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ABSTRACT

Efficient multimodal fusion is a key feature of future video
indexing systems. Hidden Markov Models provide a power-
ful framework for video structure analysis but they require
all video modalities to be strictly synchronous. Taking as
a case study tennis broadcasts analysis, we introduce into
video indexing Segment Models, a generalization of Hidden
Markov Models, where the fusion of different modalities
can be performed with relaxed synchrony constraints. Seg-
ment Models were experimentally proved to perform mar-
ginally better compared to Hidden Markov Models.

1. INTRODUCTION

Automatic annotation of video documents is a powerful tool
for managing large video databases. In the last few years,
modern computer vision techniques were employed for ex-
tracting semantic indexes based on the low-level features of
a video. As video documents are inherently multimodal,
it was quickly realized that an efficient indexing technique
should take into consideration all the possible modalities
(like images, audio, etc.). There are numerous approaches
to multimodal fusion in the relative literature, reviewed in a
recently published survey [1].

A statistical approach that is usually employed for mod-
eling and information extraction is the Hidden Markov Mod-
els (HMMs) [2, 1]. The drawback of HMMs is that they
require all the modalities of a video document to be com-
pletely synchronous before their fusion. Due to this con-
straint, a reference modality is usually chosen and then its
segmentation is used to collect information from the other
ones. This deficiency, however, of the non-native segmen-
tation of the other modalities could be solved in another
framework referred to as Segment Models. They were in-
troduced in speech recognition by Ostendorf ef al. [3] as a
generalization of HMMs where different modeling assump-
tions can be easily incorporated. The purpose of this study is
to introduce this promising framework into video indexing,
providing extensions to previous work [4] based on HMMs.
Our main application focuses on tennis broadcasts where
game rules as well as production rules result in a structured
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document. Our aim is to recover this structure and then to
construct the table of contents of the video by segmenting it
in human meaningful scenes.

The paper is organized as follows. The feature extrac-
tion stage is briefly discussed in section 2. HMMs and Seg-
ment Models are reviewed in section 3. Multimodal inte-
gration under these models is duscussed in section 4. Para-
meter estimation details and experimental results are given
in section 5. Finally, section 6 concludes this study.

2. VISUAL AND AUDIO FEATURES

Both the video and audio tracks are characterized by large
homogeneous segments. For the video track, these seg-
ments are the shots. For the sound tracks, we consider seg-
ments whose audio content is homogeneous with respect to
sound classes such as ball hits or applause. In this section
we discuss the extraction of a unique visual or audio de-
scriptor from these segments. These descriptors (or obser-
vations in the HMM terminology) will serve as input fea-
tures to the modeling stages of the following sections.

2.1. Visual Features

In order to detect hard cuts of the video track we imple-
mented the adaptive threshold selection method of [5]. Sta-
rts and ends of replays are usually signaled by a smoothed
progressive transitions between two shots, known as dis-
solve transitions, which were detected via the twin compari-
son algorithm [6]. Having the temporal extend of a dissolve,
we formed a new type of shot labeled as “dissolve shot”.
We detected shots of exchanges between the two players
(referred to as “global views”) using a simple color histo-
gram-based distance between the middle frame of the given
shot and a reference frame representing an ‘ideal’ global
view. This reference frame, different for each game, was
found via an automated procedure as described in [4]. As
a final result, we attached as visual descriptor to each key
frame the vector O; = [OY* O! Od55]T | where OF* is the
visual similarity, O! is the length of the associated shot and
O¢#ss indicates a dissolve shot or not and 7" denotes matrix



transposition. We quantized homogeneously the values of
O?# and O! into 10 bins each.

2.2. Audio Features

In order to characterize the content, we track the presence
of the following key sound classes: music, applause, and
ball hits. Tracking such events is carried out in a two step
process as described in [7]. First, the sountrack is seg-
mented into homogeneous segments using a Bayesian in-
formation criterion. It is important to note that this segmen-
tation is carried out independently of the shot segmentation.
The presence or absence of sound classes is detected using
statistical hypothesis testing with Gaussian mixture models.

3. MODELING OF THE VISUAL CONTENT

Our aim is to decode the tennis game according to some pre-
identified scenes, namely first missed serve and exchange,
exchange, replay and break. The succession of these scenes
is modeled by an ergodic HMM. In the first part of this sec-
tion, we discuss how to model a scene also using an HMM
(the resulting model also being an HMM), while in the sec-
ond one we extend this approach to use segment models,
where a segment corresponds to a scene.

3.1. Hidden Markov Models

One can easily observe that tennis videos exhibit strong
temporal patterns. For example, a replay can be identified
as a sequence of dissolves and non-dissolve shots. So, we
can approach the video data as a sequence of observations,
produced by a random process as it evolves through time.

After a careful examination of our video sequences, we
have distinguished 12 different states for modeling the Mark-
ovian process, each of them having its special physical mean-
ing, as illustrated in Fig. 1. We have separated them into
four scenes corresponding to our four basic types of scenes
mentioned above. The first scene can be modeled as fol-
lows: a first missed serve with a shot of global view (state
1), some shots of non-global view follow (state 2), a shot
of global view of the normal exchange (state 3), and finally,
some shots of non-global view after the exchange (state 4).
There is also the possibility to transit from state 2 back to
state 1 in cases of repeated missed serves. The states for the
remaining scenes can be explained in a similar manner.

