TREE ANIMATION FOR A 3D INTERACTIVE VISUALIZATION SYSTEM FOR
HURRICANE IMPACTS

Peter A. Singh', Na Zhao', Shu-Ching Chen', Keqi Zhang*

'Distributed Multimedia Information System Laboratory, School of Computer Science
Florida International University, Miami, FL 33199, USA

’International Hurricane Research Center, Florida International University, Miami, FL. 33199, USA
1{psingOOZ, nzhao002, chens } @cs.fiu.edu, 2zhangk@fiu.edu

ABSTRACT

This paper describes an implementation of vertex
weighting for real-time animation of 3D trees as a result of
wind force and direction. This method improves over
similar techniques because it incorporates individual
branch animation on 3D models, whereas previous works
perform animations on the model as a whole or use planar
billboards to visualize the tree. Our tree animation is used
in an interactive system that visualizes the effects caused
by a hurricane’s impact on a virtual city. The system uses
models created with 3D Studio Max and the animations
are implemented in OpenGL and the nVidia Cg shader
language.

1. INTRODUCTION

Keeping the general public informed to the dangers of
natural disasters, such as hurricanes, is difficult for
emergency planners. If there are long stretches of time
where a hurricane does not strike land, the inhabitants tend
to become complacent and ignore the warnings from the
officials. This was the case in 1992 when many people
ignored the warnings of the impending danger of
Hurricane Andrew. It was also the case in 2004 when
many people misinterpreted the dangers of Hurricane
Charley, believing that it would impact only a specific area
to the north, the citizens of Port Charlotte did not prepare
and as a result they suffered devastating consequences.
However, as a result of the damage caused by Charley,
many people throughout the state responded by over-
preparing for the following three storms even though they
were not in the projected paths. This limited the
availability of emergency supplies for affected people. In
the case of hurricanes, most people receive their
information from their local meteorologist on the evening
news. Generally, this involves the standard weather
graphics involving radar imagery and projected paths of

0-7803-9332-5/05/320.00 ©2005 IEEE

the storm or maps of areas that may experience flooding
due to storm surge. Unfortunately, the charts and maps
that are often used do not convey the personal impact that
people can suffer. We believe our system will help in
educating people to the possible dangers of a storm, by
showing them how it may directly affect them and their
homes. We do this by recreating locations where a
hurricane may strike and animating storm related
phenomena such as storm surge, rain, and wind effects on
objects such as plants and buildings.

The focus of this paper is the implementation of tree
animation related to hurricane force winds where the trees
are modeled as 3D objects rather than planar billboards.
There is an abundance of work related to creating and
rendering plant life [2][4][5], but very little with regard to
animating it. Jeff Thelen’s “Blustery Trees” demo [8]
performs tree animation with respect to wind, but it is
limited to bending the tree model as a whole. Our
implementation creates animations for the tree trunk and
individual tree branches. This method is ideal for soft
branches, such as those on palm trees, which are common
in the locations we have modeled. In addition, our
implementation also takes advantage of modern
programmable graphics cards to efficiently animate many
highly detailed models in real-time.

This paper is organized as follows. Section 2 discusses
the techniques used in our proposed model for tree
animation. This includes the vertex weighting technique,
lighting technique, the programmable graphics pipeline,
and how they are applied in our tree animation model. The
conclusion is given in Section 3.

2. TREE ANIMATION

In earlier versions of our system, we have implemented
vegetation animation using planar billboard models of
trees [1]. Planar billboards are simple to implement and
consume very little computing resources, but they do not

provide realistic models at close ranges. The lack of
details in the model only allows us to perform simple
rotation operations to pivot the tree trunk or branches at
their base. However, billboard models are preferable at
distances further away from the camera, where the lack of
details is not so readily noticeable to the user. Our
objective is to animate the bending and swaying of trees,
yet save the computing power by using models with
varying levels of details. Less detailed models, including
planar billboards, will be displayed further away from the
viewing camera.

