexity to the comprehension time
based on the average times taken to answer who, where, what
and when for each image [14]. The experiments showed that the
comprehension time for an image with complexity ¢ was bound
as follows:

U,(c)=240c+1.11,
L,(c)=0.61c+0.68,

<3>

Where U, the upper bound is the 95" percentile bound. This
means that 95% of the time, the images with the complexity ¢
can be comprehended within this time. And where Lj is the
lower bound and ¢ is the normalized image complexity. The
experiment ignored the temporal correlation in films, and hence
the upper bound is a conservative bound on comprehension.

4 AUDITORY ANALYSIS

We define the audio complexity of a sound clip as its
Kolmogorov complexity. We can derive a formula similar to
equation <2>, since it holds for any binary string. In our
framework we use FLAC [1], the lossless audio encoder to
compute the normalized audio complexity. The normalized
audio complexity is just the ratio of the length of the FLAC
compressed file to the length of the uncompressed sound file.

We conducted a simple experiment to derive a mapping from
audio complexity of a clip to its comprehension time. We
created a corpus of 300 sound clips with compression ratios
ranging from 0.4 to 1.0. Each sound clip was 20 seconds long
and was sampled from the author’s personal music store to make
sure that the user had heard them earlier. We ensured that the
collection of clips were diverse.

Most of the original clips had a compression ratio ranging
between 0.4-0.8. The audio sequences with a higher complexity
were generated by adding Gaussian noise to the original audio
sequences such that the SNR was between 0db to 1 db.

In the experiment, a sound clip was chosen at random and

presented to the user. The experiment involved a simple
identification task — we asked the user to determine if she could

identify the sound. This was done in multiple sessions of five
minutes each to avoid fatigue. The response time was recorded.
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Figure 2: Comprehension time plotted against
audio complexity and the upper-bound

The response time for each audio clip was plotted against its
normalized complexity. The complexity axis was divided into
bins and the histogram of the response times for each bin was
plotted. For bins with sufficient number of samples, the
histogram showed similarity to the Rayleigh distribution. By
using the 95" percentile cut-off for each histogram we get an
upper bound on the comprehension time for each bin. The upper
bound for the comprehension time for each value of complexity
was then estimated by the least squares fit to the upper bound in
each bin. Similarly, a lower-bound for the comprehension time
was estimated using the 10™ percentile. The equation of the
bounds are as follows:

U,(c) = 4.62¢ +1.90,
L,(c)=2.72¢+0.32,

<4>

where c is the normalized complexity and U, is the upper bound
and L, is the lower-bound on the comprehension time. The
upper bound signifies that 95% of the time, the audio clip can be
comprehended in this time. We use the upper bound to estimate
the comprehension time of sound clips.

5 TEXT COMPREHENSION

We build upon prior work on sentence complexity [5,8]. They
show the dependence of comprehension on sentence structure
and working memory usage. The authors classify the sentences
based upon their sentence complexity and rank them. The
authors suggest several guidelines —center embedded sentences
are more complex than right branching sentences and that object
relative sentences are more complex than subject relative
sentences. Examples of such sentences:

= Right branching sentence: The boy is robbing the
woman who is standing by the pole

= Center embedded sentence: The woman who is
standing by the pole is being robbed by the boy.

= Subject relative sentence: The policemen chased the
thief.

= Object relative sentence: The thief was being chased
by the policemen.

Note that these complexities do not have order relationships
amongst them. There is no relationship between the sentences
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Figure 3: Sentence comprehension times for each
category and the respective upper bounds.

that differ in two of these properties or two degrees of freedom
(thus the Right branching object relative may not be compared
to center embedded subject relative). It is important to note that
prior work did not investigate the relationship between these
sentence categories and comprehension time.

We conducted a simple experiment to quantify the time required
for comprehension for different categories of sentences. We
created a corpus of sentences where each sentence belongs to
one of these classes with a maximum of two clauses. We defined
eleven sentence categories as follows: Subject relative (SR),
Object relative (OR), Conjoined subject relative (CSR),
Conjoined object relative (COR), Conjoined role changing
(CRC), Right branching subject relative (RBSR), Right
branching object relative (RBOR), Right branching role
changing (RBRC), Center embedded subject relative (CESR),
Center embedded object relative (CEOR), Center embedded role
changing (CERC).

The corpus sentences were presented to a set of six users in a
random sequence and we measured time taken by the user to
comprehend the sentence. The 95™ percentile of the
comprehension time for each category was calculated and was
fixed as the upper-bound on the comprehension time for the
sentence class. The comprehension times and their upper (95th
percentile) and lower (5th percentile) bounds for each class,
normalized by the length of the sentence, are as shown in Figure
3. Note that the mapping is per class, the classes themselves are
not ordered.

Our experiments are consistent with prior results. We use the
upper bound comprehension time per class, to compute the
comprehension time per sentence. Note that in our framework,
we are assuming that the sentences would be classified in one of
eleven categories — this is likely in simple, interactive
environments where the creator has complete control over the
text.

