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ABSTRACT

In retransmission-based error-control methods, the most funda-
mental yet the paramount problem is to determine how long the
sender (or the receiver) should wait before deciding that an un-
acknowledged (or a missing) packet is lost. This waiting time is
generally referred to as retransmission timeout (RTO). An accu-
rate RTO estimation has two main advantages: First, the lost pack-
ets can be identified earlier, and hence, can be recovered faster.
Second, redundant retransmissions can be avoided, which subse-
quently not only saves the network resources, but also helps ex-
isting network congestion alleviate sooner. Although it is statis-
tically possible to prevent any unnecessary retransmission at the
expense of long error-recovery times, such an approach can only
be justified for data applications; it is not well-suited for delay-
sensitive applications, for which the agility in recovering the lost
packets is as important. With this motivation, we recently intro-
duced an RTO estimation algorithm for delay-sensitive applica-
tions [1]. Provided that the packets are transmitted at equal inter-
vals, this technique successfully estimates the arrival times based
on the interarrival-time observations. In this study, we relax the re-
quirement of equal transmission intervals and generalize our tech-
nique to handle bursty video applications.

1. INTRODUCTION

Because of its best-effort nature, any packet injected to the Inter-
net is subject to loss or random delay. Naturally, it is safe to as-
sume that a missing (or an unacknowledged) packet is lost, if it
has been a long time since its transmission. In TCP jargon, this
waiting time is referred to as retransmission timeout (RTO). How-
ever, because of the potential delay jitter, it is important to employ
a sufficiently large RTO in order to allow late packets to eventually
arrive. While employing a large RTO value usually has a minimal
effect on data applications, unfortunately, delay-sensitive applica-
tions do not have the luxury of overwaiting. Decisions on missing
packets should be made quickly so that well-timed actions can be
taken against the lost ones. In our recent work [1], we proposed
an efficient technique for timely inference of the late/lost packets
in streaming applications. Assuming that the server transmitted
the packets at equal intervals, this technique utilized interarrival
times to estimate the arrival times of incoming packets. Internet
experiments showed that our approach provided significant im-
provements in the streaming quality while keeping the redundant
retransmission rate at a negligible level.

In low-delay video streaming applications, it is a common
practice to transmit the video frames as soon as they are packetized
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in order to avoid unnecessary delays. However, because of the ef-
ficient predictive-coding techniques that are an integral part of the
popular video coding standards, e.g., MPEGx and H.26x, each en-
coded video frame differs in size and potentially produces a differ-
ent number of packets. Furthermore, when streaming at high bi-
trates, even the smallest video frame may not fit into one packet. If
all packets belonging to a particular frame are transmitted back-to-
back, the video traffic inevitably becomes bursty. Combined with
the delay jitter experienced along the path, the varying nature of
the transmission times causes the video packets arrive at the client
at less-predictable times, which consequently renders the RTO es-
timation more difficult. In this study, we address this problem and
propose a generalized RTO estimation algorithm that can handle
bursty video applications. With both simulations and Internet ex-
periments, we evaluate the performance of this burst-aware RTO
estimator.

RTO estimation has long been studied for TCP. To date, sev-
eral enhancements (e.g., [2, 3, 4]) have been proposed to improve
the initial implementation [5]. However, these proposals are natu-
rally not suitable for delay-sensitive applications in the sense that
their estimators are excessively conservative and adapt to the net-
work conditions slowly. On the other hand, [6, 7, 8] consider dif-
ferent retransmission schemes for real-time streaming. Among
these studies, the most comprehensive work is [8], where Logu-
inov and Radha evaluate several round-trip time based RTO es-
timators for very low-bitrate video streaming. In contrast to [8],
our estimator [1] uses interarrival times for RTO estimation, which
makes it more responsive and precise in high-bitrate streaming ap-
plications.

In the rest of the paper, we first introduce the terminology and
the basics of the RTO estimation in Section 2. In Section 3, we
continue with the details of the proposed approach and its compar-
ison with other RTO estimators. We present the results produced
from Internet video streaming experiments in Section 4. Finally,
we conclude the paper in Section 5.

