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Abstract

In panorama images captured by omni-directional
cameras during video conferencing, the image sizes of
the people around the conference table are not uniform
due to the varying distances to the camera. Spatially-
varying-uniform (SVU) scaling functions have been
proposed to warp a panorama image smoothly such
that the participants have similar sizes on the image.
To generate the SVU function, one needs to segment
the table boundaries, which was generated manually in
the previous work. In this paper, we propose a robust
algorithm to automatically segment the table
boundaries. To ensure the robustness, we apply a
symmetry voting scheme to filter out noisy points on
the edge map. Trigonometry and quadratic fitting
methods are developed to fit a continuous curve to the
remaining edge points. We report experimental results
on both synthetic and real images.

1. Introduction

In the past a few years, there has been a lot of
interest in the use of omni-directional cameras for
video conferencing and meeting recording [1,3,4,5].
While a panoramic view is capable of capturing every
participant’s face, one drawback is that the image sizes
of the people around the meeting table are not uniform
in size due to the varying distances to the camera.
Figure 1 shows a 360 degree panorama image of a
meeting room. The table size is 10x5 feet. The person
in the middle of the image appears very small
compared to the other two people because he is further
away from the camera.

Fig. 1: An image captured by an omni-directional camera

This has two consequences. First, it is difficult for
the remote participants to see some faces, thus
negatively affecting the video conferencing experience.
Second, it is a waste of the screen space and network
bandwidth because a lot of the pixels are used on the
background instead of on the meeting participants. As
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image sensor technology rapidly advances, it is
possible to design inexpensive high-resolution (more
than 2000 horizontal pixels) omni-directional video
cameras [1]. But due to network bandwidth and user’s
screen space, only a smaller-sized image can be sent to
the clients. Therefore how to effectively use the pixels
has become a critical problem in improving the video
conferencing experience.

Spatially-varying-uniform (SVU) scaling functions
have been proposed [2] to address this problem. A
SVU scaling function warps a panorama image to
equalize people’s head sizes without creating
discontinuities. Fig. 2 shows the result after head-size
equalization.

The generation of a SVU function, as described in
[2], requires two curves: the bottom curve specifies the
table boundaries, and the top curve along people’s head
top positions. In the previous work, the two curves
were created manually. The problem with the manual
segmentation is that whenever the camera is moved or
rotated, the user has to manually mark an image, thus
making it difficult to use. In this paper, we describe a
technique to automatically segment the table
boundaries and estimate the two curves. As a result, the
SVU function can be generated automatically.

Fig. 2: Result after head-size equalization

2. Cylindrical projection of an omni-
directional camera
Fig. 3 shows a mathematical model of the cylindrical

projection. The camera is at the center of a rectangular
table of size 2 *2L. The projection center is (0,0,7)-

The radius of the cylindrical film is 7. The projection
of the table edge from (w,r,0) to (w,—L,0) on the
cylindrical film is

v=h(l—rcos@/W) (2-1)
0 e [—arctan(L /W ),arctan(L/ W)]. The

projections of the other three table edges can be
obtained similarly.

where
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Fig. 3: Cylindrical projection of the table edges

Consider a more general case where the camera may
not be at the center of table, and the camera may be
tilted. Let (Aw,Al) denote the camera shift with respect

to the table center. Let (@, ) denote the camera tilt

where @ specifies the direction in which the camera
tilts, and ¢ is the tilt angle. The projected curve of the
table edge is

v="h(1—-rcos@/(W + Aw)) +rcos(6 — w)sin (2-2)
e [—arctan(L — Al) /(W — Aw)),arctan(L — Al) /(W + Aw))]

(v,0) represents a point on the cylindrical film.

Assume we cut the film at@=hs, and flatten it. Let
(v,p) represent a point on the flattened film. Then

0 =@+ hs. If we substitute it into equations (2-2), we

will obtain the equations of the projected curves in the
unfolded film coordinates.