2.1. Vertex Weighting

Our solution to bending the 3D tree models is using a
technique known as Vertex Weighting or Vertex Skinning.
It was developed to animate human skin around joints
such as elbows and knees [6]. Using traditional animation
of rigid bodies, sharp seams and gaps would appear when
animating joints. Vertex Weighting provides a smooth
bending around these areas by having each point on the
skin reacts to the underlying bone structure. When a set of
bones pivot at a joint, the vertices on the surface react
accordingly depending on the influence each bone exerts
on them. The new position of a vertex is calculated by
taking this influence into account by assigning each bone a
weight value. Equation 1 shows how the new vertex
position, v’, is calculated. M; is the transformation matrix
that represents the i bone. Our implementation only uses
rotation transformations about the z-axis, which points in
the “up direction” for our scene. w; is the weight value
assigned to the i bone, ¢ is number of bones, and v is the
original vertex position. The linear weighting method is
used when assigning values to the individual bone weights.
This means that the sum of all weights used should equal
one. Values other than one can be used, but they result in
shearing or twisting effects.

v':iwiMiv with iwi =1
Equation 1. Calculating the new vertex position [7]

2.2. Applying Vertex Weighting to the Model

To apply Vertex Weighting technique to our tree model,
we simulate three interconnected bones for the tree trunk
and each branch. The bones are laid out in a similar
fashion to that of a human arm, with an upper arm,
forearm, and wrist. We then take into account the direction
of the wind with respect the angle of the branch to
determine how each branch will bend. As shown in Figure
1, if we assume that the wind is coming from the west
(180°), each branch will fall into one of 4 quadrants (Ql1,

Q2, Q3, & Q4). If the wind comes from a different angle,
say 210°, then the quadrants can be rotated 30° counter-
clockwise to be positioned properly. Or, if the wind comes
from 150°, then the quadrants would be rotated 30°
clockwise.

Figure 1. Branch angles separated into quadrants

The next step is to calculate what angle, with respect
to the wind direction, that each branch will bend to if it
were to bend at its maximum angle. This maximum angle
is arbitrarily defined, so that the resulting animation is
visually pleasing. In our case, if a branch were pointing
directly into the wind, for example having an angle of 180°
(Q3) with the wind also coming from that direction
(flowing towards 0°), then the branch will bend forward
120° so that its new angle is 300°. This is only in the
extreme case, generally branches falling in Q1 and Q4 will
have new angles in the range of £[0, o], and those falling
in Q2 and Q3 will have new angles in the range of [,
(0p+0i))] as shown in the shaded region of Figure 1. The
values of o, and o, depend on how much we want the
branches to bend. In our case, o;=10° and 0,=20°. Larger

values may be used for sturdier trees so that o, +0,<180°.

BA” = ‘Wind — Branch

Direction Angle
BA”-90°

Ql:BA':(SQUJXZW Q2:BA':[

Q3:BA':[%><]OC]+ZOQ Q4:BA':(%}<20“

><lO°J+20°

Equation 2. Calculating the branch angle

, BA 1-2x/L x<L

B, = ROT,| - BA"+ =
7 0 x>L
1 x=L/2

B, = ROT, (- BA") wy=41-w, x<L
I-w, x>L

, BA 1-2x/L x<L
B, = ROT,| - BA"+ W, =
: 7 0 x>L

Equation 3. Bone transformation formulas

To apply these concepts to the tree model, we present
Equations 2 and 3. Equation 2 lists a set of equations that
are used to calculate the new branch angles based on
which quadrant the branch is in. We then use these angles
in Equation 3 to calculate the three bone transformation
matrices per branch. ROT, signifies that each B; is a
rotation matrix about the z-axis. w; is the weight value for
ith bone, which is dependent on the position of the vertex,
x, along the branch length L.

Our models are created in the 3DS format in 3D
Studio Max. Each branch contains information embedded
within the model of its length (L) and the angle (®) that it
is attached to the trunk with respect to the XY-plane as
shown in Figure 2. Also shown in this figure is the same
branch with vertex weighting applied to it as a result of the
wind coming from two different angles.