Assuming the parameters of the model are known, we
can then decode an observation sequence to the correspond-
ing most likely hidden state sequence, given by:

§* = argmaxp(Of |s7 )p(s])

where sT is the hidden state sequence, OF is the observa-
tion sequence and 7 is the sequence length. The state se-
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Fig. 1. The 12 states of the HMM we used, grouped into
four scenes. ‘GV’ stands for ‘global view’ and ‘DT’ for
‘dissolve transition’. The arcs represent the dominant tran-
sition probabilities as estimated after training. To make the
presentation simpler, arcs interconnecting the four scenes
are not shown.

quence S* gives us the wanted human meaningful class la-
bels of each video shot. This optimization problem is solved
efficiently and fast using the Viterbi algorithm.

3.2. Segment Models

In this new type of modeling, the notion of the segment gen-
eralizes the notion of the state of HMMs in that it allows its
extension to arbitrary durations. In this way a state can gen-
erate several observations before the transition into another
state. This situation is depicted in Fig. 2. On the left, we see
what happens conceptually in the case of HMMs: at a given
time instant the process is in a given state and generates one
observation symbol and then transits to another state. On the
right, we see how a sequence is generated according to Seg-
ment Models. At a given time instant the stochastic process
enters into a state and remains there according to a proba-
bility given by the segment duration model. A sequence of
observations is generated, instead of a single one, accord-
ing to a distribution conditioned on the segment label. Then
the process transits to a new state with a transition probabil-
ity, as in HMMs, and so on until the complete sequence of
observations is generated.

In our tennis video case, we can think of a scene as a
segment. Indeed, we can observe that the complete sets of
observations of the scenes of Fig. 1 share a lot of common
elements. For example, a scene of a break is an ensemble of
shots of very short (commercials) or long (statistics) dura-
tion. In addition, we expect that all the break scenes will be
of long absolute duration while the scenes of replays should
be of short absolute duration.

The parameters to be estimated for Segment Models are
the transition probability p(i|7) from state j to state 4, the
duration model p(l|a) and the segment-level observation pro-
bability b, (01, Oa, ..., O;), conditioned on the segment la-
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Fig. 2. The generation of the observation sequence accord-
ing to Hidden Markov Models (left) and to Segment Models
(right).

bel a (in their general formalism of [3], it was also condi-
tioned on the segment duration /). Details are given later in
section 4. During our Viterbi search, we have now to find
not only the most likely segment labels, but also the most
likely segmentation or, in other words, the most likely du-
ration of each segment. This new enhanced maximization
problem can be formulated as:

(L, A)" = arg max p(O7 1Y, a’ )p(ly" oy )p(ar’)

1,01

where 7' is again the observation sequence length, NV is the
number of segments, ¥ the segment labels and I3V the seg-
ment durations. This problem is solved via a straightfor-
ward extension of the Viterbi algorithm for HMMs with ex-
plicit state duration, described in [2]. To avoid unnecessary
computation we restricted our search for possible segmen-
tations into a window of 70 time steps (or shots), as it is
difficult to have scenes containing more than 70 shots. This
gives a computation cost of roughly 70 times higher than
that of the HMM-based Viterbi algorithm, but it is still neg-
ligible compared to the cost of the feature extraction.

4. MULTIMODAL INTEGRATION

In section 3 the observation vector was limited to a sin-
gle visual vector for sake of simplicity. The audio content
however is an important source of information that should
be taken into consideration in our modeling. For example,
states 1, 3, and 5 of Fig. 1 are visually very similar as they
correspond to the same global view type of shot. What can
essentially differentiate the first state from the other two is
the absence (state 1) or the presence (states 3 and 5) of ap-
plause after the exchange has finished.

In the HMM framework each state is strictly related to
one and only observation symbol O,. As a consequence,
HMMs allow very little flexibility regarding the fusion of
multiple modalities: they should be artificially aligned and
synchronized. A common approach is to choose a reference
modality (the video track, in our case) and to concatenate
to the observation vector, observations for the other modal-
ities. In this manner, we collect information from the other
sources not based on their native segmentation but in a in-

direct way via the segmentation of the reference modality.
The enhanced observation vector for the HMM is
Ot [Ovs Ol Odzss Obh Oappl Om]

where Op%, OL, O%*s were defined in section 2, O de-
notes the presence or absence of ball hits, O/*"" of applause,
and O}" of music in the shot. We supposed again indepen-
dency between all the components of the observation vector.

There are various ways to approach feature modeling in
Segment Models. Generally, we can group these approaches
based on the way they integrate the audio content: we can
use it in the form of shot-based descriptors, as in HMMs, or
with the form of scene-based features.

