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ABSTRACT

This study describes experiments on automatic detection
of semantic concepts, which are textual descriptions about
the digital video content. The concepts can be further used
in content-based categorization and access of digital video
repositories. Temporal Gradient Correlograms, Temporal
Color Correlograms and Motion Activity low-level fea-
tures are extracted from the dynamic visual content of a
video shot. Semantic concepts are detected with an expe-
ditious method that is based on the selection of small posi-
tive example sets and computational low-level feature
similarities between video shots. Detectors using several
feature and fusion operator configurations are tested in
60-hour news video database from TRECVID 2003
benchmark. Results show that the feature fusion based on
ranked lists gives better detection performance than fusion
of normalized low-level feature spaces distances. Best
performance was obtained by pre-validating the configu-
rations of features and rank fusion operators. Results also
show that minimum rank fusion of temporal color and
structure provides comparable performance.

1. INTRODUCTION

Typically content-based video retrieval (CBVR) systems
deal with low-level features that convey very little about
the semantic content unless a trained system creates asso-
ciations from the low-level features to a higher semantic
context. For example, automatic detection of the presence
of people support queries that attempt to locate a specific
person from video database. Several studies have ad-
dressed the semantic feature, which is also described as
semantic concept, detection [8][9][10][11].

In this study, semantic concepts mean textual terms
that represent a conceptual entity in a video. They can be
detected using automatic, semi-automatic or manual tools.
Automatic detection holds a level of uncertainty whereas
manual annotation can be subjective and laborious to cre-
ate. An ensemble of classifiers can be trained for each
concept. However, training of multiple classifiers for large
concept lexicon can be tedious. A fast and simple method
to build concept detectors was introduced in [6], where
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detectors were trained by selecting only small sets of posi-
tive examples for every concept.

This paper presents extended experiments with visual
detectors for 12 semantic concepts from TRECVID 2003
semantic feature detection task [13]. The detectors use
low-level visual features that measure video motion activ-
ity and spatial correlations of image gradients and colors.
In comparison to prior research on visual detectors [13][6]
this paper reports experiments with broader sets of con-
cepts, low-level features, fusion techniques, training set
sizes and larger test database. Section 2 describes selected
low-level features and the fusion operations used in con-
cept detectors. Section 3 describes the diverse experi-
ments and Section 4 finalizes the paper with conclusions.

2. DETECTING SEMANTIC CONCEPTS

Semantic concept detectors create ordered video shot lists
to describe the certainty of detection throughout the video
database. In [6] we observed that several concepts co-
exist and correlate in a video, which is not suitable for
multi-class classifiers. Our approach is to have several
simplified concept detectors that are trained using small
sets of positive example shots, each propagating labels to
their nearest neighbors in selected feature spaces. The
detection confidence is relative to the measurable low-
level feature dissimilarity between the example and target.

2.1 Low-level Features

Features used in the detector measure motion, color and
structure of a video shot. Dissimilarity between two fea-
ture vectors is measured using normalized city-block dis-
tance (L;-norm). Short description of the used features
follows:

Motion Activity (MA). MA is based on definitions
of MPEG-7 Visual standard [4]. Following values de-
scribe the type of motion in the shot: discrete motion in-
tensity; average intensity; short, medium and long runs of
zero motion blocks.

Temporal Color Correlogram (TCC). TCC com-
putes the autocorrelation of HSV pixel colors in the spa-
tial neighborhood of the 20 temporally sampled video
frames creating a vector of 432 feature values. Its effi-



ciency against traditional color descriptors has been re-
ported in [2][3]. TCC captures the probabilities for a pixel
color to appear at given spatial pixel distances throughout
a frame sequence. For a more detailed description of the
algorithm, see [2].

Temporal Gradient Correlogram (TGC). TGC, ini-
tially used in the detector experiments in [6], describes
spatial correlation of edge orientations in an autocorrelo-
gram. The feature is computed from the 20 temporally
sampled video frames in a shot. It depicts the dynamical
compound of structural elements in a shot. Briefly, the
Prewitt edges [12] are first detected and quantified from
the sampled frames. Then the spatial autocorrelation is
computed resulting a TGC vector of 20 feature values.
More details about the algorithm can be found in [6].