In general, there is a one-to-one mapping from the
points on the cylindrical film and the points on the
meeting table through the projection center (0,0, 4) . Due

to space constraints, we will omit the derivations and
formula for the mapping functions. We will use F; and

F, to denote the mapping from the table to the

cylindrical film, and fF'and F;' to represent the

mapping from cylindrical film to the table. That is,
v=F(x,y,z,h,r,a@0,AwAlLhs);
o=F,(x,y,z,h,r,0,0,Aw,Al, hs);
x=Ffl(v,¢,h,r,a),a,Aw,Al,hs);

(2-3)

y= inl(V,¢7,h,r,w,(l,AW,Al,hs);

3. Symmetry Voting

If we apply a general image segmentation algorithm
such as EDISON [8], the result is quite noisy. Figs. 10
and 11 show an example. We can see the edge map in
Fig. 11 contain a lot of noises in addition to the table
boundaries. To filter out the edge map, we observe that
most conference tables are bilaterally symmetric. Our
idea is to take advantage of the symmetry property to
filter out the noise.

(=x,—»,0) (=x,,0)

1
(x,,0)
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Fig. 4: The top down view of the table.

As shown in Fig. 4, each 3D point (x,y,0) on the
table boundary has three symmetric
points: (—x, y,0) » (x,—,0) » (—x,—»,0) - If a 2D point p
on the edge map corresponds to the 3D point(yx, y,0),
then the other three points (we call them p’s

symmetric projections) which correspond to 3D
points (—x, y,0),(x,—y,0), and (—x,—y,0) respectively,
must be on the edge map as well.

The symmetry voting works by enumerating all the
possible values of Aw, Al ks, ,a - For each hypothesis, it

checks each point on the edge map to see how many of
its symmetric projections are also on the edge map, and
increments the accumulated weight accordingly. Finally
the hypothesis corresponding to the largest
accumulated weight is selected as the solution.

To accelerate computation, we perform the
symmetry voting method in two steps: we first vote
for Aw, Al ks » then vote for camera tilt. The following is

the algorithm of the first step voting.

Clear global h[ ][ ][ ]
For Aw=w_min; Aw <= w_max; Aw++
For Al =I_min; Al <=1_max; Al ++
For hs=hs_min; hs <=hs_max; hs++
For each edge point (v, @), find (x, y) by Eqg. (2-3)
Update(-x,y, Aw, Al ,hs);
Update(x,-y, Aw, Al ,hs);
Update(-x,-y, Aw, Al ,hs);
End all
Find the maximum of h[ ][ ][ ] and return its index as
(Aw, Al ,hs).

Function Update(x,y, Aw, Al ,hs)
Find (v,¢) given (xy) by Eq. (2-3)
If an edge point (4, 1) falls within a window of (v, ¢)
Then h[Aw][Al][hs]+=1/distance((rv,t(p) .9

In the second voting, we fix the Aw, Al ks, and use a
similar algorithm to vote for (@, ) by using functions
F,.F," - Note that we could potentially use the newly

11,2271
estimated (@, ) and vote for ¢ again. But we found

that the first iteration is usually enough.
After we obtain the optimal values for Aw, A7 hs and

(w,a), we then filter out the edge map using the



symmetry properties. Given any point on the edge map
which is the projection of (x,y,0), we say it satisfies
symmetry property if at least two' of its symmetric
projections are also on the edge map.

We remove all the points on the edge map which do
not satisfy the symmetry property.

For each point that satisfies the symmetry property,
we add the other three projections of its symmetric
points to the edge map. The resulting map is called
symmetry-enhanced edge map. Fig. 12 shows the
symmetry-enhanced edge map after applying the
filtering operation on the edge map of Fig. 11.

4. Fitting Algorithms

The points on the symmetry-enhanced edge map are
the inputs of the fitting algorithm. We have developed
two different fitting techniques: trigonometry fitting
and quadratic fitting. Due the page limit, we will only
give a brief summary for each fitting method.