2. PRELIMINARIES
2.1. Terminology

One of the major differences between the conventional RTO esti-
mators and our approach is that the latter is entirely implemented
at the client side. In this scheme, the server does not carry out any
computation; it merely transmits the video packets and responds to
the requests received from the client. In our analysis, we will refer
to each packet with a unique number, /, which can be associated
with the Sequence Number field in the RTP header [9]. We denote
the transmission times (at the server), arrival times (at the client)



and decoding deadlines by t7(1), 4 (1) and p (1), respectively. Note
that 7p(.) is common for all packets belonging to a particular video
frame. In addition, different frames may share the same decoding
deadline if the decoding order of the frames is different than their
display order.

The transmission times of the video packets depend on sev-
eral factors. Namely, the number of frames in a group of pictures
(GOP), the GOP structure, encoding bitrate, video frame rate and
IP packet size are the main parameters that vary the transmission
times of the packets in a GOP. As an illustrative example, consider
Fig. 1, where the GOP structure consists of one I-frame and nine
P-frames. Assume that the video is streamed at 20 f/s, and the
I-frame and each of the P-frames produce seven and two IP pack-
ets, respectively. Let Arr(l) represent the intertransmission time
of packet /, which is defined as

Arp(l) =tr (1) —rp(1-1). (@€))]
The mean intertransmission time can be computed by using
— GOP Duration
Arr (©))

~ # of Packets in a GOP’

which is 20 ms in our example. However, as shown in Fig. 1,
Aty can be as low as a few milliseconds, and as high as 50 ms.
It is clear that Ary is largely inadequate to define the transmission
regime of the server.
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Fig. 1. The variation of intertransmission times at the server side.

As mentioned above, the variation in the intertransmission times
depends on many factors. Fortunately, our tests with a standard
H.264 video codec show that this variation follows a similar pat-
tern for consecutive GOPs, provided that encoder and video-specific
parameters are kept the same. However, in some configurations,
the pattern breaks because of a sudden scene change. Neverthe-
less, without loss of generality we can safely assume that the pat-
tern for the first GOP is also valid for the subsequent GOPs, and
the server conveys any new pattern information to the client when
there is a change in the encoding/packetization process.

2.2. Timeout Mechanism

Similar to intertransmission times, we define interarrival times at
the client. The interarrival time of packet / is equal to the amount
of the time passed since the arrival of the previous packet. If we
denote the index of the last received packet before packet / by /*,
then the interarrival time for packet / is given by

Ar(1) = t4(1) —ta (I7). 3)

For non-received packets, we clearly have 74 (1) = oo and At (/) = co.
The main idea behind our RTO estimation algorithm is to estimate
the subsequent interarrival time and project the corresponding ar-
rival time after each packet arrival. We use the notation of A~t()
and 74(.) to denote the estimated interarrival and projected arrival
times, respectively. The estimation is based on the latest interar-
rival time and Afy. That is,

At(141) = f(Ar(l), Arp (14 1)), )

for some function f. For example, in Fig. 2 packet / + 1 is expected
to arrive by £4 (I + 1), which is computed by

i+ 1) =1a(1)+ A1+ 1). )
In case of packet [ + 1 does not arrive within Az(I+ 1) time units,
then the client presumes that this packet is lost and times out.
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Fig. 2. Timeout mechanism.
2.3. Performance Metrics

We evaluate the performance of our RTO estimator with two met-
rics. First, we define py as the estimation failure probability. This
indicates the rate of misidentifying non-lost packets as they are
lost. It can be computed by using

pr=P{ia <ta}, forty < oo. (6)

The second metric is the average overwaiting time. The excessive
waiting time for a non-lost packet / is defined as

() —ta(l), ifta(D) < ta(l) < oo
W(”*{ 0. inl) <) <= @

On the other hand, the waiting time spent for a lost packet can
be computed by using a virtual arrival time extrapolated from the
latest packet arrival time. If [* denotes the index of the last received
packet, the excessive waiting time for a lost packet is given by

W(l)tA(l)—<rA(z*)+ )y AtT(l')>,iftA(l)oo. (8)
<<l

Naturally, there is a trade-off between py and average excessive
waiting time (denoted by w). Estimation failures can be largely
avoided, if the client can tolerate a prolonged amount of time be-
fore timing out. As this ability diminishes, the client starts giving
wrong decisions and may identify late packets as they are lost. Our
goal is to reduce w while keeping py below a desired value.