2.2 Fusion of Low-level Features

Concept detectors are initialized with sets of K positive
examples to produce result sets z/ (). The propagation of
labels follows: First, dissimilarities to the example & in
low-level feature space / results in rank-ordered list p/ (k)

where ks nearest neighbor has highest concept confidence.
Subsequently p/ (k) lists for every / 1...L are combined

using either combination of ranks (Borda count variant)
[5] or fuzzy Boolean combination of dissimilarity values:
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2.3 Result Set Fusion

® ) contains a list of ranked database items and is a

manifestation of confidence votes for a concept f based on
overall similarity to the example k. Next, the ordered lists

S (),, R/ (k) are combined with a fusion operator  to
form a final confidence s/ (1) for each item 7. Finally, X
top results are clipped for the evaluation procedure:
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where s/ (n)is the confidence of a shot n to contain con-
cept £ r/(k,n) is rank or dissimilarity of item n to the
query example k of concept 1. R/, (k)is maximum rank or

dissimilarity to the query example £ in its result set. s/ is
final ranked set of results for the concept /. [ ], is X top-

ranked items in a list. NV is the size of the feature index.
is a fusion operator: minimum-rank (MIN), rank-
aggregation (SUM) or minimum distance (MINDIST).

3. EXPERIMENTS WITH NEWS VIDEO

The experiments were conducted in the framework of
TRECVID 2003 semantic feature extraction task [1]. The
task consisted of returning 2000 top ranked video clips for
preset semantic features from a database of ~32000
MPEG-1 shot segments from ABC, CNN and C-SPAN.
Following semantic concepts were used in this work: ‘out-
doors’, ‘people’, ‘building’, ‘road’, ‘vegetation’, ‘animal’,
‘car/truck/bus’, ‘aircraft’, ‘non studio setting’, ‘sporting
event’, ‘weather news’ and ‘physical violence’.

3.1. Pre-validated Concept Detector Configurations

As a part of TRECVID 2003, IBM organized a joint col-
laborative video annotation effort to create a common
ground truth for the development data [7]. 60 hours of
shots were collaboratively labeled based on preset concept
list and the annotations were distributed in MPEG-7 for-
mat. In this work the annotations were used in prior vali-
dation of the best detector configurations. The perform-
ance was compared against static configurations to find
out the extent of gain for the computational validation.

First, positive example sets were selected from the
development data as the input for the concept detectors.
The sets were kept small. Sizes ranged from 7 for ‘out-
doors’ to 26 for ‘car/truck/bus’. Total count of positive
examples was 217 and no negative examples were needed.

The validation was conducted by measuring the per-
formance with different feature (MA,TCC,TGC) and rank
fusion (MIN,SUM) configurations using the annotated
truth data. The performance was measured from the detec-
tor output of 300 best ranked shots as the average of the
precisions at correct detections.

Validation revealed two dominant detector configura-
tions: First was a combination of TCC and TGC with

,  set to MIN (best performance in ‘outdoors’, 'road’,

’animal’, ’car/truck/bus’). Second used only color feature
TCC with set to MIN (best performance in ‘vegeta-
tion’, ’sporting event’, ‘weather news’, ‘physical vio-
lence’).



3.2. Semantic Concept Detection Experiments

For the actual test experiments detectors retrieved 2000
ranked shots from the test collection, which was not used
during the development and validation phase. The evalua-
tion used ground truth data created at NIST by pooling
submitted results and creating relevance judgments [1].

The experiments evaluate the significance of low-
level features, fusion operator configurations and pre-
validation on detector performance. The effect of reduced
training set was also tested with 106 examples
(MT_extra3).

A single detection run consisted of detector outputs
for all 12 features. Table 2 shows the overall run perform-
ance as the run-wise mean and median of the average pre-
cisions for all feature and fusion configurations. Average
precision (AP) is a measure reflecting the performance
over all relevant items in the result list, roughly depicting
the surface under a precision recall curve [1]. The first
row shows the performance of the validated configura-
tions. Second row shows a fixed configuration of TCC
and TGC features with set to MIN. The first five

runs (from MT1 to MTS5) were used in the pooling of re-
sults at NIST whereas the runs from MT_extral to
MT_extra5 were not contributing to it.