~5

Figure 3. Tree bending with different LOD models

By applying rotation transformations to the trunk and
branches of a Royal Palm tree model, we can bend them to
varying degrees simulating the effects of high winds. A
great advantage of using this technique is that it is not
limited to 3D models. It may also be applied to planar-
billboards as long as there are enough polygons to bend.
This allows us to create multiple models of the same tree,
but with varying levels of details (LOD). Figure 3 shows
this application to the 3D model of a Royal Palm tree. The
first image is the model with no bending applied. The
second and third images are wire-frame versions of the
tree with different levels of details. The tree in the middle
contains over 30,000 polygons. The tree on the right
contains approximately 1,500 polygons.

2.3. Programmable Graphics Pipeline

One of our main goals is to implement a system that
performs in real-time on a single consumer level computer,
so we must always search for ways to reduce the workload
on the CPU. Unfortunately, the vertex weighting method is
computationally expensive. Fortunately, we can alleviate
this problem because many modern consumer graphics
cards now come equipped with a programmable graphics
pipeline. This allows a developer to take advantages of
hardware implementations of common 3D graphics
operations.

Figure 4 depicts the graphics pipeline of a modern
GPU. The top four components are the standard graphics
pipeline while those two components on the bottom of
Figure 4 are the programmable parts of the pipeline
consisting of the vertex and fragment processors. A
programmer can take advantages of the vertex and
fragment processors by writing vertex and pixel shaders.
However, when doing so, certain sections of the standard
pipeline are bypassed. We implemented the Vertex
Weighting method as a vertex shader with the nVidia Cg
language [9]. Cg is a C-like language specially designed
for vertex shaders. Integrating a Cg shader with our system
is seamless because nVidia provides a runtime
environment that allows them to be integrated into C++
and OpenGL [10] programs, where our system is
developed.

Primitive Fragment >
Vertex Raster
| Assembly and —| Texturing - : -
Transformation AEiEata and Coloring Operations

Y

Figure 4. Programmable graphics pipeline [3]

2.4. Lighting

One aspect of using the programmable pipeline is that the
programmer must perform the operations that are bypassed
in the standard pipeline. This includes lighting operations
that give the objects their 3-dimensional appearance. The
lighting model that we use to perform these operations is
the diffuse lighting model. Each vertex in a model has an
associated material property for ambient (Matampiens)s
diffuse (Matp.s.), and specular light (Matsyecuiar). A set of
material coefficients, d and s for the diffuse and specular
components respectively, are calculated using the Light
(L), Normal (n’), Half (H), and View (V) vectors. These
coefficients are then multiplied with the material
properties and a final color (Colorg,,) is computed, as

shown in Equation 4. The equation for n’ is related to
Equation 1 for calculating the new vertex position. Figure
5 depicts the vectors used in the lighting calculation, and
Figure 6 depicts the tree animation with and without
diffuse lighting applied to it.

n'=2wiMi"rn with iw,. =1
i 7
+ (MatDiﬂuse X d) + (M At gt XS)

s=(HevV)

1
Color,,, = Mat,

d=Len

mbient
Equation 4. Calculating the normal [7] and color [3]

Light Source
Normal Vectar ()
A

View Vector Half Vector

Light Vector

Figure 5. Calculating diffuse lighting [3]

Figure 6. Tree model with no lighting (left) and with
diffuse lighting applied (right)

3. CONCLUSION

In this paper, we described a method to implement 3D tree
animation using the vertex weighting technique. Our
implementation, in addition to performing trunk animation
in a similar fashion to the “Blustery Trees” demo [8], also
performs animation for the individual tree branches. The
animation is implemented in OpenGL and the nVidia Cg
language. With the Cg language, we have taken
advantages of the programmable graphics pipeline
available in modern graphics cards. This takes the
computationally intensive operations performed in vertex
weighting from the CPU to the GPU, allowing us to

produce realistic animations on a single workstation level
computer. This system’s intended application domain is as
an educational tool for the citizens who live in hurricane
affected areas. Visualizing possible damage effects by a
storm in an affected area will allow people to make better
informed decisions as to whether they should evacuate or
not. Tree animation is a component of ambient details that
adds to the overall experience of the virtual environment.