The trigonometry fitting is a model-based approach.
By assuming a rectangular table, the projected curve
has the form of Eq. (2-2) where W, L are the unknown
parameters that we need to estimate. Since the edge
map is symmetry-enhanced, we only need to use the
points on two of the four table edges. As shown in Fig.
11, the two sections are the one between cut” and cut,
and the one between cut and cut’ where cut, cut’, and
cut” are all functions of W, L.

The limitation of the trigonometry fitting is that it
assumes a rectangular shape. For non-rectangular
tables, the fitting is not as accurate.

Quadratic fitting does not have such limitations. In
quadratic fitting, we use two quadratic curves to fit the
edge points. To regulate the fitted curve, we require
that each of the quadratic curve has the form
y=a+b(x—c)’.

The red curves in Figs. 13 and 14 are the results of
the two fitting methods.

After we obtain the table dimensions and camera
parameters, we estimate the top curve as the following.
We first assume an average height of a person (sitting
at the table) above the table surface. Then we create a
virtual table surface at this height and project its
boundary to the cylindrical film. The details are
omitted here. We then apply the SVU scaling function
to equalize people’s head sizes. Fig. 15 shows the
result based on trigonometry fitting.

5. Experimental Results

! Requiring all the three projections on the edge map would be too
strict due to inaccuracies of the estimated parameters and image
noises.

We have tested our algorithm intensively on both
synthetic data and real data. The synthetic data are
generated by a 3D graphics rendering program. The
purpose of using synthetic data is to test the robustness
of our algorithm on various conditions including
different camera tilts, different noise levels, and
different table shapes.

To measure the performance when there is camera
tilt, we set the step size of @ to be 50°, and ¢« to be
0.2° and generate synthetic images with different
camera tilts. For each synthetic image, we first use
EDISON [8] software to generate the edge map. Then
our symmetry voting algorithm is used to estimate @
and & . The average error for the estimated @ is 5.14°,
and for & is 0.0786°. Fig. 5 shows the error of @ for
different values of . It is interesting to note that for
smaller ¢, the estimation error of @ is larger. The
reason is that when ¢ is small, the direction of the tilt
@ becomes ambiguous. At the extreme when & =0, w
is arbitrary.
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Fig. 5: Error of (U under different &X

To measure the performance under different noise
levels, we add random black squares of size 10*10
pixels to the synthetic images. The noise level was
controlled by the number of the blocks N. Fig. 6 in the
last page is an example of the synthetic image with 100
blocks. We use a boat-shaped (non-rectangular) table
for this experiment. The results are in Fig. 7. The
average error is the average distance (in pixels)
between the fitting curve and the ground truth. We can
see that in less noisy conditions, quadratic fitting works
better than the trigonometric fitting. The reason is that
the table shape is non-rectangular. When the noise
increases, trigonometric fitting has a stronger
regulation thus is more robust against noises.

To measure the performance with different table
sizes and shapes, we generate synthetic data with two
table shapes: boat shape and rectangular shape, and
three different aspect ratios: 1:2, 1:3, and 1:4. The
camera tiltis set to g = 90°, & = 0.6° . The noise level is

set to N=150. Fig. 8 shows the results for boat-shaped
tables. Fig. 9 shows the results for rectangular tables.
We can see that in all circumstances, the maximum
error is less than 2 pixels for both fitting methods.



Quadratic fitting works better for boat-shaped table
because it is able to handle arbitrary table shapes.
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Fig. 6: Synthetic panorama image with N=100. The yellow
blocks simulate human heads.
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Fig. 7: Fitting error vs. noises on boat-shaped table

6. Conclusion

We have developed a novel technique to
automatically detect table boundaries on 360° panorama
images in meeting rooms. As a result, we are able to
automatically generate SVU-scaling functions to
equalize people’s head sizes resulting in better video
conferencing experience. Experiments show that our
algorithm is robust under very noisy conditions. (4

longer version of this paper with more technical details can
be found at http://research.microsoft.com/~zliu/TR-2005-

48.pdf)
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