3. RTO ESTIMATION

In this section, we study the details of the proposed RTO estima-
tion algorithm. To this effect, we benefited from ns-2 network sim-
ulator [10] and Georgia Tech Internetwork Topology Models [11].
We developed an ns-2 server application that streams a pre-encoded
video over RTP [9] and a client application that carries out RTO
estimation. In particular, we used the test sequence FOREMAN
(352 x 288), encoded with a H.264 encoder at a bitrate of 600 Kbps
and frame rate of 20 f/s. The GOP structure consisted of one I-
frame and nine P-frames, where each I-frame and P-frame was
packed into seven and two IP packets, respectively. Our analysis
of non-bursty video packet traces in [1] previously showed that
forward-trip times had a larger variation compared to the interar-
rival times. Not surprisingly, Fig. 3 shows that this observation
still holds, even if the video packets are injected into the network
in a bursty manner. Fig. 3 also shows that the interarrival times
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Fig. 3. Variation of forward-trip times (on the left), interarrival times (in the middle), and their distributions (on the right).

are mostly confined within a small region, although they present a
noisy behavior due to the background TCP/UDP flows.

In continuous-media applications, a client successively receives
packets and can easily extract the variation in the forward-trip
times, provided that the client is aware of the intertransmission
times. However, the exact forward-trip times cannot be computed
without the knowledge of the transmission times at the server and a
synchronization between the server and client clocks. Fortunately,
to estimate the subsequent arrival time, we neither need to know
the transmission times, nor require a clock synchronization. Based
on (5), we merely need to estimate the interarrival time of the ex-
pected packet in order to compute its projected arrival time.

3.1. Burst-Aware RTO Estimator

In this section, we generalize the RTO estimation algorithm previ-
ously studied in [1]. The proposed burst-aware RTO estimator has
the ability to run with any video traffic regime. Specifically, in this
study we propose the following estimator:

At(14+1) =max (Arp(I+1),0x A1) +Bx Arp(I+1)),  (9)

where o and B are some constants that determine the responsive-
ness of the estimator. For example, with oo = 0 and f = 1 we get
an extremely aggressive estimator, which achieves a small average
excessive waiting time (W) but potentially a high failure proba-
bility (py). Using a larger B value may lower p, however, will
inevitably increase w. Recall that the variation between consec-
utive interarrival time samples is bounded except some impulsive
points. If we ignore these impulsive points for the time being, a
particularly successful estimator can be achieved with o.=7/8 and
B = 7/8 for bursty videos. We observe that (9) can closely track
the actual arrival times and achieve a small w with these parame-
ters. However, it is highly susceptible to sudden delay increases.
In particular, the observed average excessive waiting time is 19 ms
and the failure probability is 24.0%. We address this problem next.

3.2. Detecting Excessively-Delayed Packets

During the course of streaming, it is possible that two consecutive
video packets are interleaved with several other packets belonging
to different flows. In such cases, the latter packet can be exces-
sively delayed and may be identified as it is lost (e.g., see packets
#3872 and #3935 in Fig. 3). One straightforward way to avoid such
misidentifications is to increase the values of o and/or 3. However,
since such impulsive delay increases occur rarely, we rather keep
o and P unchanged and use a supplementary timer only when it is
needed. This secondary timer is called latePacketTimer. The client

starts latePacketTimer when the expected packet does not arrive by
the initial projected arrival time. If latePacketTimer also expires,
the packet is registered as lost and the client times out.

A sketch of latePacketTimer is given in Fig. 4. Note that
latePacketTimer defers the estimated arrival time for not only the
expected packet but also all subsequent packets, since the proposed
RTO estimator operates on the interarrival times rather than the ar-
rival times. Also note that once latePacketTimer is started, the
client does not start a second one until a new packet arrives. As
opposed to exponentially backing off [12], this strategy allows to
keep overwaiting time considerably shorter without sacrificing the
accuracy.
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Fig. 4. Illustration of latePacketTimer.

In the implementation of latePacketTimer, the initial value of
4 can be set to an arbitrary value since it is revised every time the
timer is used. Its value is updated only if the received packet is
not the expected packet or it is the expected packet but it arrived
after its estimated arrival time. Let /, and [, be the indexes of the
last packet received before latePacketTimer is started and the first
packet received after latePacketTimer is started, respectively. We
set the value of 8 as follows:

min (Spax,ta(ln) —1a(lp)), ifly>1, +~1 or
8= () > m(L);  (10)
9, ow.