Starting from shot-based descriptors, the simplest case
is to make the assumption of the independence of the obser-
vations:

t
ba (0105 .. H (Oxla)
where a is the segment label. We will refer to this approach
as ‘AVprod’ from now on. We can relax the independence
assumption by using an HMM to model the sequence of
observations of a segment:

ba(010;...0y) = P(O|A,) = ZPOQM) (1)

where )\, represents the HMM charged to model the obser-
vations of segment « and () is a hidden state sequence of it.
The calculation of the right term can be done easily by the
forward pass of the forward-backward procedure [2]. We
will call this approach ‘AVhmm’. When not using audio
observations, we will refer to the “Vhmm’ approach.

As we can now model sets of observations at the scene
level, we can describe the audio content using its native
audio-based segmentation. So, instead of collecting a num-
ber of descriptors for each shot, we can use features like
‘presence of applause in the scene’, etc. The visual fea-
tures are still modeled via HMMs as in eq. (1).We will call
this approach ‘VhmmA lgram’. Another possibility is to use
as features the succession of audio events in the segment,
which can be done simply by a bigram modeling:

t
= [ p(oiI0;_1,a),

k=2

b (0202 ...O

where O is a symbol indicating the detection of applause,
ball hits or music in the segment. We will call this approach
‘VhmmA2gram’.

5. PARAMETER ESTIMATION AND
EXPERIMENTAL RESULTS

For all the models, parameters are estimated from manual
shot and segment labels. The transition probabilities are es-



Table 1. Experimental results for various approaches on
test sets regarding percentage of correct classification (C),
precision (P), and recall (R) rates.
¢ [ P | R |
HMMs-V 70.72 | 68.90 | 80.51
HMMs-AV 74.57 | 73.69 | 82.51
AVprod 60.19 | 6.05 | 33.56
Vhmm 76.37 | 70.97 | 80.82
AVhmm 77.81 | 72.39 | 83.69
VhmmAlgram | 76.95 | 72.28 | 72.47
VhmmA2gram | 79.17 | 75.11 | 80.13

timated according to the relative frequency of occurrence.
As observations are discretized, observation probabilities
can also be estimated by the relative frequency of occur-
rence of the symbol for HMMs and for the ‘AVprod’ model.

For the segment model, the segment duration law p(I|a)
is approximated using a 30-bin histogram of the absolute
scene duration expressed in seconds. The visual and audio-
visual HMMs used to model the sequence of shots within a
segment were initialized according to the topology depicted
in Fig. 1 (i.e., same number of states and the allowed tran-
sitions were identical to the dominant transitions of the fig-
ure). The parameters were then estimated using the stan-
dard Baum-Welch algorithm. A simple back-off scheme
was used for the estimation of the audio bigram probabilities
in order to avoid null probabilities for unseen sequences.

Experiments are carried out on a corpus of 6 tennis ga-
mes with a total duration of 15 hours. The first three games
are used as a training set to estimate model parameters while
the last three as the test set. Performances are measured in
terms of the percentage of shots assigned with the correct
scene label as well as in terms of recall and precision on the
scene boundaries. As the ground truth of the games was col-
lected on top of the video track segmentation, errors of the
hard cut and dissolve detection are not taken into account in
this analysis. Results are reported in table 1.

We first see the performance of the HMM of section
3.1 without (HMMs-V) or with (HMMs-AV) audio obser-
vations. As expected, the performance is improved when
adding audio information in the observations. We see in the
next five rows of table 1 the performance of Segment Mod-
els under various observation modeling alternatives. Firstly,
itis clear that the observation independence assumption pro-
vides very poor results (approach AVprod). Note that, in
this case, the very low segmentation accuracy achieved clas-
sification results at acceptable rates, as we assign labels from
a small set of four possible values. The poor results of
AVprod give strong evidence that we should model the tem-
poral evolution of the observations of a segment. Indeed,
the performance increases significantly when modeling the

observation distributions via an HMM (cases Vhmm and
AVhmm). Comparing the performance of Vhmm to that of
AVhmm, we see that the audio observations are again use-
full for Segment Models (or more precisely, for the HMMs
that model the observation sequences). However, the inte-
gration of the audio content under the VhmmA 1gram ap-
proach cannot give performance of the same level. With
this model, audio events that are asynchronous to the visual
observations are used, but the succession of these events in
the scene cannot be captured. This is important as the au-
dio events of the up two scenes of Fig. 1 occur with a strict
temporal order. The succession of audio events can be cap-
tured effectively under the VhmmA2gram approach, where
we note clearly a performance improvement. Overall, by us-
ing Segment Models, we can integrate the video and audio
content in an asynchronous way while achieving marginally
better performance, as we see comparing VhmmAZ2gram to
HMMs-AV and AVhmm.

6. CONCLUSIONS

We proposed an alternative modeling of a video sequence
based on Segment Models, which can offer some flexibil-
ity regarding the fusion of multiple modalities compared
to HMMs. The experimental results demonstrated that the
asynchronous fusion of visual and audio observations un-
der the Segment Models can give the same level of perfor-
mance, if nor better. We plan to extend this framework to
other domains of sport video, as an alternative to HMMs.
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