Table 1. Detector configurations and performance
RunID Used Features Mean Med
MT1 VALIDATED VALID. VALID. 9.0 4.7
MT2 TCC/TGC MIN MIN 7.5 5.6
MT3 MA/TGC/TCC SUM  MIN 3.7 2.5
MT4 MA/TGC/TCC MIN MIN 6.3 53
MT5 TGC - MIN 4.3 43
MT_extral TCC - MIN 7.8 33
MT_extra2 TCC/TGC SUM  MIN 6.6 3.0
MT_extra3 TCC/TGC MIN MIN(106) 5.7 4.5
MT_extra4 TCC/TGC MIN SUM 3.9 1.8
MT_extra5 TCC/TGC MDIST MDIST 3.6 3.2

Run-wise means of the average precisions show that
the validated detector configurations in MT1 obtained the
best overall detection. Best median was obtained with
fixed detector configuration of TGC and TCC together
with MIN operators (MT2).
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Figure 1. Detector precisions at nr. of shots retrieved (excluding ‘weather news’). a) rank vs. metric based fu-
sion operators b) the effect of various fusion operators ¢) small vs. large example sets d) color vs. structure



Using motion activity decreased multi-feature detec-
tor performance. As for individual performance TCC run
defeated TGC run by performing better in ‘weather news’,
’vegetation’, ’aircraft’, ‘sporting event’, and ‘physical
violence’. Overall best detection performances were ob-
tained in ‘weather news’ (run MT1: AP 0.501), ‘sporting
event’” (MT_extrad: AP 0.152) and ‘people’ (MT1: AP
0.096).

Figure 1 shows the detector precisions for selected
runs without the performance of ‘weather news’, since the
structure of weather news in the test collection favors the
color feature TCC. At the top left figure, rank based MIN
operator outdoes MINDIST, which selects the minimum
of normalized L, distances to combine features and exam-
ples. MINDIST is weaker although it preserves the dy-
namical structure of the feature space unlike rank fusion.
Figure at the top right corner shows that MT2 with MIN
operator outperforms runs with SUM (aggregated ranks)
and is nearing the performance of the validated run
(MT1). Small (106) and large (217) example sets are con-
trasted at the lower left figure. With fewer examples ini-
tial precision is increased with the cost of recall. Figure at
the lower right plots the difference between TCC and
TGC performance. The steeper curve of TCC indicates
that the local color correlation is effective only when the
structure of color is playing a vital role in the context of a
semantic concept, as in ‘vegetation’, otherwise the feature
becomes confused. TGC feature is based on intensity gra-
dients and is less restricted to specific visual settings.

4. CONCLUSIONS

Semantic concept detection experiments in a large news
video database were presented in this work. Training is
simple and computationally inexpensive. Unlike tradi-
tional classifiers, only small positive example sets are
required in training.

Experiments showed that the rank-based fusion of
features results in better overall performance than the fu-
sion based on normalized low-level feature vector dis-
tances. Also minimum rank fusion is more effective than
aggregation of ranks. Increasing the example set size was
found to improve recall but degrade initial precision. TCC
is particularly effective in concepts where color dominates
the visual context, but is limited into fixed chromatic set-
tings. Combination of TCC and TGC provides a good
trade-off. In the future, detection performance could be
improved using weights. Also performance against tradi-
tional classifiers should be inspected.

ACKNOWLEDGEMENTS

We would like to thank the National Technology
Agency of Finland (Tekes), Academy of Finland and
Nokia Foundation for supporting this research.

11. REFERENCES

[1] TREC Video Retrieval Evaluation.
nlpir.nist.gov/projects/trecvid/ (4.1.2005)

http://www-

[2] M. Rautiainen, and D. Doermann, “Temporal color correlo-
grams for video retrieval.,” Proceedings of 16th International
Conference on Pattern Recognition, Quebec City, Canada, 2002.

[3] J. Huang, S.R. Kumar, M. Mitra, and W.J. Zhu, “Image
indexing using color correlograms,” Proceedings of IEEE Com-
puter Society Conference on Computer Vision and Pattern Rec-
ognition, San Juan, Puerto Rico, pp. 762-768, 1997.

[4] B.S. Manjunath, P. Salembier, and T. Sikora, Introduction
to MPEG-7: Multimedia Content Description Language, Wiley,
John & Sons, Inc., 2002.