4. ACKNOWLEDGEMENT

This research project was supported in part by a grant

from the National Oceanic and Atmospheric
Administration (NOAA).
5. REFERENCES

[1] S.-C. Chen, K. Zhang, and M. Chen, “A Real-Time 3D
Animation Environment for Storm Surge,” In Proceedings of
the IEEE International Conference on Multimedia & Expo
(ICME 2003), Baltimore, MD, USA, July 6-9 2003, pp. 705-
708.

[2] O. Deussen, C. Colditz, M. Stamminger, and G. Drettakis,
“Interactive Visualization of Complex Plant Ecosystems,” In
Proceedings of IEEE Visualization 2002, Boston, MA,
USA, October 27-November 1, 2002, pp. 219-226.

[3] R. Fernando, M.J. Kilgard, The Cg Tutorial: The Definitive
Guide to Programmable Real-Time Graphics, Addison-
Wesley, Boston, MA, USA, February 2003.

[4] M. Fuhrer, H. W. Jensen, and P. Prusinkiewicz, “Modeling
Hairy Plants,” In Proceedings of Pacific Graphics 2004,
Seoul, Korea, October 6-8, 2004, pp. 217-226.

[5] P. Prezemyslaw, A. Lindenmayer, The Algorithmic Beauty of
Plants, Springer-Verlag, New York, NY, USA, April 1996.

[6] R. Woodland, “Filling the Gaps: Advanced Animation Using
Stitching and Skinning,” Game Programming Gems, Edited
by M. DeLoura, Charles River Media, Rockland, MA, USA,
September 2000, pp. 480-483.

[7]1 S. Domine, “Mesh Skinning,”
http://developer.nvidia.com/object/skinning.html

[8] J. Thelen, “Blustery Trees,”
http://edgarapoe.home.mindspring.com/quixotic/blustery_tre
es.htm

[9] NVIDIA Cg Toolkit,
http://developer.nvidia.com/cg

[10] OpenGL,
http://www.opengl.org

	Index
	ICME 2005

	Conference Info
	Welcome Messages
	Venue Access
	Committees
	Sponsors
	Tutorials

	Sessions
	Wednesday, 6 July, 2005
	WedAmOR1-Action recognition
	WedAmOR2-Video conference applications
	WedAmOR3-Video indexing
	WedAmOR4-Concealment & information recovery
	WedAmPO1-Posters on Human machine interface, interactio ...
	WedAmOR5-Face detection & tracking
	WedAmOR6-Video conferencing & interaction
	WedAmOR7-Audio & video segmentation
	WedAmOR8-Security
	WedPmOR1-Video streaming
	WedPmOR2-Music
	WedPmOR3-H.264
	WedPmSS1-E-meetings & e-learning
	WedPmPO1-Posters on Content analysis and compressed dom ...
	WedPmOR4-Wireless multimedia streaming
	WedPmOR5-Audio processing & analysis
	WedPmOR6-Authentication, protection & DRM
	WedPmSS2-E-meetings & e-learning -cntd-

	Thursday, 7 July, 2005
	ThuAmOR1-3D
	ThuAmOR2-Video classification
	ThuAmOR3-Watermarking 1
	ThuAmSS1-Emotion detection
	ThuAmNT1-Expo
	ThuAmOR4-Multidimensional signal processing
	ThuAmOR5-Feature extraction
	ThuAmOR6-Coding
	ThuAmSS2-Emotion detection -cntd-
	ThuPmOR1-Home video analysis
	ThuPmOR2-Interactive retrieval & annotation
	ThuPmOR3-Multimedia hardware and software design
	ThuPmSS1-Enterprise streaming
	ThuPmNT1-Expo -cntd-
	ThuPmOR4-Faces
	ThuPmOR5-Audio event detection
	ThuPmOR6-Multimedia systems analysis
	ThuPmOR7-Media conversion
	ThuPmPS2-Keynote Gopal Pingali, IBM Research, "Ele ...