6 JOINT COMPREHENSION MODEL

In the previous three section we determined the comprehension
time for visuals, sound and text independently. This is an
unrealistic scenario, since produced media involves highly
correlated elements. Also, in the natural environment sound and
vision are highly correlated.

Our approach is very useful in interactive environments where
media (audio, visuals and text) are being generated as a
consequence of user interaction — in such cases the
comprehension time of the multimodal element cannot be
known a priori. Secondly, the uncorrelated estimates form a
highly conservative estimate of the time for comprehension.

We now present a model for estimating the joint comprehension
time for the set of media elements representing a particular
concept. Then, using the uncorrelated estimates the joint
comprehension time of the three elements is as follows:

+1 <5>

text

t, =max (1,

vision taudio ) ’

where #; is the comprehension time estimate of a multimodal
element comprising text, sound and image. t,,, is the average
comprehension time for the text (averaged over all the sentences
in the multimedia element), ¢, is the comprehension time of
the image, and ¢,,4;, is the comprehension time estimate of the
sound clip.
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Figure 4: Joint Comprehension time plotted against
audio and visual complexity.

The formula (eq. <5>) assumes that the audio and the visual
channels are processed in parallel. This would imply that the
time to comprehend the text and the image must be necessarily
additive. We use the maximum of the two times, as a
conservative estimate. The estimate of the joint comprehension
time is plotted against the audio and visual complexity axes for a
fixed textual complexity is shown in Figure 4.

7 EXPERIMENTS

In this section we discuss our experiments with users and
analyze the experimental results. We conducted two experiments
that evaluated our model under two different settings. We
evaluated our models through a pilot user study with five users.

In the first experiment, two different automatic presentation
systems were created, the first one with the media elements
being presented for a duration modeled using the joint
complexity analysis discussed above and the second with each
media element being presented for a fixed amount of time. The
time for fixed case was set at 3 sec. —a common duration setting
in slideshows. The media elements were presented in the same
order for both presentations.

Each user was shown both presentations, in random order. The
experiment was double blind. The users were then asked to
evaluate the presentation duration. They were asked to rate how
many of the media elements were presented for a duration that



according to them was adequate and comprehensible. The rating
was on a scale of 1-7, 1 representing none of the media elements
were presented adequately and 7, all were presented for an
adequate duration. The results obtained are tabulated below:

Table 1: Average Rating of users for evaluating the media
presentation duration

. Adequacy R
Presentation type of duration Comprehensibility
Our joint complexity 6.0/7 65/7
model ) )
Fixed media 10/7 20/7

presentation duration

The users felt that in the case of the fixed presentation duration
system, the media were shown either too fast or too slow, in
most cases. This validates the joint comprehension time model,
for the non-interactive media presentation.

In the second experiment, we introduced interactive
environments, to test the model. The hypothesis was that
interactive frameworks give the users much greater control over
the presentation and would hence be less likely to notice the
improvements due to our framework. We used an interactive
system developed by our group [13] for testing. It was modified
to serve the needs to this experiment.

The system comprised of a interactive audio-visual environment.
User interaction lead to additional media elements being shown.
Three interactive environments were created, with the
presentation duration of the media elements in each case being
(a) fixed and very low (b) in accordance to our model and (c)
fixed and very high respectively. The ‘low’ duration was fixed
to be 1 sec. and the high duration was fixed to be 10 sec. Note
the ‘optimal durations’ for the entire data set lie between 1.5 sec
and 8 sec. Hence the ‘low’ and the ‘high’ bounds are reasonable.

We allowed users to interact with each of these three systems
and asked the users if the presentation time affected their
interaction experience adversely. They rated the systems on a
scales of 1-7. All users felt that their experience with the system
that incorporated our model of media comprehension duration
was better than the other two. The results are tabulated below.

Table 2: Average Rating of users for evaluating media
presentation duration

Presentation type Interaction experience

Very llow ﬁxed' 130/7
presentation duration
Our joint complexity 6.67/7
model
Very high and fixed 567/7

presentation duration

The rating was good for the presentation system with the high
presentation duration because the users had the capability to
interact with the system to have it present another media element
if they felt they had seen enough — this was not possible with the
system with the low duration. The experimental results indicate
that our conservative joint comprehension time framework
works well, both in non-interactive and interactive frameworks.

8 CONCLUSIONS

In this paper, we presented a joint complexity-comprehension
model to determine multimedia presentation durations. The
work was motivated by observations in film-making and recent
result is cognitive psychology. In our framework we assumed
that audio, visual and text to be uncorrelated. We showed how
the visual complexity as well as the audio complexity cane
measured by their Kolmogorov complexity. We conducted
experiments on text using sentence categories and measured the
normalized comprehension time. The joint comprehension time
was derived as the maximum time required for comprehension
via the auditory and visual (including time for text) channels.
We conducted a variety of experiments on both interactive and
non-interactive presentations, and the results indicate that our
framework outperforms static-time based presentations. We plan
on developing a model that incorporates explicit correlations
amongst media, for better comprehension time estimates.
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