[5] T. Ho, J. Hull, and S. Srihari, “Decision combination in
multiple classifier systems,” [EEE Transactions on Pattern
Analysis and Machine Intelligence, Vol 16(1) , pp. 6675, 1994.

[6] M. Rautiainen, T. Seppénen, J. Penttil4, and J. Peltola, “De-
tecting semantic concepts from video using temporal gradients
and audio classification,” International Conference on Image
and Video Retrieval, Urbana, IL, pp. 260-270, 2003.

[7] C.-Y. Lin, B.L. Tseng, and J.R. Smith, “Video Collabora-
tive Annotation Forum: Establishing Ground-Truth Labels on
Large Multimedia Datasets,” NIST TREC-2003 Video Retrieval
Evaluation Conference, Gaithersburg, MD, November 2003.

[8] M.R. Naphade, T. Kristjansson, B. Frey, and T.S. Huang,
“Probabilistic multimedia objects (multijects): a novel approach
to video indexing and retrieval in multimedia systems,” In pro-
ceedings of International Conference on Image Processing, vol.
3, pp. 536 -540, 1998.

[91 N. Haering, R.J Qian, and M.I. Sezan, “A Semantic Event
Detection Approach and Its Application to Detecting Hunts in
Wildlife Video,” IEEE Transactions on Circuits and Systems for
Video Technology, Vol. 10(6), pp. 857 — 868, 2000.

[10] S.F. Chang, W. Chen, and H. Sundaram, “Semantic visual
templates — linking features to semantics,” In Proceedings of
IEEE International Conference on Image Processing, vol. 3., pp.
531-535, 1998.

[11] A. Del Bimbo, “Expressive semantics for automatic annota-
tion and retrieval of video streams,” IEEE International Confer-
ence on Multimedia and Expo, Vol.2. pp. 671-674, 2000.

[12] J.M.S. Prewitt, “Object enhancement and extraction,” In
B.S.Lipkin and A. Rosenfeld, (eds) Picture Processing and Psy-
chopictorics, Academic Press, New York, 1970.

[13] M. Rautiainen, J. Penttild, P. Pietarila, K. Noponen, M.
Hosio, T. Koskela, S.M. Mikel, J. Peltola, J. Liu, T. Ojala, and
T. Seppanen, "TRECVID 2003 experiments at MediaTeam Oulu
and VTT,” TRECVID Workshop at Text Retrieval Conference
TREC-2003, Gaithersburg, MD, 2003.



	Index
	ICME 2005

	Conference Info
	Welcome Messages
	Venue Access
	Committees
	Sponsors
	Tutorials

	Sessions
	Wednesday, 6 July, 2005
	WedAmOR1-Action recognition
	WedAmOR2-Video conference applications
	WedAmOR3-Video indexing
	WedAmOR4-Concealment &amp; information recovery
	WedAmPO1-Posters on Human machine interface, interactio ...
	WedAmOR5-Face detection &amp; tracking
	WedAmOR6-Video conferencing &amp; interaction
	WedAmOR7-Audio &amp; video segmentation
	WedAmOR8-Security
	WedPmOR1-Video streaming
	WedPmOR2-Music
	WedPmOR3-H.264
	WedPmSS1-E-meetings &amp; e-learning
	WedPmPO1-Posters on Content analysis and compressed dom ...
	WedPmOR4-Wireless multimedia streaming
	WedPmOR5-Audio processing &amp; analysis
	WedPmOR6-Authentication, protection &amp; DRM
	WedPmSS2-E-meetings &amp; e-learning -cntd-

	Thursday, 7 July, 2005
	ThuAmOR1-3D
	ThuAmOR2-Video classification
	ThuAmOR3-Watermarking 1
	ThuAmSS1-Emotion detection
	ThuAmNT1-Expo
	ThuAmOR4-Multidimensional signal processing
	ThuAmOR5-Feature extraction
	ThuAmOR6-Coding
	ThuAmSS2-Emotion detection -cntd-
	ThuPmOR1-Home video analysis
	ThuPmOR2-Interactive retrieval &amp; annotation
	ThuPmOR3-Multimedia hardware and software design
	ThuPmSS1-Enterprise streaming
	ThuPmNT1-Expo -cntd-
	ThuPmOR4-Faces
	ThuPmOR5-Audio event detection
	ThuPmOR6-Multimedia systems analysis
	ThuPmOR7-Media conversion
	ThuPmPS2-Keynote Gopal Pingali, IBM Research, &quot;Ele ...