Here 8,4, represents the upper limit for 8. In this study, we ob-
served that 3 x Ary is a good choice for 8,,4y.

With the introduction of latePacketTimer, the RTO estimation
failure probability reduces from 24.0% to 0.3% at the expense of
7 ms increase (from 19 ms to 26 ms) in the average excessive
waiting time. On the other hand, the burst-unaware RTO estima-
tor [1] (obtained by replacing Arr(.) with Atz in (9)) achieves a
failure probability of 0.9% and an average excessive waiting time
of 33 ms. This inferior performance stems from the fact that the
burst-unaware RTO estimator has not been particularly tailored to
handle bursty traffic. Finally, the enhanced TCP-like RTO estima-
tor (see [1] for details) fails in 1.1% of the packets, although it



results in an average excessive waiting time of 118 ms. We com-
pare all three RTO estimators in Fig. 5. The results clearly show
that we can boost the performance of RTO estimation and sub-
sequently the error-control/protection capability of the application
by incorporating the packet transmission strategy of the server into
).
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Fig. 5. Actual and estimated arrival times for three different RTO
estimators.

4. EXPERIMENTAL RESULTS

We established an experimental platform in the Internet in order
to assess the performance of different RTO estimators. On this
platform, we ran a real-time video streaming application over RTP
between a broadband client in Konya, Turkey and a server con-
nected to Georgia Tech’s campus network. The client simultane-
ously streamed real-time video and carried out the RTO compu-
tation. When a packet was identified to be lost, a retransmission
request was sent to the server. Upon receiving the request, the
server immediately retransmitted the requested packet.

We conducted our experiments in three sessions of 30 minutes,
to evaluate all three RTO estimators. After each session, the mean
delay and packet loss rate were measured to ensure that similar
network characteristics were observed in all sessions. (The mean
round-trip delay and mean one-way packet loss rate were approx-
imately 250 ms and 6.0%, respectively.) We used a standard H.264

codec to encode the test sequence FOREMAN (352 x 288) at 600 Kbps

with a frame rate of 20 f/s. In order to compensate for one-way de-
lay jitter and produce some time for retransmissions, we employed
a playout delay of 500 ms based on the initial observations. The
packets that still could not be delivered by their decoding dead-
lines were not displayed, although each received packet was still
used to decode subsequent predictively-coded frames. The results
are summarized in Table 1.

Without any retransmission, the video quality severely suffers
from missing packets. When an enhanced TCP-like RTO estima-
tor is used, the client receives barely 1% more packets on time and
improves the video quality by 1.3 dB. At the same time the aver-
age streaming rate increases by 7.5% due to the retransmissions,
19.1% of which are redundant. The relatively small improvement
at the expense of a 7.5% rate increase indicates that majority of
the retransmitted packets were late for decoding. In contrast, the
burst-unaware RTO estimator delivers 3.8% more packets on time,
while increasing the average streaming rate by 7.1%. On the other
hand, the burst-aware RTO estimator delivers 0.1% more packets
on time compared to the burst-unaware RTO estimator, which cor-
responds to 0.1 dB superior video quality. The burst-aware RTO

% of Successful | Average | % of Redundant
Packets Quality Ret. Requests
No ARQ 94.1% 34.3 dB N/A
TCP-like 95.1% 35.6 dB 19.1%
Burst-unaware 97.9% 38.2dB 15.1%
Burst-aware 98.0% 38.3dB 5.3%

Table 1. Experimental results for the FOREMAN sequence.

estimator is also more network-friendly as it reduces the percent-
age of the redundant retransmission requests from 15.1% to 5.3%.
The corresponding increase in the average streaming rate is 6.3%,
which is smaller than those of both enhanced TCP-like and burst-
unaware RTO estimators.

5. CONCLUDING REMARKS

We studied a generalized RTO estimation algorithm that can be
used within delay-sensitive applications producing any type of bursty
packet traffic. An important application of our approach is that it
can be integrated with the recently proposed rate-distortion opti-
mized streaming techniques. This integration enables packet schedul-
ing algorithms to give better decisions without requiring complex
calculations that are peculiar to existing implementations. This
way, we can achieve a more reliable and realizable real-time rate-
distortion optimized streaming. In our future work, we will inves-
tigate into this integration further.
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