	Friday, 8 July, 2005
	FriAmOR1-Annotation & ontologies
	FriAmOR2-Interfaces for multimedia
	FriAmOR3-Hardware
	FriAmOR4-Motion estimation
	FriAmPO1-Posters on Architectures, security, systems &a ...
	FriAmOR5-Machine learning
	FriAmOR6-Multimedia traffic management
	FriAmOR7-CBIR
	FriAmOR8-Compression
	FriPmOR1-Speech processing & analysis
	FriPmSS1-Sports
	FriPmOR2-Hypermedia & internet
	FriPmOR3-Transcoding
	FriPmPO1-Posters on Applications, authoring & editi ...
	FriPmOR4-Multimedia communication & networking
	FriPmOR5-Watermarking 2
	FriPmSS2-Sports -cntd-
	FriPmOR6-Shape retrieval

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	1 SIGNAL PROCESSING FOR MEDIA INTEGRATION
	1-CDOM Compressed Domain Processing
	1-CONV Media Conversion
	1-CPRS Media Compression
	1-ENCR Watermarking, Encryption and Data Hiding
	1-FILT Media Filtering and Enhancement
	1-JMEP Joint Media Processing
	1-PROC 3-D Processing
	1-SYNC Synchronization
	1-TCOD Transcoding of Compressed Multimedia Objects
	2 COMPONENTS AND TECHNOLOGIES FOR MULTIMEDIA SYSTEMS
	2-ALAR Algorithms/Architectures
	2-CIRC Low-Power Digital and Analog Circuits for Multim ...
	2-DISP Display Technology for Multimedia
	2-EXTN Signal and Data Processors for Multimedia Extens ...
	2-HDSO Hardware/Software Codesign
	2-PARA Parallel Architectures and Design Techniques
	2-PRES 3-D Presentation
	3 HUMAN-MACHINE INTERFACE AND INTERACTION
	3-AGNT Intelligent and Life-Like Agents
	3-CAMM Context-aware Multimedia
	3-CONT Presentation of Content in Multimedia Sessions
	3-DIAL Dialogue and Interactive Systems
	3-INTF User Interfaces
	3-MODA Multimodal Interaction
	3-QUAL Perceptual Quality and Human Factors
	3-VRAR Virtual Reality and Augmented Reality
	4 MULTIMEDIA CONTENT MANAGEMENT AND DELIVERY
	4-ANSY Content Analysis and Synthesis
	4-AUTH Authoring and Editing
	4-COMO Multimedia Content Modeling
	4-DESC Multimedia Content Descriptors
	4-DLIB Digital Libraries
	4-FEAT Feature Extraction and Representation
	4-KEEP Multimedia Indexing, Searching, Retrieving, Quer ...
	4-KNOW Content Recognition and Understanding
	4-MINI Multimedia Mining
	4-MMDB Multimedia Databases
	4-PERS Personalized Multimedia
	4-SEGM Image and Video Segmentation for Interactive Ser ...
	4-STRY Video Summaries and Storyboards
	5 MULTIMEDIA COMMUNICATION AND NETWORKING
	5-APDM Multimedia Authentication, Content Protection an ...
	5-BEEP Multimedia Traffic Management
	5-HIDE Error Concealment and Information Recovery
	5-QOSV Quality of Service
	5-SEND Transport Protocols
	5-STRM Multimedia Streaming
	5-WRLS Wireless Multimedia Communication
	6 SYSTEM INTEGRATION
	6-MMMR Multimedia Middleware
	6-OPTI System Optimization and Packaging
	6-SYSS Operating System Support for Multimedia
	6-WORK System Performance
	7 APPLICATIONS
	7-AMBI Ambient Intelligence
	7-CONF Videoconferencing and Collaboration Environment
	7-CONS Consumer Electronics and Entertainment
	7-EDUC Education and e-learning
	7-SECR Security
	7-STAN Multimedia Standards
	7-WEBS WWW, Hypermedia and Internet, Internet II

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using the Acrobat Reader
	Configuration and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Peter Singh
	Keqi Zhang
	Shu-Ching Chen
	Na Zhao