	Friday, 8 July, 2005
	FriAmOR1-Annotation &amp; ontologies
	FriAmOR2-Interfaces for multimedia
	FriAmOR3-Hardware
	FriAmOR4-Motion estimation
	FriAmPO1-Posters on Architectures, security, systems &a ...
	FriAmOR5-Machine learning
	FriAmOR6-Multimedia traffic management
	FriAmOR7-CBIR
	FriAmOR8-Compression
	FriPmOR1-Speech processing &amp; analysis
	FriPmSS1-Sports
	FriPmOR2-Hypermedia &amp; internet
	FriPmOR3-Transcoding
	FriPmPO1-Posters on Applications, authoring &amp; editi ...
	FriPmOR4-Multimedia communication &amp; networking
	FriPmOR5-Watermarking 2
	FriPmSS2-Sports -cntd-
	FriPmOR6-Shape retrieval


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	1 SIGNAL PROCESSING FOR MEDIA INTEGRATION
	1-CDOM Compressed Domain Processing
	1-CONV Media Conversion
	1-CPRS Media Compression
	1-ENCR Watermarking, Encryption and Data Hiding
	1-FILT Media Filtering and Enhancement
	1-JMEP Joint Media Processing
	1-PROC 3-D Processing
	1-SYNC Synchronization
	1-TCOD Transcoding of Compressed Multimedia Objects
	2 COMPONENTS AND TECHNOLOGIES FOR MULTIMEDIA SYSTEMS
	2-ALAR Algorithms/Architectures
	2-CIRC Low-Power Digital and Analog Circuits for Multim ...
	2-DISP Display Technology for Multimedia
	2-EXTN Signal and Data Processors for Multimedia Extens ...
	2-HDSO Hardware/Software Codesign
	2-PARA Parallel Architectures and Design Techniques
	2-PRES 3-D Presentation
	3 HUMAN-MACHINE INTERFACE AND INTERACTION
	3-AGNT Intelligent and Life-Like Agents
	3-CAMM Context-aware Multimedia
	3-CONT Presentation of Content in Multimedia Sessions
	3-DIAL Dialogue and Interactive Systems
	3-INTF User Interfaces
	3-MODA Multimodal Interaction
	3-QUAL Perceptual Quality and Human Factors
	3-VRAR Virtual Reality and Augmented Reality
	4 MULTIMEDIA CONTENT MANAGEMENT AND DELIVERY
	4-ANSY Content Analysis and Synthesis
	4-AUTH Authoring and Editing
	4-COMO Multimedia Content Modeling
	4-DESC Multimedia Content Descriptors
	4-DLIB Digital Libraries
	4-FEAT Feature Extraction and Representation
	4-KEEP Multimedia Indexing, Searching, Retrieving, Quer ...
	4-KNOW Content Recognition and Understanding
	4-MINI Multimedia Mining
	4-MMDB Multimedia Databases
	4-PERS Personalized Multimedia
	4-SEGM Image and Video Segmentation for Interactive Ser ...
	4-STRY Video Summaries and Storyboards
	5 MULTIMEDIA COMMUNICATION AND NETWORKING
	5-APDM Multimedia Authentication, Content Protection an ...
	5-BEEP Multimedia Traffic Management
	5-HIDE Error Concealment and Information Recovery
	5-QOSV Quality of Service
	5-SEND Transport Protocols
	5-STRM Multimedia Streaming
	5-WRLS Wireless Multimedia Communication
	6 SYSTEM INTEGRATION
	6-MMMR Multimedia Middleware
	6-OPTI System Optimization and Packaging
	6-SYSS Operating System Support for Multimedia
	6-WORK System Performance
	7 APPLICATIONS
	7-AMBI Ambient Intelligence
	7-CONF Videoconferencing and Collaboration Environment
	7-CONS Consumer Electronics and Entertainment
	7-EDUC Education and e-learning
	7-SECR Security
	7-STAN Multimedia Standards
	7-WEBS WWW, Hypermedia and Internet, Internet II

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using the Acrobat Reader
	Configuration and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Mika Rautiainen
	Tapio Seppänen



